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Gist to Solving Assimilation

Assimilation may seem complicated at first, due to its
terminologies and equations, the gist to solving it is to

recognize the simple underlying problem
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Assimilation is nothing more than an inverse problem

Assimilation is to study what the state of the “ocean” is and to

understand why that is so.
Observations H X, =Yy,

Theory (model) X,  =AX +Gu,
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Assimilation is nothing more than an inverse problem
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Solving an Inverse Problem

Inverse Problem Ea — b

Most inverse problems in Earth Science are so-called “ill-posed problems” that have fewer
equations than unknowns, and have an infinite number of possible solutions. Therefore, some
form of assumptions are invariably made to derive a particular solution. Such solutions are valid so
long as there are no inconsistencies, but those assumptions need to be recognized in interpreting
the results.

For instance, consider the singular value decompositionE - U AVT

n X m matrix

( A
U:( u o u, ... un) A, 0 V=( vV, OV, .. Vn)
n vector A= m vector
0 A
\ y,
T T
U u, =y, Vj:5y' ;Li=0f0ri2r
U'u=vV'v=I \

Rank of matrix E
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Solving an inverse problem (1 :singular value decomposition)

inverse problem Ea — b solution by singular value decomposition E = UAVT N X m matrix

solution can generally be written as a= Y cv.+ ) cv.

i=1 i=r+1
Ea=UAV’ (2 c,vV.+ 2 civl.) UTUAcr =U'b
T - N cr = Ar_lU;]:b
=UAV’ (Ve + V)
=UAcr =b
Ockham’s razor c,=0 forall i=r+1

“nothing should be more complicated than necessary”

i

a zicl.vi c, :(AF‘IUTb)
=1

Minimum Length Solution min(|a|)
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Solving an inverse problem (2: minimum error variance)

inverse problem Ea — b

Solve for a solution with minimum expected error using prior information
. . —_ —_ T _
prior solution a, (ao — a)(ao — a) = PO a,b : true value

observation <(b —b)(b- B)T> =R in particularpy = F g
. T
inpartiedler P = <(a—5)(a—5) > minimize each diagonal element

here a=a, +B(b —an) assume a linear solution

first a-a=a +B(b—Ea0)—§
=B(b—Ea,—Ea+Ea)+(a,—12)
=B(b—Ea)-B(Ea,—Ea)+(a,—2)
=B(b—Ea)+(I-BE)(a,—2)=B3b+(I-BE)da,
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Solving an inverse problem (2: minimum error variance)

reviously 3 —3 =BSb+(I-BE)Sa,  use to expand P
<(a—§)(a—§)T> =B(5bb”)B” +B(shJa,” )(1-BE)
+(1-BE)(6a,6b" )B” +(1-BE)(8a, &a," )(1-BE)'
= BRB’ +(I1-BE)P,(I-BE)'
=BRB' +P,—BEP,—P E'B’ + BEP E'B’
= B(EPOET +R)BT ~BEP,-PE'B’' +P,

_1T

L (B B POET (EPOET + R)_l )(EPOET + R)(B — POET (EPOET + R) )

=Il
~PE’(EPE" +R) EP +P,

. B=PE"(ERE"+R) and <(a ~a)(a- 5)T> =P, ~PE’(EPE’ +R) EP,

Wunsch, (2006), p128.
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data assimilation as an inverse problem (Kalman Filter)

minimum error variance solution
inverse problem Fa=>b

a=a, +PE(EPE +R) (b-Ea,)

Kalman Filter (correct with data)
observation H x =y,

t

R =%/ +P/H"(HP/H" +R) (y, - H&/)

RTS smoother

model X, =Ax +Gu,
R =1 +P'AT(AP’AT+GQ,GT) (&, -1/,
i =u +Q,G’(GQG +AP‘AT) (&, -1/,)
& = AR +Gil
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notable points of data assimilation (1)

data assimilation is an inverse problem and does not generally have a
unique solution,

Kalman filters, RTS smoothers are both minimum error variance solvers

Kalman filters invert observations (H), RTS smoothers invert the model
(A, G),

Kalman filters do not assume normal distributions,

Data error is not error of the observation but includes so-called
representation error Sy=y-y=y—HxX
Process noise (G, u)define the true solution X and, therefore, is
fundamental to data assimilation _ _ _

