
Quaternary Triangular Mesh: A
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Geoffrey Dutton

This presentation is partly based upon the work of Geoffrey Dutton,
from a monograph of the same title as this seminar, based upon
his Ph.D. dissertation at the University of Zürich-Irchel in 1998.

The monograph was published by Springer Verlag as part of the
series “Lecture Notes in Earth Sciences” in 1997.

ISBN 3-540-64980-8.

This seminar focuses on its applications to geoprocessing, leaving
aside its applications to cartography.



Prior Work

An Earth-orbiting instrument was described in a seminar previously
presented in this venue. It consists of a spectroradiometer that
passively observes thermal microwave emission from the limb of
the atmosphere. Its antenna scans from 100 km to the surface in
the orbit plane. A coördinate system to represent the results of
these observations can be a two-dimensional coördinate system
that represents an annulus within the orbit plane, with the
horizontal coördinate being orbit angle, and the vertical coördinate
being the logarithm of pressure, which is roughly consistent with
geometric height, by way of hydrostatic equilibrium.



Proposed New Work

A successor instrument has been proposed that will scan vertically
at some angle left or right from the orbit plane, then step closer to
the orbit plane and scan again, continue to the same distance on
the other side of the orbit plane, and then repeat. A coördinate
system to represent the results of these observations is necessarily
a three-dimensional coördinate system that represents a shell of
the Earth figure. The horizontal basis is a mesh on the Earth’s
surface, and the vertical coördinate is the logarithm of pressure.



Global Surface Mesh

A simple global surface mesh could use parallels of latitude and
meridians of longitude as coördinates. This has the defect that as
the resolution of the mesh is refined, facets of the mesh at the
poles become very small. The ratio of the area of a facet near the
pole to the area of a facet near the equator approaches zero. Also,
facets adjacent to the poles are triangles, while other facets are
quadrilaterals.

A more uniform mesh is desired.

The Quaternary Triangular Mesh described by Geoffrey Dutton,
denoted hereafter by QTM, is such a mesh. As the resolution is
refined the ratio of the area of the smallest facet to the largest
facet approaches 6/11.



Starting and Refining the QTM
A QTM begins by dividing the Earth into octants, with meridians
at multiples of 90◦. Each facet is a triangle. If a facet is too large,
it is divided into four sub-facets by connecting the midpoints of the
edges of the facet; each of the sub-facets is also a triangle, hence
the term “Quaternary Triangular Mesh.” A figure from Dutton’s
monograph shows uniform refinement to the fourth level:



Size of the QTM

By construction, the number of facets f` at the `th refinement,
where the QTM that consists only of the original octants is level 1,
is f` = 8× 4`−1 = 22`+1. Because smaller facets are formed by
bisecting each edge, the number of vertices in the `th refinement is
v` = v`−1 + e`−1, where e` is the number of edges. From Euler’s
formula for genus-zero polyhedra, f` = e` − v` + 2. Solving these
equations, we have v` = 22` + 2 and e` = 3× 22`.

Counting the poles and equator, the vertices are on 2` + 1
equally-spaced parallels of latitude. For example, after 7 levels of
refinement, the meridional extent of a facet is about 20000/27 km
≈ 156 km.

Along the kth parallel from each pole, vertices are at 4k
equally-spaced longitudes.



ZOT projection

Geoffrey Dutton developed a simple way, called the Zenithial Ortho
Triangular projection, or ZOT projection, to identify facets within
a QTM, and to compute the facet within which a position given by
latitude and longitude is contained. A figure from his monograph
shows ZOT projections of refinements to levels 2 and 3:
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ZOT projection (cont.)

The heavy lines are edges of the octants. The outer boundary
consists of southern hemisphere meridians of the octants, and the
halves of each outer boundary are aliased. For example, the points
labeled 3 on the top edge are the same point. The north pole is
the center. The south pole is the outer corners. The equator is the
inscribed square with diagonal edges. Diagonal lines are parallels of
latitude. Meridians are straight lines from each pole to the equator.
For example, the 22.5◦ meridian is the blue line, and the 45◦

meridian is the red line. The only other meridians shown are edges
of the octants. The narrow lines are boundaries of the level-2
refinement. Dashed lines are boundaries of the level-3 refinement.

Every triangle in the mesh is an isosceles right triangle. The right
angle is called the polar angle because it is always nearest one of
the poles of the sphere. One edge incident on the pole vertex is
horizontal in the ZOT projection, and the other is vertical.



