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Motivation

Remote sensing data are a vast, largely untapped resource.

I Broad range of applications from
climate science to fisheries to disaster
management

I Massive but sparse

I Challenging for spatial estimation

Current spatial modeling approaches mainly
focus on dimension reduction in the model. Sea-surface temperature from the MODIS-Aqua

instrument, daytime on 07/28/2015. Data are 1km
resolution. There are about 2.7 million data points in

this region.
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Motivation

Existing methodologies might not be sufficient (e.g. computational costs
and memory limitations).

Idea:

I Make the data smaller by compressing them.

I Perform spatial inference on compressed data.

3



Adaptive Spatial Dispersion Clustering (ASDC)

Aggregate data into spatial clusters. Requirements:

I produce spatially contiguous clusters

I preserve spatial covariance structure

I minimize information loss for prediction

ASDC combines a spatial statistical framework with spectral clustering
to meet these requirements.
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Distance dispersion functions

Data: Z (v) = Y (v) + ε(v),

prediction location: v0 ∈ D,

all other locations: ve ∈ De = D \ {v0}.

Synthetic spatial domainD ⊂ R2

measurements Z (v), v ∈ D.

d
2 i,

j

fe(‖ve,i − ve,j‖)⇔ cov(Z (ve,i),Z (ve,j))

d
2 0,

i

f0(‖v0 − ve,i‖)⇔ cov(Z (v0),Z (ve,i))

distance
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Distance dispersion matrix

Fit fe and f0 to d2
i,j = |Z (vi )− Z (vj )|2,

γ i,j
e = fe(‖ve,i − ve,j‖),

γ i
0 = f0(‖v0 − ve,i‖).

fe and f0 are fitted by splines

d
2 i,

j

distance

v0 ve,1 ve,2 . . . ve,N row vector

v0 0 γ1
0 γ2

0 . . . γN
0 γ̃0

ve,1 γ1
0 0 γ1,2

e . . . γ1,N
e γ̃1

e

ve,2 γ2
0 γ2,1

e 0 . . . γ2,N
e γ̃2

e
...

...
...

...
. . .

...
...

ve,N γN
0 γN,1

e γN,2
e . . . 0 γ̃N

e

H: dissimilarity matrix/table
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Spectral clustering

1. Construct a similarity matrix W from H:

wi,j = exp

(
− ‖γ̃

i
e − γ̃ j

e‖2

2
√
γ i

0 ·
√
γ j

0

)

2. Apply spectral clustering [1] to W.

3. Obtain N × K compression matrix [Q]ij , where ij-th element is 1 if
i-th location ∈ Γj , j = 1, . . . ,K .

4. The j-th spatial cluster is Γj =
⋃N

k=1 {vk : [Q]kj = 1}.
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Example: Sea-surface Temperature

Sea-surface temperature from the AMSR-2
instrument on GCOM-W satellite, daytime on

07/28/2015. Data are 25km resolution. There are
about 117,000 data points in this region.

I Predict SST in a region of interest
(in black square) by kriging
compressed data.

I Compare performance to kriging
on a proximate subset (“local
kriging" [2, 3]) and on binned data.

I Performance benchmark is kriged
prediction using the full dataset.
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Comparison of methods

binning subsetting ASDC

I A set of M prediction locations V0 = {v0,1, . . . ,v0,M} in D0 (region
of interest).

I Differences in performance are due to differences in compression
of De (exterior region).
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Step 1: Spatial compression

I Compress the data in De using ASDC, subsetting and binning.

I Obtain compressed datasets Ψc , c = {Ada,Sub,Bin}:

Ψc = (Z0, ψ
c(Γ1), . . . , ψc(ΓK ))

T

ψc(Γj ) =
1
nj

n∑
i=1

Z (vi )1(vi ∈ Γj ), nj > 0,

is a cluster centroid and nj is cluster size.
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Step 2: Spatial prediction

I Estimate the covariance function parameters from all the available data.

I Perform kriging on full data to predict the region of interest V0:

Ŷ (V0) = AT Z, where A is a matrix of kriging coefficients.

I Perform kriging on compressed data Ψc :

Ŷ Ada(V0) = BT
AdaΨ

Ada

Ŷ Sub(V0) = BT
SubΨ

Sub

Ŷ Bin(V0) = BT
BinΨ

Bin.
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Performance metrics and results

Root mean squared error (RMSE) and mean prediction error ratio (MPER):

RMSEc =

[
1
M

M∑
i=1

(Ŷ (v0,i )− Ŷ c(v0,i ))
2

]1/2

, MPERc =
1
M

M∑
i=1

var(Ŷ (v0,i ))

var(Ŷ c(v0,i ))
.

Compressed as RMSE MPER
% of original size ASDC Subset Binned ASDC Subset Binned

1% 0.078 0.208 0.130 1.002 1.029 1.014
2% 0.074 0.177 0.099 0.995 1.015 1.004
4% 0.063 0.106 0.085 0.995 1.005 0.999
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Discussion

I Here we demonstrated good performance on a
“small" data set against standard competitors.

I Key idea is to preserve both covariance structure in
the exterior and between the interior and exterior.

I Simulation studies suggest that computational
performance improves with data set size.

I For remote sensing, it will be necessary to combine
ASDC with dimension reduction approaches.

I Other potential applications for this methodology
include medical imaging, network data, health
records, and more.

ASDC computation time vs data size.
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