X, =AX, +Gu, u =u, +5ut
Assimilation is about extracting elements from data that are consistent
with the model



Physical consistency (filter)

state Y
A

» {ime

t1 to

Due to data corrections, the filtered solutions’ temporal evolution cannot be physically explained,
but smoothers invert these corrections and, therefore, their solutions’ evolution are physically consistent.

forecast vs analysis data assimilation vs state estimation

reanalysis Kalman smoother
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Physical consistency (smoother #1)

» {ime

t1 to

Due to data corrections, the filtered solutions’ temporal evolution cannot be physically explained,
but smoothers invert these corrections and, therefore, their solutions’ evolution are physically consistent.

forecast vs analysis data assimilation vs state estimation

reanalysis Kalman smoother
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Physical consistency (smoother #2)

Due to data corrections, the filtered solutions’ temporal evolution cannot be physically explained,
but smoothers invert these corrections and, therefore, their solutions’ evolution are physically consistent.

forecast vs analysis data assimilation vs state estimation

reanalysis Kalman smoother
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Solving an inverse problem (adjoint method)

data assimilation problem :
Hx , y,
Hx, Y
X, — Axt - GAut Gut
X~ AXt+1 - GA“M Gut+l

_ Lagrange multiplier
cost function

J = Z (yz B Htxt )T Rt_l (yt B Htxt ) T Z AutTQt_lAut + AXgPO_lAXO * Z )Vf (XHI - (AX’ * Gu’ F GAut ))
t ! t

Solve for a solution ( )that minimizes J based on its gradient using an optimization algorithm
Ax,, Au,
1 dJ | 1 dJ 4
PR Ax,+A"A =0 P -H'R(y,-Hx,)-1_ +A"2, =0
0 t
1 dJ 19dJ
_—:Q;IAHZ{-GTlt:O _Xt+1—(AXt+Gut+GAllt):O

2 0Au Ea_;f

t
Wunsch (2006), p217.
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notable points of data assimilation (2)

Methods to solve inverse and data assimilation problems are almost
all based on least squares,

The filter/smoother combination solves the entire inverse problem
by separately inverting observations and model incrementally in
time to obtain a minimum error variance solution,

The adjoint method utilizes the property of the model adjoint to
solve the entire inverse problem for the minimum residual variance
solution,

The adjoint solution to the entire inverse problem is physically
consistent as is the case for the smoother.



Outline

24 August 2016

1) Data Assimilation and Inverse
Problem

1) ECCO Ocean Analysis

2) Applications of Adjoint Models

Ichiro Fukumori (JPL/Caltech)

18



ECCO Version 4

“Estimating the Circulation and Climate of the Ocean” (ECCQ)
Latest ocean analysis

Characteristics ECCO Version 4

grid system latitude-longitude-cap
resolution 0.3°~1°, 50 levels
sea-ice model prognostic

bulk parameterization,

external forcin ,
& geothermal forcing

115.00 115.00 115.00
110.00 110.00 110.00
105.00 105.00 105.00
100,00 100.00 100.00
95.00 85.00 85.00
90.00 20.00 20.00
85.00 85.00 85.00
80.00 80.00 80.00
75.00 75.00 75.00
70.00 7000 7000
6500 65.00 65.00
60.00 60.00 60.00
5500 5500 55.00
50.00 —{50.00 =150.00
4500 45.00 45.00
40.00 40.00 40.00
35.00 35.00 3500
30.00 30.00 30.00
25.00 25.00 25.00
20.00 20.00 20.00
15.00 15.00 15.00
10.00 10.00 10.00
500 5,00 5.00

Forget, et al. (2015), Geosci. Model Dev., 8(10),
3071-3104, doi:10.5194/gmd-8-3071-2015.
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ECCO Version 4 details

« physically consistent

» state estimation with adjoint method

« comprehensive ocean data usage

» analysis covering 1992 to present

« controls include initial condition (uvTSn), external
forcing/atmospheric state, and mixing parameters