Vertex and facet numbering in the ZOT projection

Vertices of the mesh are not uniquely identified by the QTM
identifier (QID) of a facet. At each level of refinement, they are
assigned a basis number in the range 1 · · · 3. Initially, the poles are
assigned 1, the 0◦ and 180◦ equatorial vertices of the octants are
assigned 2, and the 90◦ and 270◦ vertices are assigned 3.
Thereafter, as each edge is bisected, the basis number of the
midpoint is Bn = 6− (Ba + Bb), where Ba and Bb are the basis
numbers of the end points. The QID of each facet at level 1 is 8 +
its octant number. When a facet is subdivided, the QID of the
central facet is the QID of the parent facet, with zero appended.
The QID of each other facet is the QID of the parent facet, with
the basis number of the vertex of the larger facet that is also a
vertex of the smaller facet appended.



ZOT coordinates

Given longitude φ and latitude θ, ZOT coordinates x and y are
initially computed in the `1 metric using

δx = 1− |θ|
90

x = δx
bφc mod 90 + φ− bφc

90
y = δx − x

Then in the southern hemisphere, replace x = 1− y and
y = 1− x . Then in even-numbered octants, exchange x and y .
Then in the top half of ZOT space, negate y , and in the left half
of ZOT space, negate x .

ZOT coördinates are in the range −1 · · · 1, with the north pole at
(0, 0), and the south pole at (±1,±1).



Finding a Facet

To find a facet, compute the x and y ZOT coördinates of a point,
and use 8 + the octant number as the initial QID. If the level of
facet identified does not have sufficient resolution, the QID of a
sub-facet is determined by computing the distances dx and dy of
the x and y ZOT coördinates from the pole vertex. Let the length
of a horizontal or vertical edge of a facet (which is incident on the
pole vertex) be s. If |dx |+ |dy | < s/2, append the basis number of
the pole vertex to the QID of the parent facet. Otherwise if either
|dx | > s/2 or |dy | > s/2 append the basis number of the x or y
vertex respectively. Otherwise, append zero. If |dx | > s/2 and
|dy | > s/2, you made a mistake along the way and you’re working
in the wrong facet. No square roots or trigonometric functions are
needed. The process is repeated if the size of the facet is not
sufficiently small. The maximum number of repetitions is equal to
the degree of refinement of the mesh.



Calculation of Sub-Facet and QID
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Construct an Integer from the ZOT Coördinates

At level ` there are 2` + 1 possible values of each ZOT coördinate,
with spacing 21−`. Therefore, 2`−1(1 + x) and 2`−1(1 + y), where
x and y are ZOT coördinates in a level ` refinement, are each
integers in the range 0 · · · 2l , and 2`−1(1 + x + (1 + 2`)(1 + y)) is
an identifier in the range 0 · · · 22` + 2`+1 for each ZOT coördinate.
This is too many identifiers because there are only 22` + 2 vertices.
The outer edges of the ZOT projection are meridians of
southern-hemisphere octants, and the negative half of each outer
edge represents the same points as the positive half. ZOT
coördinates are disambiguated by using |y | if |x | = 1 and |x | if
|y | = 1. This reduces the number of identifiers to 22` + 2, and
reduces the range to 2`−1 · · · 22` + 2`+1. If ` is restricted so that a
QID fits in an integer, and a QID identifies a facet, and there are
22`+1 facets, this vertex identifier also fits in an integer.



Data Structure to Find Facets and Vertices

A quadtree, that is, a tree in which each vertex has four sons, is
used to find the representations of facets and vertices. The value
of a nonzero son field of each vertex is the index of another vertex
in the tree.

Because the highest order nonzero bit of a QID is the high-order
bit of an octant index, which is 8 + the octant number, and
therefore in the range 8 · · · 15, one can always isolate the four-bit
octant number unambiguously. The high-order two bits are the
hemisphere number, in the range 2 · · · 3, and the low-order two bits
are the octant number within the hemisphere, in the range 0 · · · 3.

The first three vertices of the quadtree then have son fields with
values [0, 0, 2, 3], [4, 5, 6, 7], and [8, 9, 10, 11], and the son fields of
other vertices are all zero.

A recursive process is used to construct the remainder of the
quadtree, and refine the QTM within a specified polygon.



Data structure to find a facet
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Refining a QTM Within a Polygon

The concept “inside a polygon” is ambiguous on a sphere, so an
additional point defined to be inside a specified polygon is also
required. A vertex is considered to be inside the polygon if an
“inside a polygon” algorithm reports that the designated point and
the vertex are either both within or both outwith the polygon.

