AJPLU

Using SpaceWire Time Codes for
Spacecraft Time Synchronization

International SpaceWire 2016
Yokohama, Japan
25-29 October 2016

Susan C. Clancy, Mazen M. Shihabi and Krisjani S. Angkasa
Jet Propulsion Laboratory at the California Institute of Technology

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged.

S0 Overview

e Spacecraft Time Synchronization

— Background
— Methods

— Challenges
e Time Conversion Algorithms

 Time Synchronization

— Time API

— Clock Monitoring
 Time Distribution Interface
e Spacecraft Time Synchronization Demonstration

e Conclusions and Future Work

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged. 2

JIPL. Spacecraft Time Synchronization - Background vas

e Distributed systems have multiple computers and instruments
which need to be synchronized within the system to support:

— Correlating telemetry with commands and events
— Coordinating timed operations within the various subsystems

— Navigation / Expected position based on propagated time

e Some spacecraft have 20 or more different subsystem computers

— each computer may have different clock parts running at different tick rates

e Some instruments do not have a hardware clock

— Use firmware to derive clocks from external hardware clock signals

— Use soft core CPU’s in firmware (CPU on a chip)

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged.

JIPL. Spacecraft Time Synchronization - Methods

e Typical spacecraft time synchronization methods

— Represent time as a number of seconds and sub-seconds from a known epoch
— Time is updated by adding an “offset” to the conversion from the hardware ticks

— Periodic Update “Message” Method

* Master broadcasts a time message, Slave updates at specific receipt of the appropriate “update” tick
* Used on several spacecraft missions that use a 1553 bus with broadcasted time message

e Software based T1 Update T2 Update
’ v

NN

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5
4 4

Time Broadcast Time Broadcast
At T1 -1 tick At T2 — 1 tick

— Periodic Hardware Update “Tick” Method

* All slaves get a hardware tick input

* A “slave” would update its SpaceWire derived clock each time a time code arrived

* Firmware / hardware based Hardware

=» Clock * { {

Tick

Subsystem1 Subsystem2 Subsystem3

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged. 4

JIPL. Spacecraft Time Synchronization - Challenges

e Challenges in distributing time are similar to ground based systems

— Latency: the time it takes to transfer and respond to a time update
* The spacecraft subsystem must account for a measured range of latency
e Maximum is usually in microseconds for Hardware based or milliseconds for Message based

— Jitter: the intermittent delays and inconsistencies in the path between the master sending
the time and the slave receiving and updating their time
* The spacecraft subsystem must tolerate a measured maximum jitter
* Some systems can have 10 millisecond maximum jitter requirement

— Clock: clock oscillators have varying performance which degrades over time and can be
sensitive to the environment (temperature, pressure, humidity, etc.)
* Clock deltas can be accounted for in the time conversion algorithm
* Clock drift needs to be measured for each clock
— Need a method for detecting the drift and compensating for it as a time adjustment
* Power, Mass, and Cost influence the type of clock

— Time Conversion

* Hardware clocks tick at different rates but the time represented by them must match the reference
* Hardware clocks ticks are converted to a common time unit such as seconds or nanoseconds
e Hardware clock values are not updated, only the tick rate or offset used to calculate the time

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged.

JPFPL Time Conversion Algorithms

e Algorithms make adjustments to the time not the hardware

— time = (clock ticks / ticks per second) + delta
e Thu Oct 13 17:09:16 PDT 2016 = 1476403783 seconds after Jan 1, 1970

— time = (clock ticks / adjusted ticks per second) + adjusted delta
* Adjustments at periodic intervals using measured drift / jitter range

e Can make smoother updates based on tolerance ranges (thresholds)

 Time conversion algorithms need to account for latency, varying
jitter, and clock degradation

— Adjustments are applied to the “ticks per second” clock rate and to the delta

— An adjustment applied to the clock rate can mimic the clock slowing down (or
speeding up)
* Need a drift measurement to determine how much to speed up or slow down

* Need a delta measurement to account for clock value differences and latency

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged.