* accounting variables’ temporal correlation

« accounting inhomogeneous grid

* near real-time extension with Kalman filter and RTS smoother

« adaptation to OpenAD
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data used in ECCO Version 4

TOPEX/Poseidon (1992-2005), Jason-1 (2002-2008),
Jason-2 (2008-2015), Geosat-Follow-On (2001-2008), CryoSat-2
(2011-2015), ERS-1/2 (1992-2001), ENVISAT (2002-2012),
SARAL/AltiKa (2013-2015)

climatology World Ocean Atlas 2009

Argo floats (1997-2015), XBTs (1992-2015), CTDs (1992-2015),
TAO moorings (1992-2015), Southern Elephant seals as

sea level

BMPEEItE Oceanographic Samplers (SEaOS; 2004-2010), Ice-Tethered
Profilers (ITP, 2004-2011)
salinity Argo floats (1997-2015), CTDs (1992-2015), SEaOS (2004-2010)
sea surface temperature AVHRR (1992-2015), AMSR-E (2002-2010)
sea surface salinity Aquarius (2011-2015)
sea-ice concentration SSM/1(1992-2009), SSMIS (2003-2015)

ocean bottom pressure GRACE (2002-2015)



ECCO Version 4: accounting correlation

For simplicity, correlation is often ignored among the errors that define the cost function

Hx, y,

th+1 yt+l

X, —Ax, —GAu, Gu,
Xt+2 - Axt+1 - GA“HI Gut+1

Cost function

J=Ax P Ax, +2(yt —HZXZ)T Rt_l(yt —Htxt)+ZAqut_lAu[ +th(xt+1 —(Axt +Gu, "'GA“z))
t t

zZAxoz /ze +Z(yt -th)z /(Ty2 +Zut2 /Gu2 +Zﬂ,t(xt+1 —(Axt +Gu, +GAut))
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ECCO Version 4: accounting correlation

Cost is biased when correlation is ignored

I1.1 1 0.9
c= , Q=
( 0.9 ] ( 0.9 1 )
CTQ_IC= 125 as opposed to Zciz /Ql.l. :20

In comparison, if the problem is re-written to one
with minimal correlation

¢ = Cl_E , (2/z 0.2/4 0
C 0 3.8/4

N0 =125
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ECCO Version 4: accounting for inhomogeneous grids

Biased evaluations when grid inhomogeneities are ignored

a+b
C:
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ECCO Version 4: accounting for inhomogeneous grids

Sensitivity of global mean sea level (J) to rain (r)

R d] /or
]/ ' 73 73 \/;

3? 317
197 Lanladd531217263280325361 1 37 [a.400d5181.217,253.280 325 361
-1.8e+01 0.0e+00 1.8e+01 -5.2e+05 0.0e+00 5.2e+05

a priori err precip 2.500e-08

grid area

Y

rain error *'[, -

I ——— 1 37 73 109145181 217 253 289 325 361

00 07 14 21 28 35 0.0e+00 1.3e-08

2.5e-08
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ECCO Version 4: North Atlantic Meridional Ocean Circulation
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ECCO Version 4: sea level rise

global mean sl (m)

045 T

0.10F

i M
mean sea level 000 NP f
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ECCO Version 4: sea level budget

sea level variance (logarithmic value)

90°N

60°N

30°N

wind .
contribution

thermohaline

forcing

80°E 120°E 180°W 120°W 80°W 0°

Forget, G., and R. M. Ponte (2015), Prog Oceanogr, 137,
Part A, 173-195, doi:10.1016/j.pocean.2015.06.002.
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ECCO Version 4: sea surface salinity budget

ECCO v4 observation

MEAN SSS (ECCO) MEAN SSS (In Situ data, EN4)

sea surface

salinity -
MEAN E-I? (Sate!!ite dat::x, OAFLUX - GPCP) 'mm/dazyo

evaporation-

0
=2
precipitation-runoff 2| R
-6 == Sl fexternal
20 . : : : REGIONAL AVERAGES OF THE MEA?‘ BUDGET TERMS : .- : forCIng
[ Forcing
[ Advection
sk ———— ‘\< advection
mixing

