
Control	by	Coin	Flips:	Randomized	Control	for	
Risk	Aware	Human	Cooperative	Autonomy

Masahiro	Ono	(JPL,	Caltech)
Ufuk	Topcu	(UT	Austin)

Behçet Açıkmeşe (UT	Austin)
Missy	Cummings	(Duke	University)

1
Copyright	2015.	All	rights	reserved.	U.S.	Government	sponsorship	acknowledged.

Funded	by	the	ONR	Science	of	Autonomy	Program
Office	of	Naval	Research	Grant	N00014-15-IP-00052



Project	Objective

Objective:	Realize	risk-aware,	human-cooperative	autonomy
Risk-aware
• Makes	optimal	decisions	based	on	risk
• Manages	risks	at	multiple	levels	of	abstraction
Human-cooperative
• Shares	the	responsibility	of	managing	risks
• Combines	the	strengths	of	each	other	synergistically	 2

Example:	MH370	search	and	rescue

Aye.	I’ll	stay	away	from	this	
rock	since	it	is	too	risky.	

Find	MH370	and	limit	the	
likelihood	of	high-impact	failure	
to	an	extremely	low	chance.



Sample	Scenario:	Search	for	M370

• Guesses	of	mine	locations	
available
– Represented	by	probability	

distribution
• AUV’s	global	position	has	

uncertainty
• Probability	of	detection	is	a	

decreasing	function	of	the	
distance	between	AUV	and	M370

• Once	detected,	position	of	the	
airplane	is	specified in relative	to
AUV
– Global	position	still	uncertain
– Prior	distribution	updated

• Safety	constraints:	
– Limit	the	chance	of	vehicle	loss	

due	to	collision	with	
obstacles/other	vessels

– Avoid	no-go	zones

Prior	distribution	of	M370	location

True	M370	location	(hidden)

Detection	by	
sonar

Global	position	of	
AUV	is	uncertain

Problem:	Maximize	the	chance	of	detecting	the	lost	airplane	while	limiting	the	
chance	of	the	loss	of	vehicle		

Obstacle



Approach

Goal (What	to	do?)
Risk	bound (How	much	risk	it	can	take?)
Safety	constraints (What	to	avoid?)

Control	policy	(How	to	deal	with	risk?)
Explanation	(Why	it could	fail?)

Uncertainty

High-level	planner
MDP	with	temporal	logic,	

safety	constraint

Low-level	Planner
Stochastic	optimal	control	
with	chance	constraint



Goal (What	to	do?)
Risk	bound (How	much	risk	it	can	take?)
Safety	constraints (What	to	avoid?)

Control	policy	(How	to	deal	with	risk?)
Explanation	(Why	it could	fail?)

High-level	planner
MDP	with	temporal	logic,	

safety	constraint

Low-level	Planner
Stochastic	optimal	control	
with	chance	constraintMixed	strategy	

stochastic	optimal	
control	(Ono)

FY15Q4-FY16Q3	Accomplishments

Uncertainty

hCTA model	
development	
(Cummings)

Structured	probabilistic	
counterexamples	(Topcu)

Stochastic	
controllability/reachab
ility	set	(Acikmese)

MDP	with	safety	
constraints	(Acikmese)



Task1:	Human-machine	interface	
for	risk-aware	planning
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Influence	diagram	that	identifies	the	key	factors	and	
variables	associated	with	uncertainty,	automated	risk	
assessment,	human	risk	perception,	and	human	trust	in	
automation

• Factors	grouped	together	by	color
• Red:	Environment	
• Yellow:	Autonomy	
• Blue:	Human	
• Green:	Human-machine	

Interaction

• Hybrid-Cognitive	Task	Analysis	
(hCTA)	process	helped	to	
elucidate	the	factors	crucial	for	
design	features	for	both	human	
interfaces	and	algorithms

• Human-in-the-loop	experiments	
in	the	coming	months	to	better	
understand:

• The	influence	of	the	
algorithm's	time	horizon	on	
risk	perception

• Replanning	frequency	under	
risk

• How	decisions	are	influenced	
by	risk	budgeting		



Task	2:	Chance-constrained	temporal	logic	planning	
and	 informative	feedback	to	human	operators

7

• Automated	construction	of	structured	
counterexample	in	Markov	decision	processes.	
Counterexamples	describe	the	core	reasons	for	
conflicts	between	the	models,	specifications	and	
operator	requirements	and	preferences.

