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Main Drivers for a Sample Return Lander (post-2020)

• Increased “landed payload” mass
– Payload: 1200-1500 kg? (includes 

MAV and rover)
• MSL rover: 900 kg

• Lowest possible cost
– Sub-SLS launch performance / 

accommodation, e.g. up to ”Heavy” 
class of Falcon, Delta / Vulcan 
Families (anticipated to exceed Atlas 
V…) – 5m fairing max

– Retain “legacy” roll-control “capsule” 
hypersonic approach, if feasible

• Improved landing accuracy 
– Less driving distance for rover to get 

to the cached sample => save rover 
cost?
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artist’s concept
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Aeroshell/Entry Comparison

Viking 1&2  Pathfinder  MER A&B   Phoenix MSL

Diameter, m 3.5 2.65 2.65 2.65 4.5

Entry Mass, kg 930 585 840 602 3151

Entry Ballistic 
Coeff, kg/m^2 63 62.3 88 71 128

Landed mass, kg 603 360 539 364 1541

Landing Accuracy, 
km

420x200 100x50 80x20 75x20 10x10

Entry Guidance None None None None Yes (Apollo)

Ref: Braun & Manning IEEE AC Paper 0076-8, Updated December 2005

Ballistic Coefficient = mass / (Cd * area)
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Earth vs Mars Entries

• Even with a faster entry speed at earth, the earth’s atmosphere slows down 
the vehicle to below Mach 1 way up high without additional help.

• Without a supersonic decelerator of some sort, Mars missions hit the ground 
> Mach 1 (see next chart)

Earth

Mars

Ref: Braun & Manning IEEE AC Paper 0076-8, Updated December 2005
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The “Viking Heritage” ballistic number limit
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Ref: Braun & Manning IEEE AC Paper 0076-8, Updated December 2005

Vehicles with high entry BC come in too hot 
and “miss” the supersonic decelerator box
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A Radical Departure

• Although blunt body entry vehicles using supersonic parachutes are 
the norm for Mars, these were constrained to entry ballistic 
coefficients less than about 150-200 kg/m2 . 

– Any higher, and the conditions for supersonic parachute deployment can not 
be achieved unless very low elevation sites are selected.

• Removal of the supersonic parachute deployment constraint 
enables much larger entry masses for a given entry body diameter

– The use of high thrust-to-weight SRP (initiating between Mach 3 and 4) 
couples elegantly with this approach. 

• With SRP (and no parachute), we are free to fly “below” the 
parachute “Mach-Q box” and decelerate at a lower altitude (<5 km vs
20 km) where the atmospheric density is thicker and less uncertain. 

• Removal of the parachute eliminates a key constraint on 
“scalability” of important design parameters from smaller to larger 
vehicles.
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SRP effectively removes a key limitation on our Viking-
heritage entry/descent architectures
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Notional EDL Sequence & Selected Assumptions
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Entry
R:3522.2 km

Peak Heating Hypersonic
Aeromaneuvering

SRP ignition

Touchdown

Start Ground Acquisition

Powered Descent: 
Const. Decel. 
Phase

Powered Descent: 
Const. Vel Phase
Ground Sensing

Entry BC: 
150, 300, 450

Aeroshell
diameter: 
4.7m (fixed)

T/W at ignition: 
3 – 5 Mars G’s

Aerodynamics: 
MSL-equivalent 
(L/D = 0.24)

No jettison of backshell or heatshield
(both kept to touchdown)

Site elevation: 
-0.5 to -2.5 km MOLA
(range of Mars 2020 sites)

Pre-decisional. For Planning and Discussion Purposes Only 
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Ballistic Coefficient Envelope

2026 best 2028 best
Minimum C3=> 9.14 8.93

Falcon Heavy 12800 >12800
Delta IV H (NLS II) 9005 9040

Notional maximum launch masses for launch vehicles other 
than SLS in 2026 and 2028 opportunities

Assuming a 4.7 m aeroshell, launch mass constraints probably limit entry 
ballistic coeff to ~450ish (maybe less), unless launching on SLS

Entry ballistic coeff (kg/m^2) 150 300 450 600
Entry mass w/4.7m aeroshell 3813 7627 11440 15254

~MSL

Human Mission Concept: Entry BC ~650
(entry mass 75000 kg, 10m aeroshell, SLS LV)

Main region of interest: BC=300 - 450
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Selected Study Assumptions

• Biprop system 
– Isp=300 sec
– Preliminary prop system design shows Isp greater than ~300 is 

difficult, due to limitations on nozzle expansion ratio and 
aeroshell height

• T/W at ignition: 3 – 5 Mars G’s
• T/W prior to touchdown: ~1 Mars G

– Throttle engines or turn engines off
• Propellant mass fraction = 20% (all consumed between ignition 

and touchdown)
– Representative number obtained from parametric study of EDL 

trajectories optimized from entry to touchdown
• Engines canted at 20 deg. for control and mitigation of plume 

effects on planet surface
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Notional Example Design Parameters
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Entry ballistic coeff = 300 Entry ballistic coeff = 450
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Notional Configurations

• Initial SRP configurations assessed
– Legged lander

• Propulsion system integrated into heatshield
structure below rover

• Rover drives off landed platform
– Skycrane system

• Propulsion system integrated into backshell structure
• Heatshield jettisoned; skycrane used to land rover

• Current focus on Legged Lander configuration
– Better packaging / payload volume envelope
– Avoids potential CG location issues
– Avoids complexity of heatshield jettison & SRP integration
– Will investigate skycrane in more detail in future
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Legged Lander Options

12

Entry

Descending

Landed

Landed

Descending

Entry

BACKSHELL JETTISON OPTION
Potential for lower 
propellant mass 
requirement and 
simplified egress, but 
adds jettison 
event/system complexity 

BACKSHELL NON-JETTISON 
OPTION
Protects payload from 
engine plume/debris 
during final landing, but 
adds complexity to 
backshell design
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Summary

• Range of ballistic coefficient of interest for a future MSR SRP 
Sample Return Lander on a non-SLS LV is ~300-450 (upper bound 
could be < 450)

• Vehicles with BC in this range with biprop and T/W ~3-5 at 
ignition can be flown with ~20 - 25% PMF (Propellant Mass 
Fraction, = prop mass / wet mass at ignition) 

– Compares to MSL PMF of ~19% (parachute + monoprop)

• Reduction of thrust is required during powered descent to 
produce T/W = ~1 prior to touchdown

– Can be accomplished by throttling or shutting down engines, or a 
combination of the two

– Motivates design concepts with larger numbers of thrusters to 
facilitate shutting down some thrusters while throttling remainder 
to reasonable levels
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