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• High system detection efficiency (~ 90% at λ = 1550 nm)

• Low jitter (50 - 150 ps FWHM)

• Low intrinsic dark count rate (~ 1 cps)

• Low reset time (~ 25 ns)

• High maximum count rate (~20 Mcps) 

• UV to mid-IR sensitivity 

Marsili et al., Nature Photonics 7, 210 (2013)

Tungsten Silicide (WSi) SNSPDs
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15 μm

160 nm
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320 µm

Single pixel

64 pixel

WSi SNSPD arrays
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High TC SNSPDs: Flight

Ground Laser  Receiver (GLR)
Palomar Mtn., CA
5m-dia. Hale Telescope

Performance using 4W average laser power w/22 cm 
flight transceiver to 5m ground telescope

1550 nm

Deep space optical 
communication 
(Mars and beyond)
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Drawback: Low operating temperature: T < 1 K

Complex cryogenics

Tungsten Silicide (WSi) SNSPDs
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High TC SNSPDs: Flight Applications

Ground Laser  Receiver (GLR)
Palomar Mtn., CA
5m-dia. Hale Telescope

Performance using 4W average laser power w/22 cm 
flight transceiver to 5m ground telescope

1550 nm

Deep space optical 
communication 
(Mars and beyond)

High TC
SNSPDs
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• Quantum optics

• Quantum key distribution (QKD)

• Quantum information

• Ranging (LIDAR)

• Remote sensing (DIAL)

High TC SNSPDs: Ground
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Refrigerator Comparison

He3/He4 Sorption/Pulse Tube Stirling/Pulse Tube
(Raytheon LT-RSP2)

T ~ 10 K

~ 1’

T ~ 500 mK

~ 4.5’
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• Magnesium diboride (MgB2) has bulk TC ~ 40 K

• Well behaved, metallic superconductor

• SNSPDs may operate at 20 K where cryogenics is easy, cost 
effective, reliable, and compact

Our Approach: MgB2 SNSPDs

J. Nagamatsu et al.,  Nature 410 , 63-64 (2001)
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Challenges of MgB2 SNSPDs

• Difficult to grow high-quality MgB2 thin films 

• MgB2 nanowire fabrication challenging because:

i. MgB2 highly reactive with oxygen
ii. MgB2 etch limited to argon ion milling

• Single photon detection at 20 K never demonstrated
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Challenges of MgB2 SNSPDs

• Difficult to grow high-quality MgB2 thin films 

• MgB2 nanowire fabrication complex because:

i. MgB2 highly reactive with oxygen
ii. MgB2 etch limited to argon ion milling

• Single photon detection at 20 K never demonstrated
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High Quality MgB2 Thin Films

Hybrid Physical-Chemical Deposition (HPCVD)

C. Zhuang et al., Supercond. Sci. Technol. 23 (5), 055004 (2010) Temple University



Jet Propulsion Laboratory
California Institute of Technology

Problem with sub-10 nm films 

d = 7.5 nm d = 25 nm

C. Zhuang et al., Supercond. Sci. Technol. 23 (5), 055004 (2010)

1 µm 1 µm

sub-10 nm films have poor connectivity

Temple University
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Dry etch
(Ar Ion mill) 

Passivation
(Sputtering SiO2) 30 nm SiO2

SiC

50 nm MgB2

30 nm Au

SiC

5 nm MgB2 5 nm MgB2

SiC

Thin Film Fabrication Process

Etch-back technique achieves high-quality sub-10 nm films

Temple University
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M. A. Wolak et al.,  IEEE Trans. Appl. Supercond. 25, 3 7500905 (2015)

Etch back results

10 nm 
as grown

10 nm
etch back

Temple University
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M. A. Wolak et al.,  IEEE Trans. Appl. Supercond. 25, 3 7500905 (2015)

Etch back results

Roughness ~ 2-4 nm (RMS)

Temple University
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Molecular Beam Epitaxy films

Roughness < 0.4 nm (RMS)

H. Shibata et al., Supercond. Sci. Technol. 26 (2013) 035005 
Kitami Institute of 

Technology
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Molecular Beam Epitaxy (MBE) films

H. Shibata et al., Supercond. Sci. Technol. 26 (2013) 035005 

TC ~ 10 K
d ~ 5 nm 

Kitami Institute of 
Technology
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Molecular Beam Epitaxy (MBE) films

H. Shibata et al., Supercond. Sci. Technol. 26 (2013) 035005 

TC ~ 30 K
d ~ 15 nm 

Kitami Institute of 
Technology
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Film comparison

< 1nm 40 K 5 nm

<0.35 nm 10 K 5 nm

2-4 nm 39 K 6 nm

MBE

HPCVD

Roughness (RMS) TC 

Ideal

Thickness
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Challenges of MgB2 SNSPDs

• Difficult to grow high-quality MgB2 thin films 

• MgB2 nanowire fabrication complex because:

i. MgB2 highly reactive with oxygen
ii. MgB2 etch limited to argon ion milling

• Single photon detection at 20 K never demonstrated
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Spin EBL
resist

Write NW
(EBL)

SiO2
5 nm MgB2

SiC

Dry etch
(Fluorine ICP) 

Contact Pads
by Lift-off 

Current fabrication process

SiO2
5 nm MgB2

SiC

SiO2
5 nm MgB2

SiC

E-beam resist

SiO2
5 nm MgB2

SiC

5 nm MgB2

SiC

a) b) c)

d) e)
100 nm

100 nm
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Passivation
(SiO2)

Dry etch
(Ar Ion mill) 

Current fabrication process

SiC

f) g)