• Risk-averse	control	of	
Markov	decision	processes	
with	ω-regular	objectives

• Controller	synthesis	for	
autonomous	systems	
interacting	with	human	
operators



Task	3:	Stochastic	reachability/controllability,	
MDP	with	safety	constraints	
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• CRC	sets
– Hausdorff distance	based	inner	outer	approximations	via	using	
methods	from	convex	optimization	and	computational	geometry	

– Fast	computation	time,	e.g.,	a	6-dim	CRC	set		~3	sec	with	a	non-
optimized	code

– ECC	2016	paper

• Finite	horizon	SC-MDP
– LP	based	solution	methods	utilizing	duality	theory	and	DP	to	
compute	feasible	policies	

– ACC	2016	papers,	IJCAI	paper
Safety	upper	bound Actual	pdf
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Task	4:	Mixed	Strategy	
Stochastic	Optimal	Control



Chance	Constrained	Decision	Making

• Can	change	the	level	of	conservatism	by	changing	V
• Can	avoid	the	excessive	conservatism	of	robust	
decision	making
– Should	we	consider	one-in-billion	chance?
– The	nature	does	not	play	a	game
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Minimize	cost,			s.t. Prob.	of	failure	≤ 𝑉

• Example:	
– Mars	Exploration	Rovers:	perform	trajectory	

correction	maneuvers	if	the	landing	failure	
probability	is	more	than:

• 9%	for	Spirit
• 4%	for	Opportunity

– Mars	Pathfinder:	the	probability	of	the	
unsterilized	launch	vehicle	upper	stage	
impacting	the	surface	of	Mars	must	be	less	
than	0.0001



Chance-constrained	Decision	
Making	for	Mars	Rover
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MSL,	Sol1431: The	rover	is	at	the	red	dot	at	top	center,	heading	down.	The	central	
route	is	shorter	in	distance,	but	blocked	by	a	potentially	hazardous	sand.	The	left	route	
is	safer	but	has	a	longer	distance.	The	rover	drives	up	to	the	green	circle,	get	a	better	
view	of	the	sand	patch,	and	decides	if	it	is	“safe	enough”	(risk-aware	decision	
making!!)	to	go	over	it.	Otherwise	it	will	turn	around	and	take	the	longer	route.



• Choosing	control	inputs	randomly	(e.g.,	by	
coin	flip)	can	result	in	a	reduced	expected	cost	
in	optimal	control	problems	with	stochastic	
constraints

12



Intuition:	Toy	Example
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Path	B:	Cost	=	10,	P$%&' =	1.5%

Path	A:	cost	=	20,	
P$%&' =	0.5%

Optimal	mixed	strategy
Path	A:	50%,	Path	B:	50%
Expected	cost	=	15,	P$%&' =	1%

Chance	constraint:	P$%&' 	≤ 1%



Multi-agent	Interpretation

• If	there	are	100	
homogeneous	agents
– Minimize	total cost	
while	ensuring	that	99	
of	them	are	expected	
to	be	safe

• Optimal	strategy:	
send	50	to	Path	A,	
send	50	to	Path	B.
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Path	A:	cost	=	20,	
risk	=	0.5%

Path	B:	Cost	=	10,	
Risk	=	1.5%

Optimal	mixed	strategy
Path	A:	50%,	Path	B:	50%
Expected	cost	=	15,	P$%&' =	1%



Intuition
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P$%&'