10~ -

\

|

1,

I

salinity budget '-UJrJ-[rlm L[rlluj'ﬂjlu I'D\ﬂl

10+

Ponte, R. M., and N. T. Vinogradova (2016),
Geophys Res Lett, doi:10.1002/2016GL069857. sl , L | ! 1

N. Atlantic N. Atlantic S, Atlantic S. Atlantic N. Pacnﬁc N. Paclhc S Pacnﬁc S, Pacnﬁc S5 Indian S. Indlan N. Indlan E. Pacific W. Pactﬁc
S-max F-max S-max F-max S-max F-max S-max F-max S-max F-max S-min S-min S-min
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ECCO Version 4

http://www.ecco-group.org/

Estimating the Circulation & Climate of the Ocean @

about ecco products model automatic differentiation news archive | publications | computing

home > ecco

THE ECCO CONSORTIUM

ECCO was established in 1998 as part of the World Ocean
Circulation Experiment (WOCE) with the goal of combining a
general circulation model (GCM) with diverse observations in
order to produce a quantitative depiction of the
time-evolving global ocean state. The importance of such an
endeavor is recognized by numerous national and
international organizations, such as the WMO's World Climate
Research Programme (WCRP) and UNESCO's
Intergovernmental Oceanographic Comission (I0C). These
programs have all noted the necessity of synthesizing the
diverse remotely-sensed and in-situ observations with known
dynamics and thermodynamics through a GCM. ECCO
products are in support of the Climate Variability and
Predictability (CLIVAR) programme and the Global Ocean
Data Assimilation Experiment (GODAE).

more

AUTOMATIC/ALGORITHMIC

ECCO PRODUCTS ECCO'S GENERAL CIRCULATION MODEL DIFFERENTIATION (AD)

24 August 2016

ECCO products as well as input fields and
quality-controlled observations are freely

The ECCO code is based on the MIT general
circulation model (MITgcm), a numerical

available from several data servers through model designed for study of the atmosphere,

various applications (including
DODS/OPeNDAP, LAS, GDS, Dapper, SRB,
Ingrid).

A summary of available ECCO products
and data servers can be found here.

ocean, and climate. It comes with a variety of
packages including physical
parameterizations, a sea-ice model,
biochemical components, and allows flexible
porting across various HPC platforms.

For more details on the MITgcm click
here.

Since the mid-1990's, groups at MIT, SIO, JPL
and GFDL have applied automatic/algorithmic
differentiation (AD) tools for generating
tangent linear and adjoint code for ocean
circulation and climate studies. ECCO relies
heavily on the AD tool TAMC and its
commecial successor TAF. The ECCO group is
also involved in the development of a new
open-source AD tool OpenAD.

More details can be found here.

IN THE NEWS

May 2016: Joint ECCO-Production and ECCO-ICES Meeting at MIT:

Ichiro Fukumori (JPL/Caltech)
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“Correlation does not imply causation”

but adjoints do.



Utility of Adjoints

Adjoint models can quantify sensitivity of arbitrary model quantities
and are effective in analyzing various processes

model Xt+1 = AXt + Gut

9. (¢) :axT(t—N+1)axT(t—N+2)m ox” (¢) aJ(t)
au(t—N) 8u<t—N) 8X(t—N+1) BX(t—l)ax(t)
9. (¢)
ax(t)

=G'(t—-N)A"(t-N+1)---A" (- 1)
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Example: Near-uniform fluctuation of Arctic ocean bottom pressure

A spatially near-uniform fluctuation dominates ocean
bottom pressure variations in the Arctic Ocean.

Al ML LAt L i | Time-series of Arctic OBP (ocean
S hortnroe ¥ NV VAYE — bottom pressure)
5cm : 3
52 ]
5+ o i é Regression map of SLP and winds (925 mbar) on basin-averaged OBP
_gi “ Fram Strait A ” | i 7“ N ( ]
(), . ‘ ‘ ! . ‘
May 05 Jul 06

Regression of Arctic OBP with
winds and atmospheric pressure

Peralta-Ferriz et al. (2011)
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GRACE Observations

Ocean bottom pressure (OBP) variations are nearly uniform in
amplitude & phase across the deep Arctic basins.