Start from the initial octants. Refine a facet and add its sub-facets
to the quadtree if it is not sufficiently small and if

I a vertex of the facet is within the polygon,

I a vertex of the polygon is within the facet, or

I an edge of the facet intersects an edge of the polygon.

If any vertex of a sufficiently small facet is within the polygon,
assign serial numbers to all its vertices that do not have one, put
the serial numbers into the quadtree, and (using a hash table)
associate the quadtree vertex number to the vertices’ serial
numbers, to avoid giving a vertex more than one serial number.



Refining a QTM Within a Polygon (cont.)

Here are the three cases needing refinement:



Refining a QTM Within a Polygon (cont.)
An “inside a polygon” algorithm for a plane is simpler and faster
than one for a sphere, so you might prefer to test in the ZOT
projection.

If your polygon has an edge that crosses a southern-hemisphere
meridian of one of the octants, the polygon will appear in two (or
more) pieces in the ZOT projection, because these meridians are
aliased on the ZOT projection boundary.

There are two possibilities:

I Break the polygon into pieces. This is nontrivial because there
is not necessarily another edge that crosses the same meridian,
even in the northern hemisphere. Then search in all the pieces.

I Break the edge into two edges, each ending at the meridian.
That point is two points on a boundary of the ZOT projection.
Introduce two antiparallel edges at that point, between the
aliased points of the meridian, along a boundary of the ZOT
projection. Now it’s just one polygon in the ZOT projection.



Atmospheric Remote Sensing

For cartography, or a geophysical phenomenon on the Earth’s
surface, a two-dimensional mesh is sufficient, and a QTM as so far
described is sufficient.

For atmospheric remote sensing, a three-dimensional mesh is
needed.

We construct a third dimension by extending a line orthogonally
from the Earth’s surface at each vertex of the QTM, and put
points of the three-dimensional mesh only on these lines. We call
such a mesh “stacked.” If, furthermore, the nth point above the
Earth’s surface on every line has the same vertical coördinate
value, we call such a mesh “coherent.”

A stacked mesh, whether it is coherent or not, can be thought of
as a collection of prisms.

If the vertical dimension has a finite extent, it represents a shell
about the Earth’s surface.



Ray Tracing

Many problems in atmospheric remote sensing require to trace a
ray through the Earth’s atmosphere.

If the radiative-transfer equation is being integrated along the ray,
one wishes to know the points at which the ray intersects a vertical
or horizontal face of a prism. One then integrates the
radiative-transfer equation from one such point to the next.

If geophysical values, such as temperature or composition, are
represented at points on the mesh, and interpolated to points
within prisms using multilinear interpolation, there are
discontinuities in the first derivatives of the interpolated values
along the ray at points where it crosses a prism boundary. The
error term in a quadrature or differential-equation formula depends
upon the maximum value of a high-order derivative within the
range. If there is a discontinuity in the first derivative, and the
range spans the point where that discontinuity, the algebraic order
of the formula is only 1, no matter how many abscissae are used.



Intersections of the Ray with Prism Boundaries

There are four kinds of surfaces the ray might intersect:

I A vertical surface of constant latitude.

I A vertical surface not of constant latitude.

I A horizontal surface within the QTM.

I A horizontal surface outwith the QTM.



Intersection With a Surface of Constant Latitude

A vertical surface of constant latitude is a sector of a cone. For
atmospheric remote sensing, geodetic latitude and geodetic height are
more useful than geocentric measures. Therefore, the apex of the cone is
not at the Earth’s center. The intersection is determined by inserting the
equation for a line, viz.

X = C + tU

where C is a point on the line and U is a vector along it, into the
equation for a cone, viz.

(X− V)TM(X− V) = 0 ,

where

V = [0, 0, v ]T , M = DDT − sin2 θ I , D = [0, 0, 1]T ,

v is the distance along the polar axis of the apex from the Earth’s center,
θ is the geodetic latitude, and I is the identity matrix.



Intersection With a Surface of Constant Latitude (cont.)
This results in the equation

(C + tU− V)TM(C + tU− V) = 0 .