Ex
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0.5%

20

10

1.0% 1.5%

Path A
Optimal mixed control strategy
(A: 50%, B: 50%)

Feasible

15

Path B

Mixed	strategies



Relation	to	Existing	Work
• Scenario-based	MPC1

– Obtains	deterministic	control	inputs	by	a	randomized	
method

– This	work	obtains	randomized	control	inputs	by	a	
deterministic	method

• Constrained	MDP2
– Randomized	policy	improves	constrainedMDP
– E.g.,	MDP	with	safety	constraint	
– CMDP	on	continuous,	uncountable	state/control	not	
studied

• Game	theory
– Mixed	strategy	is	discussed	in	adversary	games
– In	our	work,	objective	function	and	constraints	act	like	
adversary	players

16
1.	Bernardini and	Bemporad (2009),	Calafiore	,	Dabbene,	and	Tempo	(2011),	etc
2.	Altman (1999)	Constrained	Markov	decision	processes



Problem	Formulation	(Pure	SOC)
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State	sequence

Control	sequence

Policy

Set	of	policy	to	be	considered
Sequence	of	policy

𝑓* :	Objective	function
𝑓+⋯𝑓- :	Constraint	functions	



Problem	Formulation	(Mixed	SOC)

18Question	1:	What	N	is	sufficient	in	order	to	achieve	optimality?

𝑁 + 1:	Number	of	policy	sequences	to	be	mixed
𝜇2:	j-th policy	sequence
𝑝2:	Probability	that	j-th policy	sequence	is	chosen	



Theorem	1:	Sufficient	Degree	of	
Ranzomization

• If	there	are	K stochastic	constraints,	N=K (having	
K+1	options)	is	sufficient	for	optimality	(called	K-
randomization)
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What	N	is	sufficient	in	order	to	achieve	optimality?



Alternative	Representation	of	the	
Problems
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Graphical	Interpretation
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𝑉+ 𝑐+

Optimal	pure	strategy

ℱ

𝑐6∗

𝑐*



Alternative	Representation	of	the	
Problems
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Yet	Another	Alternative	
Representation
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where



Graphical	Interpretation
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𝑉+ 𝑐+

Optimal	pure	strategy

ℱ

ℱ89 = conv(ℱ)

𝑐8∗
𝑐6∗

𝑐*

Optimal	mixed	strategy

𝑐+

𝑐A

K=1,	N=1

where



Theorem	1:	Intuition

25Constraint 1
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Optimal mixed strategy

Feasible

2	constraints	=>	3D	cost	space	=>	need	3	points	to	cover	the	convex	hull
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Question	2:	How	much	can	we	gain	by	mixed	strategy?



Theorem	2

where	Δ is	the	duality	gap	of	PSOC
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Min	Common/Max	Crossing	(MCMC)	Framework
Bertsekas 2009
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𝑐+

Max	crossing	point

𝑐+

𝑐A

𝑉

Duality gap

• Dual	optimal	solution	=	
Max	crossing	point:	the	
point	with	the	greatest	c*
among	the	intersection	of	
𝐿 and	hyperplanes	that	
contain	ℱ in	their	upper	
closed	halfspace

ℱ

ℱ = 𝑐*, 𝑐+ 𝑥 ∈ 𝑋}
𝐿 = 𝑐*, 𝑐+ 𝑐+ = 𝑉}

𝑐* Primal	solution
=	Min	common	point

𝐿

(𝜆⋆, 1)

𝑝⋆

𝑞⋆



Strong	Duality	of	MSOC

Risk  𝑟
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pe
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ed
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(𝜆⋆, 1)

Optimal solution 
of mixed CSOC

Optimal solution of pure strategy CSOC

𝑐+

𝑐A	

Dual optimal solution of pure strategy CSOC

𝑉

Duality gap

= Dual optimal solution of mixed strategy CSOC

• MSOC	is	better	than	
PSOC	only	when	
PSOC	has	a	duality	
gap	(	≈nonconvex)

