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Introduction

e Gravity Recovery and Climate
Experiment (GRACE)
e Approaching 15 year lifetime
* Providing unprecedented
observations of Earth’s time variable
gravity
e Unconstrained solutions still
contain significant errors — stripes

e Revisit some implicit assumptions
in the estimation problem
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Nonlinear Estimation Problem

y=Hx + € E[eeT]:R:aQI

* GRACE Level 2 processing centers assume independent Gaussian
noise

e Gravity science is beginning to explore correlated observation error
(Ditmar, 2007)

e GOCE processing (Pail et. al., 2010, 2011 )
e TU Graz — ITSG-GRACE2016 (Mayer-Glrr et. al., 2016)
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Correlated Observation Error
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GRACE inter-satellite range-rate residuals show substantial correlation
— due to imperfections in the force/observation modeling
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Correlated Observation Error
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GRACE inter-satellite range-rate residuals show substantial correlation
— due to imperfections in the force/observation modeling
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Correlated Observation Error
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GRACE inter-satellite range-rate residuals show substantial correlation
— due to imperfections in the force/observation modeling
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Correlated Observation Error
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GRACE inter-satellite range-rate residuals show substantial correlation
— due to imperfections in the force/observation modeling
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Digression — Empirical Parameters
P —2n7 — 3n’r = Jr fi = P;coswt + Q); sin wt,
%——an:fq- w;énj
U+ ntv=f, i =71 T, U

* Hill's equations — describe deviations of linearized motion under of the
influence of external perturbative forces

 Harmonic perturbations give rise to motion at distinct frequencies: the
perturbing frequency, the orbital period, and long period drift (2 of which
are common to all perturbations

v; (t) = A; + Bit + C;t* + D, cosnt + E;sinnt + F;coswt + Gy sinwt, i=r1,V
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Digression — Empirical Parameters
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influence of external perturbative forces

 Harmonic perturbations give rise to motion at distinct frequencies: the
perturbing frequency, the orbital period, and long period drift (2 of which
are common to all perturbations

v; (t) = A; + Bit + C;t* + D, cosnt + E;sinnt + F; coswt + G, sin wt,
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Digression — Empirical Parameters

. . 9 .
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* Hill's equations — describe deviations of linearized motion under of the
influence of external perturbative forces

 Harmonic perturbations give rise to motion at distinct frequencies: the
perturbing frequency, the orbital period, and long period drift (2 of which
are common to all perturbations
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Digression — Empirical Parameters
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Digression — Empirical Parameters
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* Hill's equations — describe deviations of linearized motion under of the
influence of external perturbative forces

 Harmonic perturbations give rise to motion at distinct frequencies: the
perturbing frequency, the orbital period, and long period drift (2 of which
are common to all perturbations
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Digression — Empirical Parameters

. . 9 .

r—2nT — 3n°r = f, fi = P, coswt + (); sin wt,
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* Hill's equations — describe deviations of linearized motion under of the
influence of external perturbative forces

 Harmonic perturbations give rise to motion at distinct frequencies: the
perturbing frequency, the orbital period, and long period drift (2 of which
are common to all perturbations

v; (1) :|AZ- + Bt + Citzl—k D;cosnt + E;sinnt + F;coswt + G;sinwt, i =1r,T,v
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Digression — Empirical Parameters

* This application of Hill’s equations has been generalized to inter-
satellite range-rate for applications related to GRACE (Kim, 2000)

6p(t) = A+ Bt +Ct° + (D + Et) cosnt + (F + Gt) sinnt

e Typically some subset of the constant multipliers are estimated to
account for deficiencies in the underlying force/observation models

e Alternatively, the observation covariance may be used to
stochastically model errors of this form
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Modeling the Covariance from a Spectrum
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e A discrete, stationary process may be described by an NxN covariance
matrix and is defined by N parameters — 1 variance and N-1 correlations
e Given a spectrum/time series, the variance and autocorrelation function is

easily computed — fully defining the covariance matrix — the example
shown is for August 1, 2008
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Sampling from the Covariance
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e Sampling from the modeled covariance yields the time series and
spectrum shown, matching the desired characteristics of the input
spectral model — the example shown is from August 1, 2008
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Monthly Solution — May 2016
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e CSR RLOS5 solutions (mean removed) — comparison of recent months