The points where the line intersects the cone are the roots of the
polynomial a2t

2 + a1t + a0 = 0, where

a2 = u2
3 −U ·U sin2 θ = u2

3 − |U|2 sin2

a1 = (c3 − v)u3 − (C− V) ·U sin2 θ

a0 = (c3 − v)2 − (C− V) · (C− V) sin2 θ = (c3 − v)2 − |C− V|2 sin2 θ

If the latitude θ is geodetic then

v =
ae2 sin θ√

1− e2 sin2 θ

where e2 = 1− b2

a2 is the square of meriodonal eccentricity, and a
and b are equatorial and polar radii of the Earth, respectively.



Intersection With a Vertical Plane

A plane is the set of points X such that

(X− P0) · n = 0

where P0 is a point on the plane and n is a normal vector to it.
Substituting the equation of a line

X = C + tU

into the equation for a plane gives

(tC + U− P0) · n = tC · n + (U− P0) · n = 0 .

Solving for t gives

t =
(U− P0) · n

C · n
.



Intersection With a Horizontal Surface Within the QTM

A horizontal surface within the QTM is approximated by a sector
of a sphere that has the same radius of curvature as the Earth has
at the circumcenter of the QTM facet at the Earth’s surface, plus
the average geodetic altitude of the points on the lines incident on
QTM vertices, with a center on the normal to the plane containing
those points.

Define the plane by three points A, B, and C. Arbitrarily choose C
as a reference point and define two vectors

a = A− C and b = B− C .

A normal vector to that plane is n = a× b. The vector from C to
the circumcenter P0 is given by

v =
(|a|2b− |b|2a)× n

2|n|2
.

The circumcenter of the three points is therefore P0 = C + v.



Intersection With a Horizontal Surface (cont.)

The centers of the spheres defined by the three points and the
radius are on the line

p(t) = P0 + tn = V + C + tn .

The distance from any of the three points, say C to the center of
the sphere is its radius r . Therefore

|p(t)− C|2 = |V + tn|2 = |n|2t2 + tV · nt + |V|2 = r2 .

Since V is in the plane defined by the three points, V is orthogonal
to n, i.e., V · n = 0. Therefore |n|2t2 + |V|2 = r2, and

t = ±

√
r2 − |V|2
|n|2

,

with the sign of t chosen to minimize |p(t)|.



Intersection With a Horizontal Surface (cont.)

A sphere is the set of points X such that

|X− P0|2 = r2 .

By substituting the equation of a line, viz. X = C + tU, and
letting V = C− P0, the points of intersection of the line with the
sphere are the roots of the polynomial

U ·Ut2 + 2V ·Ut + V · V = r2 .

The radius of curvature r that is used is the mean curvature

RA =
2

1
RM(θ) + 1

RN(θ)

where RM(θ) = b2

a(1−e2 sin2 θ)3/2 is the meridional radius of

curvature, and RN = a√
1−sin2 θ

is the normal radius of curvature.



Intersection With a Horizontal Surface Outwith the QTM

We have no temperature information outside the polygon.
Therefore the temperature outside the polygon is assumed not to
have any horizontal variation, and therefore the relationship
between pressure and height (according to hydrostatic equilibrium)
is assumed to be constant outside the polygon.

Therefore, a horizontal surface outwith the QTM is assumed to be
a surface at a constant geodetic height above the Earth reference
ellipsoid. The heights of the surfaces considered are the heights at
the horizontal position where the ray first intersects a vertical
surface of a prism of the QTM within the polygon, interpolated
from the two adjacent vertices at each height.

This assumes that the numbers of positions at which height (or
pressure) are tabulated on every vertical line from a vertex of the
QTM are the same on every line. The sets of heights (or pressures)
are not necessarily assumed to be the same on every line.



Interesting Vertical Surfaces Outwith the QTM
This is how the levels of vertical surfaces outwith the QTM are
chosen:



A Surface a Constant Distance from an Ellipsoid

A surface at a constant distance h from an ellipsoid is not an
ellipsoid. Let V = [x , y , z ]T and

M =

 1
a+h 0 0

0 1
b+h 0

0 0 1
c+h

 .

where a, b, and c are the ellipsoid’s semiminor axes. If h is small
relative to those axes, an ellipsoid that is near to a surface a
constant distance h from the given ellipsoid is given by

(MVT )(MV) =
x

(a + h)2
+

y

(b + h)2
+

z

(c + h)2
= 1 .

As a first approximation, compute an intersection of the ray with
this ellipsoid.



Surface a Constant Distance from an Ellipsoid (cont.)