• MSOC	does	not	
have	a	duality	gap



Solution	Approach

• A	naïve	approach	(for	N-randomization):	co-
optimize	𝑢+ ⋯𝑢9O+ and	𝑝+ ⋯𝑝9O+
– Difficult	to	solve,	if	not	impossible…

30



Our	Solution	Approach:	Basic	Idea

1. Solve	the	dual	of	PSOC	
– Because	the	dual	of	the	pure	and	mixed	

problems	are	the	same!
2. Reconstruct	the	primal	solution	of	MSOC	

from	the	dual	solution

31



Dual	of	PSOC
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And	let



Theorem	3:	Condition	for	
Optimality

• 𝑐* ⋯ 𝑐-, 𝑝* ⋯𝑝- is	an	optimal	solution	to	DSOCK
if	and	only	if	there	exists	𝜆 ≥ 0 such	that:

33

KKT	conditions

*Details	are	in	the	arXiv paper

𝑐* ⋯ 𝑐- are	the	optimal	solution	
to	the	inner	optimization	of	DPSOC



Computing	probability	distribution

Risk  𝑟
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𝑢A

𝑉𝑟+ 𝑟A

𝑝A ∶ 	𝑝+

Get	𝑝+⋯𝑝9O+ that	makes	the	equality	in	the	stochastic	constraints	hold



Solution	Approach
1. Solve		the	dual	of	the	original (non-randomized)	

problem
– Because	the	dual	of	the	original	and	mixed	problems	are	

the	same!
2. If	𝜆∗ = 0 (stochastic	constraints	are	inactive)

– The	optimal	solution	to	the	original	problem	is	also	
optimal	for	the	mixed	problem

3. If	𝜆∗ > 0
– Get	the	primal	solutions	𝑢+⋯𝑢-O+ that	minimizes	the	

Lagrangian with	𝜆∗

– Get	𝑝+⋯𝑝9O+ that	makes	the	equality	in	the	stochastic	
constraints	hold:

35

=
T 𝑝2
9O+

2U+

= 1and



Special	Case:	K=1

• If	there	is	only	one	stochastic	constraint,	the	
dual	optimization	can	be	solved	efficiently	by	
root	finding
– E.g.,	Joint	chance-constrained	optimal	control

36



Special	case	with	K=1

Dual	Problem

max
Y
min
[∈𝒰

𝔼[𝑓* 𝑥, 𝑢 ] + 𝜆(𝔼[𝑓+ 𝑥, 𝑢 ] − V)

Primal	Problem

min
[∈𝒰

𝔼[𝑓* 𝑥, 𝑢 ]
s.t.		𝔼 𝑓+ 𝑥, 𝑢 ≤ 𝑉

𝑞(𝜆)



Dual	Problem

max
Y
min
[∈𝒰

𝔼[𝑓* 𝑥, 𝑢 ] + 𝜆(𝔼[𝑓+ 𝑥, 𝑢 ] − V)

Special	case	with	K=1

𝑞(𝜆)
• 𝑞 𝜆 is	always	concave
• Optimality	condition:	0 ∈ 𝜕𝑞(𝜆)

– 𝜕𝑞(𝜆):	subgradient
• Therefore,	dual	optimization	is	reduce	to	a	zero-
finding	problem	over	𝜕𝑞(𝜆)



Dual	Solution	through	Root	Finding

39V Risk	𝑟

Co
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𝜆

𝜕𝑞 𝜆
= 𝑟Y − V

𝜆e+

𝜆e+

𝜕𝑞

Type	equation	here.