_ Correlation with
RMS Amplitude OBP @ North Pole

0O 02 04 06 08 10 -10 -06 -02 0.2 06 1.0
log10(Root-Mean-Square) Correlation
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Explained Variance

Similarity of amplitude & phase can be simultaneously quantified in terms of
“explained variance.”

Var( P— Q) Var(P — Q) can be recognized as the amount of P’s variance
E=1- not explained by Q. Then, E describes the amount of P’s
Val‘( p) variance that can be explained by Q.

— 11850
2-Q850~~_
3-PMSL ~w

Standardized Deviations (Normalized)

OBP variance explained
by OBP @ North Pole

0.00 L=

Taylor Diagram
(von Salzen et al, 2013)

E=-a"+ 2acorr(P,Q)

a=\/V21r(Q)/\/VM(P) 4:0 6:0

Explained Variance (%)
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Explained Variance

Explained variance is a useful quantity in comparing relative
contribution of constituents.

B Var(P — Qk)
var(P)

P=Y0 E-=1
For example, empirical orthogonal functions

P=> Le, var(P)=> A’ var(P)-var(P-Q,)=A’
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Altimeter vs GRACE Observations

Much of sea level variability is similarly near-uniform and
can also be explained by bottom pressure variations.

SSH variance explained OBP variance explained
by OBP @ North Pole by OBP @ North Pole

Vot P~ ¢ 4
o ‘Lr& SR

0 20 40 60 80 100 0O 20 40 60 80 100
Explained Variance (%) Explained Variance (%)
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ECCO Version 4

“Estimating the Circulation and Climate of the Ocean” (ECCQ)
Latest ocean analysis

Characteristics ECCO Version 4

grid system latitude-longitude-cap
resolution 0.3°~1°, 50 levels
sea-ice model prognostic

bulk parameterization,

external forcin ,
& geothermal forcing

115.00 115.00 115.00
110.00 110.00 110.00
105.00 105.00 105.00
100,00 100.00 100.00
95.00 85.00 85.00
90.00 20.00 20.00
85.00 85.00 85.00
80.00 80.00 80.00
75.00 75.00 75.00
70.00 7000 7000
6500 65.00 65.00
60.00 60.00 60.00
5500 5500 55.00
50.00 —{50.00 =150.00
4500 45.00 45.00
40.00 40.00 40.00
35.00 35.00 3500
30.00 30.00 30.00
25.00 25.00 25.00
20.00 20.00 20.00
15.00 15.00 15.00
10.00 10.00 10.00
500 5,00 5.00

Forget, et al. (2015), Geosci. Model Dev., 8(10),
3071-3104, doi:10.5194/gmd-8-3071-2015.
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Variation in ECCO v4 (space)

Model simulated variations are spatially near-uniform across the Arctic basins similar to

observations.
ocean bottom pressure
B SSH variance
-~ ™ explained by OBP
Correlation with  Variance explained by @ North Pole

OBP @ North Pole

o

RMS Amplitude OBP @ North Pole
| ) B A N

.....

0O 02 04 06 08 10 -10 -06 -02 02 06 10 0 20 40 60 80 100 0 20 40 60 80 100
log10(Root-Mean-Square) Correlation Explained Variance (%) Explained Variance (%)
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Variation in ECCO v4 (time)

24 August 2016

Model is also consistent with observations in time.

time-series of mean ocean bottom pressure across the Arctic Ocean

)
o

Model GRACE

(6)]

o

Mean Arctic OBP
ARRERERRE LEARNRRRRE
IIII|IIII|IIII|IIII|

Equivalent Sea Level (cm
o

N
o

Ichiro Fukumori (JPL/Caltech)
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Adjoint Gradient Decomposition

Model adjoints provide an effective means to identify
the forcings responsible for quantities of interest.

To first approximation, any quantity can be expanded in terms of its forcings as,

adjoint gradient -\

o1
()-333 q\

8J(t) 9.J
Assuming stationarity o (X S) = 8¢.(x At) where At=t-s

cause (forcing, initial condition, parameters etc)

time

J(t)= ZZZB(P(X At) 9, (x.1 - A1)

i x At

> d.J can be computed by the model’s adjoint.