JRPL Time Synchronization —Time API

| Time Delta | > []
P g [] -
e _-_‘_‘—‘——_

e TT— il

I o I — - L ~
I:_—".]"]"_(‘rcl"l'in‘m]—% APFP GetTime - r APP_ SetTime
- — —I e -
Clock Conversion IData Clock Conversion [Data
Clockl Clock2

e Spacecraft Telecommunications Radio System (STRS) Time Interface
(NASA-4009 standard)

— Defines an Application Program Interface (API) for getting, setting, synchronizing
time, and also for maintaining “clock conversion data”
e Uses “conversion data” to make adjustments to the time
— The “reference” clock does not need to be more accurate than the “managed”
clock

e radios typically have clocks that are more accurate than the spacecraft reference clock

— STRS APl is used to synchronize clocks and not to achieve a more accurate time

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged.

JIPL. Time Synchronization — Clock Monitoring

 Clock Calibration Waveform

— Captures delta time between a reference clock and a managed clock
— Captures drift data used for monitoring / adjusting the clocks

— Synchronizes the clocks so they both report the same time

[J

i
Reported

[i Dyrift
Lowest Highest Lowest Highest
Clock 1 Clock 1 MMonitored R-Epc:lrted Clock 2 Clack =

| Drift > O D rift Delta IData Delta Drift = 0O Drift
A ’ T ~
_-—"‘_________________ —~ __________—_ —

& CLKCAIL Waveform e

T)
':"—"‘-";La' ue Threshold MMinimum C'”‘:*;L e
Threshold MMaximuom

Incremental Adj Maximum

Clock1l Clock?2

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged.

JPL Time Distribution Interface

e SpaceWire Time Protocol

— Initiator (aka master) Sends SpaceWire Time Codes
e sent a user configured rate

* contains time code message id, flags, and a time code counter

— time code counter is an incrementing 0-63 value

* has a TickOut hardware signal interface

— Receiver (aka slave or router)
* receives Time Codes, detects discontinuity in the Time Code Counter

* has Tickln hardware signal interface

* Time Master Application sends a Time Announce Message

— CCSDS Un-segmented Code (CUC) Time Specification for Time Message Format

* CCSDS Standard for specifying time as a number of seconds and sub-seconds from an

epoch

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged.

JPL Time Synchronization — Functional View

e Synchronizes Slave Clock
 Time Master

— Sends Spacewire Time Codes
— Sends Time Announce Message Spacewire Spacewire
. Time Slave SpaceWire @100Mbps :
e Time Slave Time Master
— Receives Time Codes
. . ‘ Clock Clock
e generates when Tickln received —
e software keep track of the ticks
— Receives Time Announce Message
. . N el R O I
* saves the new time and updates it
on the time boundary tick -
. : . " Time Code 100fsec W
— Continuously monitors drift P L ey
. “ESC:FIagsllCoun| hme Announce Message l/sec ‘
— Continuously checks delta between osssoogerrere S e =
. Add IPI i CUC Formatted Ti {
CIOCkS and SynCh ronlzes When above '!'.'.'.'.'.[.'.'.IE-_-_-_-_-_-_-_'_ _______g_r[naemeq
tolerance

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged. 10

e Time Slave on a Software Defined Radio

— SDR developed at JPL running RTEMS on Sparc Leon2
— SpaceWire implemented in FPGA firmware developed at NASA

Goddard, adapted by GRC / JPL

e SpaceWire (SPW) waveform software developed by JPL
* Receives the Time Codes and Time Announce Message
e Counts Ticks and Notifies when time boundary is reached

[] Time Code
MNotification
Time Code
. Tick CCounter
Current Spacewire e Time Codes
Time — o |
7_{____7_————_ _————_7_____1_ - - ——— - ————
/‘F-ﬂ_ e %-H-‘\H.
- SPW Waveform D g—
T — —_— Time Announce Message
= _ I