Dual	Solution	through	Root	Finding
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𝜆e+

V Risk	𝑟

Co
st
	𝑐

ℱ

𝑟Ycd

𝜆𝜆p+

𝜕𝑞 𝜆
= 𝑟Y − V

𝑟Ycd
𝜆p+

𝜕𝑞

𝜆e+



Dual	Solution	through	Root	Finding
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𝜆eA

𝜆pA

V Risk	𝑟

Co
st
	𝑐

𝑟Ycq

ℱ

𝑟Ycq

𝜆𝜆pA
𝜆eA

𝜕𝑞 𝜆
= 𝑟Y − V



Dual	Solution	through	Root	Finding
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𝜆eB

𝜆pB

V Risk	𝑟

Co
st
	𝑐

𝑟Ycr

ℱ

𝑟Ycr

𝜆
𝜆eB

𝜕𝑞 𝜆
= 𝑟Y − V

𝜆pB



Dual	Solution	through	Root	Finding
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𝜆∗

𝑟e∗ 𝑟p∗V Risk	𝑟

Co
st
	𝑐

ℱ

𝑞∗

𝜆𝜆∗

Optimal	mixed	strategyOptimal	mixed	strategy

𝜕𝑞 𝜆
= 𝑟Y − V



Piecewise	Linear	Approximation	of	
SMPC
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MILP



Path	Planning	with	CCMPC

45Start

Goal

Mixed	strategy	(𝜆p)
Risk:	2.78%
Chosen	by	30.6%

Mixed	strategy	 (𝜆e)
Risk:	0.21%
Chosen	by	69.4%

Pure	strategy
Risk:	1.00%



Application	to	Path	Planning
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Problem:	
• Minimize	path	length
• Risk	≤ 2%

• 𝑥sO+ = 𝑥s + 𝑢s + 𝑤s
• 100x100	discrete	state	space

Control
strategy

Expected
path	length

Risk

Pure 130.8 0.64%
Mixed 104.2 2.0%

Risk:	2.28%

Risk:	0.64%



Mars	Landing	Scenario
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Problem:	
• Minimize	driving	distance	to	

visit	two	science	targets	after	
landing

• Risk	≤ 0.1%

• 2000x2000	discrete	state	space
• Used	terrain	data	at	E.	Margaritifer

on	Mars

Control
strategy

Expected
cost

Risk

Pure 645.49 0.016%
Mixed 644.81 0.1%



Validation	with	Monte	Carlo	
Simulation
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• 200	CCMPC	problems	
with	random	obstacle	
locations

• Mix	solutions	
outperforms	in	red	
dots

• No	pure	solutions	
outperforms	the	
mixed	ones



A	Paradox

• Before	the	coin	flip,	
risk	is	1%

• But	after	seeing	the	
result	of	the	coin	flip,	
the	risk	is	NOT	1%	any	
more!

• If	you	know that	Path	
B	is	chosen,	the	
chance	constraint	is	
violated!

49

Path	A:	cost	=	20,	
risk	=	0.5%

Optimal	mixed	strategy
Path	A:	50%,	Path	B:	50%
Expected	cost	=	15,	risk	=	1%

Path	B:	Cost	=	10,	
Risk	=	1.5%



Solution	to	the	Paradox

• Don’t	let	the	operator	
know	the	result	of	the	
coin	flip
– Then	the	probability	
of	failure	stays	at	1%

• Like	Schrödinger's	cat,	
the	vehicle’s	state	is	a	
superimposition	of	
Path	A	and	Path	B	

50

Path	A:	cost	=	20,	
risk	=	0.5%

Optimal	mixed	strategy
Path	A:	50%,	Path	B:	50%
Expected	cost	=	15,	risk	=	1%

Path	B:	Cost	=	10,	
Risk	=	1.5%



Conclusions

• In	a	nonconvex	constrained	stochastic	optimal	control	
problem,	randomizing	control	may	result	in	a	reduced	
expected	cost

• If	there	are	K stochastic	constraints,	K-randomization	is	
sufficient

• Developed	a	solution	approach	to	the	mixed	strategy	
control	through	dual	optimization

• Developed	an	efficient	solution	approach	to	a	problem	
with	K=1	using	root	finding

• Funded	by	the	ONR	Science	of	Autonomy	Program
– Office	of	Naval	Research	Grant	N00014-15-IP-00052
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