99, (x,At)

» The largest term on the RHS is the dominant forcing of J.
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Causal Mechanism (forcing)

Wind-driven contribution estimated by the
adjoint gradient reconstruction;

VUED) ZZa(p (X At) §,(x.0~ A1)

i=wind Xx At

-
o
"

(6)]
T

S
I|IIIIIII

Mean Arctic OBP
Equivalent Sea Level (cm)
o
I

T na 1)

N
o
T T 1

1995 2000 2005 2010
Year

Z> The fluctuation is wind-driven.
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Causal Mechanism (timing)

Explained variance as a function of the wind’s temporal lag:

24 August 2016

vary L (1)~ 2 205
1_ i=wind X

(x t—At)}

Var{med }

30¢

N
o
TT T T T TTT

—_—
o
T T T T T TT

Explained Variance (%)

4100
580
560
140

120

0 50 100 150
Time Lag (days prior)

Cumulative Expl. Variance (%)

Z> Coincident winds drive the fluctuation.

Ichiro Fukumori (JPL/Caltech)

44



Causal Mechanism (location)

Explained variance as a function of the wind’s
location:

Var{fwmd (6)- Y 28@ Z{J,At)&pi(x,t—m)}

i=wind At

Valr{]Wirld (t)}

Z> Winds along the continental slope
are responsible for the fluctuation.

-8 0 8 17 6 )
Expl. Var. Contribution (x10 /km")
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Causal Mechanism (which wind)

Cross-bathymetry  Along-bathymetry

A) - i a3 - o3 B) ’ e U, o
- 7 A 1 - sy

Sensitivity of mean Arctic
Mediterranean OBP to winds:

dJ
dS(x) 99, (x,At)

Gwind (X’At) =

Z> Along-bathymetry
component is dominant,

Opposite signs inside &
outside the Arctic,

Eastern boundary
dominates outside the
Arctic.

0 4
Model Sensitivity (x10™ cm / (N/m?) / km" )
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Causal Mechanism (Ocean’s Response)

Wind-driven coastally trapped waves bifurcate at the
shallow straits, allowing anomalies to persist in the
deep Arctic basins shielded by steep gradients of
planetary potential vorticity, f/H.

Continental
B/ Slope

a
Deep B
Basin

-8.1 -7.2 -6.3 -5.4
log10(Potential Vorticity)
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Perturbation Experiment

OBP response to meridional wind

Along-bathymetry perturbation off Greenland
senS|t|V|ty ..

ﬂ

Model Sensitivity (<10 cm / (N/m?) / km” )

Ocean Bottom Pressure (mm)
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Causal Mechanism (which wind)

Differences in attribution can be related to correlation within
atmospheric fields and the relative magnitude of different contributions.
“Correlation does not imply causation”

Wind Contributio Along-Bath. Sensitivity
Sy — e : Regression

By
(Peralta-Ferriz et al., 2011)

A I 15°N
BT
-8 0 8 16 —— .,

Model Sensitivity (x10° cm / (N/m’) / km” )

Expl. Var. Contribution (10" /km’)
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Examples of adjoint gradient decomposition

ocean bottom pressure and sea level fluctuations across the deep Arctic Ocean

Fukumori et al. (2015), Prog Oceanogr, 134, 152-172,

doi:10.1016/j.pocean.2015.01.013.

uniform sea level variations across the Mediterranean Sea
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summary

1) Mathematically, data assimilation is an inverse problem that
theoretically belongs to estimation and control theory advanced in
engineering,

2) Practically all methods of assimilation are least-squares,

3) In practice, assumptions are made (often implicitly) to make the
problem tractable. Results are inaccurate if such assumptions are
incorrect. In such situations, assumptions need to be revisited on
the one hand, and one must recognize such assumptions in
applying the results on the other,

4) Adjoints are not only useful for data assimilation, but are effective in
analyzing various causal mechanisms.
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Advice

24 August 2016

Which one are yoy?

—

/2 FuLl? /2 EMPTY?
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ECCO2

The highest resolution ocean state estimate to date.

“Perpetual Ocean”
https://www.youtube.com/watch?v=CCmTYOPKGDs
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