Configuration:
MIovde (IvVIiaster or Slave)

Time Code Receive Inmterval (in ZWicroscconds)
Time Announce Rate (per second)

MNotification Rate (per second)

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged. 11

JIPL. Time Synchronization — Test Configuration

sl e ™ Time “Slave” Host
Q CLKCAL Waveform D o
Clock2
(
Time “Master” Host
SPW Waveform :::. i
Clockl
o | s Time “Slave” Host °
Q CLKCAL Waveform D
Clock2
Time “Master” Host
SPW Waveform -

Clock1

Time Test Configuration 1

— Tested time codes 100/sec,
message 1/sec

— Rad750 embedded processor
running Spacewire at 100 Mbps

— VxWorks RTOS

Time Test Configuration 2

— Tested time codes 1/sec,
message 1/sec

— Linux Host running Star-Dundee
Spacewire Brick at 100 Mbps

— Linux Non-Real time OS

e good for testing the time sync
thresholds / reporting of deltas

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged.

SJBP0L ClkCal Software Test Results

e Captured Time Delta Results show what Thresholds should be set to
— Shows threshold min. should be set at 5 usec
* ignore delta values below this threshold minimum

— Shows rate adjustment max should be set at 26 usec
e deltas below this max will do a smooth time sync using the rate adjustment

rate adjustment max.

——————— N N R R S S S -

threshold min.

——— w=threstrole min.

Time

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged. 13

JPL Conclusions and Future Work

e Conclusions
— SpaceWire Time Codes should be aligned with real time time boundaries
* When not aligned, the time may change on a tick but not necessarily on an exact time boundary

e Use of the Spacewire Tickln and TickOut signals with interrupts enable software control to turn an
asychronous SpaceWire Network into a synchronous network

— STRS time APl can accommodate synchronizing various clock “kinds”

* Uses clock compensation data that can be defined to match specific clock characteristics
* Provides a standard way of synchronizing clocks
— Tolerance ranges can be defined based on measured deltas due to latency, jitter, and drift

* CLKCAL software can monitor clock deltas and automatically synchronize based on thresholds
— Min—does not take any action unless the delta is at least this amount

— Rate Adjustment Max — maximum delta for using a rate adjustment

e Future Work

— Other Uses for SpaceWire Time-Codes
* Implement a SpaceWire derived “clock” by incrementing a counter each time a SpaceWire time code is
received
— For subsystems that do not have a hardware real time clock
— Reduces the need for hardware clocks which add more mass, power, and cost

* Calibrate clocks using the SpaceWire TickOut signal received once per second
— Latch the free running counter in the FPGA when each TickOut signal occurs
— Latch the free running counter in the FPGA when a monitored clock hardware seconds tick occurs
- So;npa;e the counter values to detect “drift” (the delta should always be the same unless one of the clock sources is
rifting

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged. 14

SPL Reference Links

e SpaceWire Time Protocol Specification
— ECSS-E-ST-50-12C
e NASA-4009 Space Telecommunication Radio System

(STRS) architecture standard

— https://strs.grc.nasa.gov
— http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140012700.pdf

Copyright ©2016 California Institute of Technology. Government Sponsorship Acknowledged. 15

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140012700.pdf

Jet Propulsion Laboratory
California Institute of Technology

	Using SpaceWire Time Codes for Spacecraft Time Synchronization
	Overview
	Spacecraft Time Synchronization - Background
	Spacecraft Time Synchronization - Methods
	Spacecraft Time Synchronization - Challenges
	Time Conversion Algorithms
	Time Synchronization –Time API
	Time Synchronization – Clock Monitoring
	Time Distribution Interface
	Time Synchronization – Functional View
	Time Synchronization – SpaceWire Waveform
	Time Synchronization – Test Configuration
	ClkCal Software Test Results
	Conclusions and Future Work
	Reference Links
	Slide Number 16