Intersections of a line with an ellipsoid can be calculated by
substituting the equation of a line, viz. V = C + tU into the
equation of the ellipsoid. This leads to the quadratic polynomial

(MU)T (MU)t2 + 2(MC)T (MU)t + (MC)T (MC) = 1

If there is no intersection of the ray with the ellipsoid that
approximates the desired surface, compute the point closest to it.
Start by defining the ellipsoid in homogeneous coordinates using
the matrix

M =


1/a2 0 0 0

0 1/b2 0 0
0 0 1/c2 0
0 0 0 −1


If a point P on its surface is given in homogeneous coordinates as
P = [αx , αy , αzα]T such that PTMP = 0, we have the familiar

equation x2

a2 + y2

b2 + z2

c2 − 1 = 0.



Nearest Points on Line and Ellipsoid

The point on the ellipsoid that is closest to the line L(t) = C + tU
lies on the plane P1 defined by L and the origin.

The plane P2 that is tangent to the ellipsoid at the point closest to
L is perpendicular to P1. A normal to this plane is the vector r to
the point on L that is nearest to the origin. The vector r is
necessarily orthogonal to L. The point on the ellipsoid that is
nearest to L is on any plane normal r, but not necessarily on a line
collinear with r. The normal from r to the origin is given by

r = C− (C ·U)U = [i , j , k]T

The homogeneous coordinates of P2 are W = [i , j , k ,−`]T with
normal direction r and unknown distance d from the origin, where

d =
`

|r|
=

`√
i2 + j2 + k2



Nearest Points on Line and Ellipsoid (cont.)

To make sure P2 is tangent to the ellipsoid we set WTC−1W = 0
and solve for

` = ±
√

a2i2 + b2j2 + c2k2 ,

where the sign of ` is chosen to put the plane on the side of the
ellipsoid nearest to L.

The point on the ellipsoid where the tangent plane touches (i.e.,
the point closest to L) is defined in homogeneous coordinates by
P = C−1W, or

P = [αx , αy , αzα]T = [a2i , b2j , c2k ,−`]T ,

or

P = [x , y , z ]T =
1

`
[a2i , b2j , c2k]T .



Nearest Points on Line and Ellipsoid (cont.)

L is parallel P2, so the distance from P2 to L, i.e., the tangent
height h = |r| − d .

The point on L that is nearest to P can be found by solving for
the intersection of L(t) with P + h∇F (P), i.e., by solving
C + tU = P + h∇F (P) for t. Alternatively,
t = |P + h∇F (P)− C|/|U| = |P + h∇F (P)− C| ( assuming
|U| = 1 ) = (P + h∇F (P)− C) ·U.

The last expression arises because P + h∇F (P) and C are on L,
and the distance between them, t, is the difference of their
projections onto U.



Surface a Constant Distance from an Ellipsoid (cont.)

Let L(t0) be the point (given in Earth Centered Rotating Cartesian
coördinates) on L(t) that intersects the ellipsoid, or that is closest
to it. Calculate the geodetic height h0 at t0, e.g., by using
Bowring’s or Fukushima’s algorithm. If h0 > h there is no
intersection, and there is nothing more to do.

Fukushima’s algorithm is faster then Bowring’s because it is a
Halley iteration on the tangent of the geodetic latitude. On the
first iteration, it usually produces θi that is accurate to within a
few micro arcseconds if h < 30, 000 km.

If there is an intersection . . . .



Surface a Constant Distance from an Ellipsoid (cont.)

for i = 0, ...

1. Evaluate L(ti ) in Earth Centered Rotating Cartesian
coördinates.

2. Using Fukushima’s algorithm, compute φi , θi and hi at L(ti ).

3. If |δh| = |h − hi | ≤ htol exit.

4. Compute

ti+1 = ti +
δh

sign(max(| cosαi |, 1
2), cosαi )

where cosαi = Ni · L(ti ) and
Ni = [cos θi cosφi , cos θi sinφi , sin θi ]

T is the unit normal to
the ellipsoid at the point nearest to L(ti ).

end for



Surface a Constant Distance from an Ellipsoid (cont.)

Here is an illustration of that iteration:

α

δhh

δs



Interpolation Coefficients and the Jacobian Matrix

After the points where the ray along which the radiative transfer
equation is being integrated intersect surfaces of prisms in the
QTM are computed, interpolation coefficients from the vertices
bounding those faces are computed.

Those interpolation coefficients are then used to compute the
Jacobian matrix used in the Newton iteration to solve for
temperature and the atmospheric constituents, as described in a
previous seminar in this venue.



Thanks for your attention

van.snyder@jpl.nasa.gov