SiC
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Temple 
University

5 µm
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Challenges of MgB2 SNSPDs

• Difficult to grow high-quality MgB2 thin films 

• MgB2 nanowire fabrication complex because:

i. MgB2 highly reactive with oxygen
ii. MgB2 etch limited to argon ion milling

• Single photon detection at 20 K never demonstrated
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TC ~ 17 K 
ΔT ~ 2.7 K 

Transition temperature, TC

MBE Kitami Institute of 
Technology
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Device detection efficiency 
at 1550 nm

w = 100 nm
5 µm x 5 µm

Meander
Temperature

MBE Kitami Institute of 
Technology



Jet Propulsion Laboratory
California Institute of Technology

Single photon sensitive at T = 10 K

w = 100 nm
5 µm x 5 µm

Meander

Single Photon Detection at 10 K
λ = 373 nm

MBE Kitami Institute of 
Technology

Pclick(µ) ~ η1μ
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Dark count rate, DCR

w = 100 nm
5 µm x 5 µm

Meander

MBE

Temperature

Kitami Institute of 
Technology
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Instrument response function

48 ps FWHM

T = 3 K

MBE Kitami Institute of 
Technology
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MBE

Inter-arrival time measurement

Time

Vo
lta

ge

∆t1 ∆t2

MBE
Kitami Institute of 

Technology
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MBE

Time

Vo
lta

ge

∆t1 ∆t2

Afterpulsing

MBE

Inter-arrival time measurement

Kitami Institute of 
Technology
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Fall time ~ 1.3 ns
Rise time ~ 375 ps
LK ~ 32 pH/sq (10x10µm2)
LK ~ 72 pH/sq (5x5µm2)
Jitter = 46.7 ps (FWHM)

Afterpulsing present

Optical response at 1550 nm

T = 3 K
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Afterpulsing
at T = 3 K 

MBE

Increasing device speed with 
temperature 

MBE
Kitami Institute of 

Technology
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Afterpulsing
at T = 4 K 

MBE

Increasing device speed with 
temperature 

MBE
Kitami Institute of 

Technology
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Afterpulsing disappeared
at T > 5 K 

MBE

Increasing device speed with 
temperature 

MBE
Kitami Institute of 

Technology
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2 µm

w = 90 nm
d = 7-8 nm

2 µm x 2 µm
Meander

HPCVD
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Transition temperature, TC

TC = 29.8 K
ΔT = 3 K 

HPCVD Temple University

w = 90 nm
2 µm x 2 µm Meander

d = 7-8 nm
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Temple UniversityHPCVD

PCR is linear with laser power: Pclick(µ) ~ μη1

Single Photon Detection at 18 K

w = 90 nm
2 µm x 2 µm Meander

d = 7-8 nm
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System Dark Count Rate vs Temperature

Temperature

Temple University
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T = 18 K

Inter-arrival time measurement

Temple University
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1550 nm
IB/ISW = 99%

Device detection efficiency (DDE) 
vs Temperature

Polarization insensitive

Temple University
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Summary

• Single-photon response with MBE film

a) λ = 373 nm

b) Up to T = 10 K

c) Timing jitter ~ 50 ps (T = 3 K)

d) Large active area (10 μm × 10 μm)

• Single-photon response with HPCVD film

a) λ = 1550 nm

b) Up to T = 18 K
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Future work

• Increase operating temperature

a) Reducing roughness of thin HPCVD films

b) Narrower nanowires for thick MBE films

• Increase detection efficiency by decreasing nanowire cross section
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Single photon sensitivity

η2 = 0, µη1<<1 

Pclick(µ) ~ μη1

µ = mean photon flux
η1 = single photon detection efficiency
η2 = two photon detection efficiency

𝑃𝑃click 𝜇𝜇 = 1 − 𝑒𝑒−𝜇𝜇 �
𝑛𝑛=0

∞
𝜇𝜇𝑛𝑛

𝑛𝑛!
1 − 𝜂𝜂1 𝑛𝑛 1 − 𝜂𝜂2 ⁄𝑛𝑛 𝑛𝑛−1 2

F. Marsili et al., arXiv: 1506.03129 (2015).



SEM image of 100 nm bridge
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ΔT = 7.7 K
RRR(RT/40 K) ~ 1.4

Transition Temperature, TC

TC = 30.8 K

HPCVD
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Fall time ~ 600 ps
Rise time ~ 245 ps
Lk/sq ~ 87 pH/sq

Optical pulse at 635 nm
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Fall time ~ 600 ps
Rise time ~ 245 ps
Lk/sq ~ 87 pH/sq

Optical pulse at 635 nm

Afterpulsing present
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Single Photon Detection at 10 K

Pclick(µ) ~ η1μ

HPCVD

Single Photon Detection at 10 K
λ = 635 nm
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ISW (T= 3 K) ~ 33 µA
ISW (T= 10 K) ~ 25 µA

Dark count rate, DCR
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Challenges of MgB2 SNSPDs

• Fabrication issues:

i. MgB2 highly reactive with oxygen
ii. MgB2 etch limited to argon ion milling
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400 nm

SEM after ion mill:100 nm meander

100 nm
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Low yield: Dry etch (Ar ion mill)

SiC

Ideal

SiC

Reality
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Etching: Bridges and Meanders

Bridges Meander

~100 nm ~100 nm
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Etching: Bridges and Meanders

Bridges Meander

~100 nmEtched first

Survives etch
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Etching: Bridges and Meanders

Bridges Meander

“Dummy” wires

“Dummy” wires
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Bridges with “dummy” wires
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