
Simplifying OMG MOF-
based Metamodeling

NICOLAS ROUQUETTE, JPL/CALTECH

US GOVERNMENT SPONSORSHIP ACKNOWLEDGED

Open-Source project available: https://github.com/TIWG/org.omg.oti.mof.schema

https://github.com/TIWG/org.omg.oti.mof.schema


Agenda
1. JPL’s involvement at the OMG: Past, Present & Future Directions

2. MOF-based metamodeling is too complex

3. Simplifying MOF

4. A normalized relational schema for ontological modeling resources

5. Serialization and API

Conclusion



JPL’s Active Participation at the OMG:
A Brief 10-year retrospective

MOF 2.0
XMI 2.1.1
UML 2.3

SysML 1.1

Published OMG 
Specifications

Timeline

JPL’s 
Participation

2010

NESC Assessment:
NASA Constellation
Project Problems: 
3 models in 3 tools =
3 information silos

(Model Interchange WG)

From boxology
modeling to
computational
modeling

(FUML)

2011~2012

Trying to use OMG 
specifications as technology:
(incl. OCL, QVT, MOF, XMI…)

(UML/MOF/XMI 2.4 Series)

2005 2015

10 years later; the good parts:
⇒ UML Spec Simplification (smaller!)
⇒ QUDV supports ISO 80K Metrology
⇒ Canonical XMI eliminates many variations!

The remaining architecture issues:
(MOF, XMI, OCL, QVT)

MOF 2.4
XMI 2.4

UML 2.4.1
SysML 1.3

MOF 2.5.1
XMI 2.5.1
UML 2.5

SysML 1.4

“2.0” Major
Revisions

(MOF, UML, ..)



Rethinking JPL’s Participation at the OMG
• ROI of participating in OMG’s processes is too low for NASA’s NESC & JPL 

• OMG’s document-centric processes are expensive (labor) and inefficient (lots of duplication & duplicated work)
• OMG’s specifications (products) lack key characteristics of modern software products (APIs, artifacts, versioning, testing)

• Yet, the adoption of UML/SysML in Model-Based Systems Engineering (MBSE) means that we still have to care

• Goal: a constructive, value-added participation:
• Simpler perspective on modeling as ontological vocabularies (vs. object-oriented design)
• Better utilization of models with functional programming (vs. OCL/QVT)
• Faster model interchange based on normalized relational schema (vs. Trees like XMI)



Past: Modeling (without unification)
Now: Ontological/Functional Modeling (this paper)
Future: Lifting sound type systems to Modeling DSLs

Now: OMG 2005~2015:

OMG modeling architecture
◦ Circular? (MOF -> UML -> MOF) 
◦ Layered? (M3/M2/M1) 

Physical representation
◦ XMI interchange

No logical representation 
◦ MOF-level logical data 

(not physical serialization)

No logical API 
◦ MOF logical languages
◦ (e.g. OCL/QVT/FUML/ALF/…)

Simplified MOF-based Metamodeling:

Acyclic graph of ontological resources
◦ Acyclic graph of resource relationships
◦ Profile as an optional metamodel extension

Physical representation
◦ Adopt SPARK-based JSON row serialization

Logical representation
◦ Normalized schema table API (CRUD)
◦ The basis for logical model interchange

Logical API
◦ Single API specification (in Scala)
◦ Cross-compiled for Java, JavaScript, Scala, …

Future: Scala-based DSLs

Federated domains
◦ Views integrate multiple domains
◦ Model management (view/update)

Physical representation
◦ DSL textual concrete syntax

Logical representation 
◦ DSL Abstract Syntax API
◦ DSL APIs extend Scala/Dotty APIs

Logical API
◦ DSL type system extends Scala/Dotty
◦ Lift Scala tools to the DSL level (e.g Leon)



MOF-based metamodeling is too complex
Where does the complexity come from?

1) Poor separation between abstract syntax (MOF) & concrete syntax (XMI)
◦ OMG specifications occasionally use MOF for abstract syntax purposes

◦ See UML object diagrams with InstanceSpecifications classified by metamodel classifiers (classes, associations)

2) Reflective MOF architecture lacks either a bootstrapping or a fixed-point definition
◦ The MOF architecture is also incomplete 
◦ (e.g., the “instanceOf” relation between model/metamodel is undefined!)

3) Convoluted semantics for core metamodeling constructs: Class, Association, Property, Generalization
◦ Significant overlap among some constructs (e.g. Association vs. Property; Class vs. Association)
◦ Incoherently used in the definition of UML



MOF Complexity: Heterogeneity of relationships

Key Relationship Kind

C Classifier

F Feature

Ne NamedElement

Ns Namespace

Rf Redefinable

Rl Relationship

Key What roles represent?

D Distinct role for each related element

S Single role for all related elements

Key How are roles represented?

+/- R has role metaclass

+/- B has role binding properties

Key Do related metaclasses have opposites
role properties?

+ Op Non-derived opposite role properties

+ Od Derived opposite role properties

- O No opposite role property of any kind



Simplifying MOF
1. Eliminating construct redundancy (Class, Association, Property) for conceptual relationships

o Data property relationship (Class-owned Property typed by a DataType)
o Binary, Directed Association (Association owning both end Properties typed by MetaClasses)

2. Simplifying Binary, Directed Associations
o Simplified direction Direction reflects order of ends consistent with aggregation (composite -> shared)
o Simplified aggregation Association-level aggregation (not Property!)
o Simplified specialization Association-level existential subsetting or universal restriction (not Property!)