* May solution displays abnormally large errors — resonant degrees and large
stripes
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Monthly Solut|on — May 2016
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e Large errors at resonant degrees hint at large uncertainty at low frequency

and 1 cpr
 Hence, the observation covariance is modeled as shown with a large peak

at 1cpr and 1/f* slope in the low frequency
CSR 18
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Monthly Solution — May 2016
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e FCOV denotes the use of the observation covariance model
* The improvement is apparent at all degrees
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Monthly Solution — May 2016
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e FCOV denotes the use of the observation covariance model
 Stripes have been greatly reduced while preserving geophysical signal
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Formal Error Statistics
EEn_‘mplrlcallyDerwedSigmas o F|gu res ShOW diagonal
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RLOS error covariance
(left) and empirical
estimates of GRACE
spherical harmonic error

v:  (right —derived via
comparison with mascon
solutions)

* Time span 2004-2010

e Formal errors are not
representative of GRACE
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Formal Error Statistics

e Figures show diagonal
values of the formal error
when using the full
observation covariance
(left) and empirical
estimates of GRACE
spherical harmonic error
(right — derived via
comparison with mascon
solutions)

* Time Span 2004-2010

e Modeling of low frequency
error improves agreement
of formal error
characteristics with Degree (1
empirical derivations Full Observation Covariance — Empirical Error Estimates

Formal Error
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Summary

* The observation error covariance may be used to model random
measurement noise and systematic effects caused by deficiencies in
the underlying force models

e Using a spectral model, more representative observation covariance
matrices may be derived

e Utilizing these in the estimation problem, improves estimates of
gravity field and drastically improves formal error characterization
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Thank youl!!

Jet Propulsion Laboratory
California Institute of Technology

Christopher.McCullough@jpl.nasa.gov

CSR

24



References

1. Ditmar, P, Klees, R., and Liu, X., “Frequency-Dependent Data Weighting in Global
Gravity Field Modeling from Satellite Data Contaminated by Non-Stationary Noise,”
Journal of Geodesy, Vol. 81, No. 1, 2007, pp. 81-96, doi: 10.1007/s00190-006-0074-4.

2. Pail, R, et. al., “Combined Satellite Gravity Field Model GOCOO01S Derived from GOCE
and GRACE,” Geophysical Research Letters, Vol. 37, No. L20314, 2010, doi:
10.1029/2010GL044906.

3. Pail, R, et. al., “First GOCE Gravity Field Models Derived by Three Different
Approaches,” Journal of Geodesy, Vol. 85, November 2011, pp. 819-843, doi:
10.1007/s00190-011-0467-x.

4. Mayer-Gurr, T., et. al., ITSG-GRACE2016 — Monthly and Daily Gravity Field Solutions
from GRACE. GFZ Data Services. http:/doi.org/10.5880/icgem.2016.007.

5. Kim, J. R., A Low-Low Satellite-to-Satellite Tracking Mission, Ph.D. Thesis, The
University of Texas at Austin, Austin, TX, May 2000.

@Jet Propulsion Laboratory Christopher.McCullough@jpl.nasa.gov CSR 25

California Institute of Technology




Back-up
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FFT Based Covariance Modeling

Discrete Fourier Transforms
Nl —27jkn 1 Pl 2rwjkn
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Time Series Based Covariance Modeling

Variance and Correlation in Terms of the Discrete Time Series
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August 2008 — Spectral Model
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Spectral model for August 2008 differs from May 2016 — reduced 1 cpr
spike and slope is 1/f2 in the low frequency
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Post-Fit Residual Comparison — August 2008
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Full observation covariance (FCOV) post-fits show
measurement noise combined with some
dynamical/observation model error.
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Post-Fit Residual Comparison — August 2008
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Post-fits are roughly equivalent in the frequency band of interest
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Post-Fit Residual Maps — August 2008
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No significant geographically located signal in the post-fit —i.e. the observation covariance does not
hinder gravity field signal capture
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Degree RMS (mm of geoid)

Degree Variance Comparisons — 2002-2003
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 Power in the low degrees — dominated by signal — are equivalent, while higher degrees — dominated by
noise — have been reduced

* Note: To facilitate analysis, the observation covariance is modeled using the August 2008 model —
rendering the solutions sub-optimal
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Degree RMS (mm of geoid)

Degree Variance Comparisons — 2004-2010
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 Power in the low degrees — dominated by signal — are equivalent, while higher degrees — dominated by

noise — have been reduced

* Note: To facilitate analysis, the observation covariance is modeled using the August 2008 model —

rendering the solutions sub-optimal
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Degree RMS (mm of geoid)

Degree Variance Comparisons —2011-2016
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 Power in the low degrees — dominated by signal — are equivalent, while higher degrees — dominated by
noise — have been reduced

* Note: To facilitate analysis, the observation covariance is modeled using the August 2008 model —
rendering the solutions sub-optimal
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