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Interferometry in space 

•  GRACE [µm] (2002-present)


•  GRAIL [µm] (2012)


•  GRACE [µm] Follow-on [nm] (2017)


•  GRACE 2 [nm] (2020s)

•  Earth Science Tier 3 Decadal


•  LISA [pm] (2034, possibly earlier)

•  NASA 2010 Decadal

•  ESA Cosmic Visions L3


•  Microwave

•  Laser
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•  One wavelength shift in one optical field produces a one wavelength shift in 
the beat note. 

•  No “lock” point. Full fringe readout with large dynamic range. 

•  LISA and GRACE Follow-on beat note ranges from 2 MHz -20 MHz due to 
Doppler shift from spacecraft motion.  

•  The science signal appears as a milliHertz phase modulation on a megahertz 
beat signal. 
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Outline of remainder of talk 

•  (GRACE and) GRACE Follow-on

•  (LISA Pathfinder and) LISA

•  Near future
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GRACE Follow-on Laser Ranging 
Interferometer (LRI) 
 

ΔL
L
=
10nm
200km

= 5×10−14

The first interspacecraft laser interferometer
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Milo Wolff, JGR 1969

•  Satellite pair, low-earth orbit, 200 km 

separation

•  Satellite-to-satellite tracking

•  Laser phase metrology (!)

•  Relative velocity ~ gravitational 

potential
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Climate Experiment 

•  NASA/German Research Centre for 
Geosciences (GFZ) partnership


•  Operating since 2002

•  Two identical satellites orbit one 

behind the other, 200 km apart, 500 
km high


•  Separation measurement of 2 
spacecraft by dual microwave links (3 
µm/√Hz over 200 km)  
(10-10 ms-2/√Hz accelerometer)


•  Spacecraft separation + location 
(GPS) yield orbit

•  Orbit+separation defines gravity map


•  Gravity map evolution over months 
and years 

•  Changes in rainfall

•  Water storage

•  Ice mass

•  Effects of climate change
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GRACE animation 
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GRACE signals

•  Observe small changes in large signal 
•  Typical results are monthly solutions with 

200km ground resolution and some ~mm  
equivalent water height noise level
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GRACE Follow-On 

•  Continue GRACE Science

•  NASA/German Research Centre for 

Geosciences (GFZ) partnership

•  Microwave Ranging Instrument (MWI) 

similar to GRACE

•  Accelerometer from ONERA as on 

GRACE

•  Launch: 2017

•  5 year mission

•  Tech Demo: Laser Ranging 

Interferometer (LRI)

•  LRI goal is > 10 times better sensitivity 

than MWI 

•  ~90 nm/√Hz vs ~3 μm/√Hz

•  λLRI= 1 μm vs λMWI ~ 1cm 

•  LRI sensitivity limit: residual laser 

frequency noise


MWI 

LRI 

Adapted from Sheard et al, J Geod, (2012)  10
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GRACE-FO LRI Measurement 

•  Interference between two single-frequency optical fields causes a ‘beat-note’ in 
the field power at their offset frequency.

•  Active transponder: round trip measurement by phaselocking at ‘slave’ SC.
•  Accelerometer at CM to subtract non-gravitational forces.
•  Changes in the laser’s wavelength directly corrupt the measurement: 

•  Laser Frequency noise is a limiting noise source for the GRACE-FO LRI.
•  Laser stabilized to a ULE reference cavity.
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Laser 

LRP 

Cavity 

OBA 

TMA 

Baffle 

OBE 
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OBE

DWS

FSM

Δf=f1-fC1

θ

Laser
(f1)

Phase	Lock	

Cavity
(fC1)

DWS

FSM

Laser
(f1)

Pointing	
Control	

OBE Cavity
(fC2)

Δf=f2-fC2

Phase	Lock

Pointing	
Control	

Frequency	
Stabilization

OBA

Frequency	
Stabilization

LRI	2

TMA TMA

LRI	1

δL

~200	
km

10	Hz	
data	
to	
GND

10	Hz	
data	
to	
GND

LRP

LRP

OBA

GRACE-FO LRI Block Diagram 
LRI Components 




1. Laser (LAS) – source of light

2. Cavity (CA) – stabilizes wavelength of light

3. Laser Ranging Processor (LRP) – control and data processing

4. Optical Bench Assembly (OBA) – routes and points the beam

5. Optical Bench Electronics (OBE) – steering mirror & detector drivers

6. Triple Mirror Assembly (TMA) – routes the beam around MWI

7. Baffles (BAF)
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Spacecraft (1 of 2) 
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Laser 

•  Similar to Laser on LISA 
Pathfinder 

•  1064 nm 

•  Nd:YAG Non-Planar Ring 
Oscillator (NPRO) 

•  25 mW ± 20% 

•  Frequency noise requirement  

•  < 200kHz/√Hz *1Hz/f 

•  1 year minimum lifetime 

Frequency	noise	requirement	met.	15
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Reference Cavity 

Phase 

 

 
 

W. M. Folkner et al., “Laser Frequency Stabilization for GRACE-2”, Proc. ESTF 2011. 16 

•  PDH stabilization

•  Near thermal limit
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Laser Ranging Processor (LRP) 

•  Developed at JPL with heritage from 
 LISA TRL 6 Phasemeter, Blackjack… 

•  Tasks: 

•  Science phase measurement 

•  cycle-slip-free phase measurement 1 
pW shot noise 

•  Stabilizes the master laser to the cavity 

•  Offset phase locks the slave laser to the 
received laser light  

•  µHz phase synchronization with the 
master laser 

•  Optical link acquisition 

•  receives data from QPD 

•  controls FSM 

•  Derives differential wavefront sensing 
signals for laser pointing 

•  Communicates with the spacecraft 

•  Collects telemetry for the LRI instrument  

Laser Ranging Processor 

17




Jet	Propulsion	Laboratory 
California	Ins5tute	of	Technology	LRP control of Steering Mirror from 

Differential Wavefront Sensing  

Two modes of control of fast 
steering mirror:

1.  Open-loop acquisition scan to 

find heterodyne signal.