MOF: Simplified Data Relationships



MOF: Simplified MetaAssociation Relationships



A Normalized Relational Schema for 
Ontological Modeling Resources 

o MOF lacks an explicit modeling of Resources
 There are only 4 kinds of concrete resources

o MOF lacks relationships among Resources
 All practically relevant relationships are supported

o Profiles didn’t fit OMG’s 2+ layered architecture
 There are no layers; only acyclic relationships
 Profiles and Metamodels are ClassifierResources

o Model conformance is ontological (w.r.t. classification)
Models directly conform to at least 1 ClassifierResource

(and indirectly to all imported ClassifierResources)



Library Resource (datatype definitions)



Metamodel Resource



Profile Resource



Model Resource



Serialization and API (Core Architecture)

Functional
Data Analysis

Ontological
Data

API Level Goals:
 Pure functional analysis of ontological data
 Acyclic functional analysis workflow graph

Ontological
Data

Serialization Level Realization & Deployment Level

Resource Management Level



Serialization and API (Resource Management)

Functional
Data Analysis

Ontological
Data

API Level Goals:
 Pure functional analysis of ontological data
 Acyclic functional analysis workflow graph
 Provenance metadata => Feedback to ontological data

Input/Output Analytical 
Provenance Metadata

Resource Management Level Goals:
 Managing all kinds of resources as ontological data 
 Provenance-based versioning of all ontological data

Serialization Level Realization & Deployment Level

Ontological
Data

External Authoring
Provenance Metadata



Serialization and API (Realization Architecture)

Functional
Data Analysis

Ontological
Data

API Level Goals:
 Pure functional analysis of ontological data
 Acyclic functional analysis workflow graph
 Provenance metadata => Feedback to ontological data

Input/Output Analytical 
Provenance Metadata

Resource Management Level Goals:
 Managing all kinds of resources as ontological data 
 Provenance-based versioning of all ontological data

Serialization Level Realization & Deployment:
 Tool-specific serialization of ontological data
 Tool-specific implementation of functional data analysis
 Mitigate gaps w.r.t. API & Resource Management Levels 

Model
Repository

Ontological
Data

Authoring
Tool

Analysis
Tools

Model
Repository

Input/Output Analytical 
Provenance Metadata

External Authoring
Provenance Metadata

External Authoring
Provenance Metadata



Serialization and API (Tool Conformance)

Differences with OMG UML 2.5
 UML composite property subsetting other composite 

property which is not a derived union
 https://bugs.eclipse.org/bugs/show_bug.cgi?id=464702

No common 
representation!

Differences with OMG UML 2.5
 2 additional metaclasses, ~ 12 additional associations

OMG UML 2.5
Normalized 

Schema
Generator

MagicDraw 18.0

Eclipse UML 5.2.1
Normalized 

Schema
Generator

Normalized 
Schema

Generator

OMG UML 2.5
Normalized Schema

MagicDraw 18.0
Normalized Schema

Eclipse UML 5.2.1
Normalized Schema

Common Logical API
Representation! 

Comparing normalized schemas of OMG’s vs. tool-specific 
implementations could be used for conformance assessment

https://bugs.eclipse.org/bugs/show_bug.cgi?id=464702


Conclusion
 Presented reflections about a decadal retrospective on JPL’s involvement @ OMG
Motivation: What should drive JPL’s next decadal involvement @ OMG, if any?

 Growing beyond OMG: agile & effective open-source development:
 Open source: https://github.com/TIWG/org.omg.oti.mof.schema
 Continuous integration: https://travis-ci.org/TIWG/org.omg.oti.mof.schema
 Maven repository: https://bintray.com/tiwg/org.omg.tiwg/org.omg.oti.mof.schema
 Website: https://tiwg.github.io/org.omg.oti.mof.schema

 Current work:
 Validating this idea @ scale on large models O(10^6+ elements)
 High-performance data analytics for rapid analysis feedback & provenance traceability

 Next steps @ OMG?
Updating the OMG Tool Infrastructure (OTI) based on this MOF-based Schema 
Seeking feedback/advice for submitting an RFC/RFI

https://github.com/TIWG/org.omg.oti.mof.schema
https://travis-ci.org/TIWG/org.omg.oti.mof.schema
https://bintray.com/tiwg/org.omg.tiwg/org.omg.oti.mof.schema
https://tiwg.github.io/org.omg.oti.mof.schema

	Simplifying OMG MOF-based Metamodeling
	Agenda
	JPL’s Active Participation at the OMG:�A Brief 10-year retrospective
	Rethinking JPL’s Participation at the OMG
	Past: 	Modeling (without unification)�Now: 	Ontological/Functional Modeling (this paper)�Future: 	Lifting sound type systems to Modeling DSLs
	MOF-based metamodeling is too complex
	MOF Complexity: Heterogeneity of relationships
	Simplifying MOF
	MOF: Simplified Data Relationships
	MOF: Simplified MetaAssociation Relationships
	A Normalized Relational Schema for Ontological Modeling Resources 
	Library Resource (datatype definitions)
	Metamodel Resource
	Profile Resource
	Model Resource
	Serialization and API (Core Architecture)
	Serialization and API (Resource Management)
	Serialization and API (Realization Architecture)
	Serialization and API (Tool Conformance)
	Conclusion