2.  Continuous high-bandwidth 

active retroreflector” feedback 
using phase-sensitive Differential 
Wavefront Sensing (DWS)
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Triple mirror assembly 

•  Intersection point is virtual and 
can be arbitrarily placed, e.g. 
inside accelerometer housing 


•  Invariant parameters under 
rotation around intersection 
point

•  round-trip pathlength

•  propagation direction of reflected 

beam is always counter-
propagating to incident


•  Developed by STI and Cassidian

•  TMA also prototyped by ANU 

•  Requirement on co-alignment is 

40 microradians

•  Path length stability 21nm/√Hz
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Actual pointing bias and jitter are larger than >100µrad 
→ need beam steering mechanism and acquisition procedure 

•  Transmitted beam size is 
140 microradians 
compared to initial 
uncertainty in alignment of 
3 milliradians 

•  Receiver acceptane angle 
“heterodyne effiiency” is 
same as transmitted. 
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Acquisition Scans 

Acquisition Scans
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•  GFO LRI is the first inter-satellite laser interferometric ranging instrument: 
•  US-German collaboration (+AUS), like GRACE, launch 2017, 
•  Technology demonstrator based on technology developed for LISA interferometry 
•  Expected to produce better data than microwave link 
•  Demonstrates many LISA interferometry technologies 

•  Phasemeter/Phaselocker 
•  NPRO laser 
•  DWS 
•  Acquisition 
•  pW operation 
•  Laser frequency noise suppression 
•  Potential to do more 

… Time Delay Interferometry and Arm-locking  
(NASA has funded an investigation of this: LISA Experience from GRACE Follow-On 
Optical Package (LEGOP)) 

•  LTP measurements are underway, demonstrating: 
•  micronewton thrusters 
•  optical bench 
•  GRS 
•  drag-free 
•  metrology 

•  GFO LRI will also demonstrate much of the technology needed for GRACE II 
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G-FO MWI


G-FO LRI


 Drag-Free + Laser


LISA




1) Better Instrument Noise

Inter-spacecraft range


•  K-Ka band (~1um/rtHz)

•  Laser (~10nm/rtHz)


Accelerometer

•  GRACE Type (~1 x10-10ms-2/rtHz)

•  Drag-Free (GOCE ~10-12ms-2/rtHz) "

(LISA Pathfinder ~10-14ms-2/rtHz) 



A future GRACE II mission: what is needed  
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Laser Interferometer Space Antenna Space 
Antenna (LISA)  
 

ΔL
L
=
10pm
5Mkm

= 2×10−21
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Beyond Einstein: From the Big Bang to Black Holes 
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http://lisa.jpl.nasa.gov

LISA
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LIGO, 2015: 

30 solar-mass BH binary

z = 0.1    


LISA, 2030’s:

106 solar-mass BH binary,

 z = 15


Nothing is too wonderful to be true if it 
be consistent with the laws of nature"
                         -- Faraday
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Massive Black Hole 
Coalescence

Rotating NS

Extreme Mass Ratio 
Inspiral

Unresolved 
Galactic 
Binaries Resolved 

Galactic 
Binaries

NS-NS and BH-BH 
Coalescence

SN Proto-NS

Advanced LIGO
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LIGO -> LISA 



•  Lower frequency, corresponds to 

larger masses, stronger signals



•  Sensor noise


•  increase length of arms by 106


•  laser power is limited

•  10-11 m/√Hz @ 1 mHz


•  Displacement noise

•  acceleration noise


•  Gravitational noise (!)

•  unresolvable galactic binaries




National Aeronautics and Space 
Administration
Jet Propulsion Laboratory
California Institute of TechnologyInter-spacecraft Interferometry 

•  30 cm telescope 

•  ~1 Watt transmitted.  

•  ~10-10 Watts received. 

•  shot noise of received power is dominant noise source at high 
frequencies ~10 pm/√Hz. 

•  Pointing fluctuations must be kept to below ~10 nrad/√Hz 

•  Arm length changes by ±1.5% over a year. 
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GRACE-FO interferometer and LISA 

LISA	 LRI	on	GFO	

Inter-satellite	distance	 5	million	km	 170...270	km	

Orbit	 Heliocentric	(1	a.u.)		 Low	Earth	Orbit	(400…500	km)	

Orbit	environment	 No	atmospheric	drag,	stable	thermal	
environment	 Atmospheric	drag,	large	thermal	disturbances	

AOtude	and	Orbit	Control	System	 Drag-free	using	µN	thrusters	 AOtude	control	with	magneUc	torquers	and	
cold	gas	thrusters	

Measurement	band	 100	µHz	–	1	Hz	 200	µHz	–100	mHz	

Measurement	noise	 12	pm/√Hz	(×	freq.	dep.)	 80	nm/√Hz	(×	freq.	dep.)	

Telescope	aperture	diameter	 38	cm	 ≈1	cm	

Transmit	beam	waist	radius	 17	cm	 ≈2	mm	

Transmit	power	 1	W	 ≈20	mW	

Effec5ve	received	power	(at	
photodetector)	 ≈100	pW	 ≈100pW	

Maximum	relaUve	L.O.S.	velocity	 ±15	m/s	 ≤	±4	m/s	

Ini5al	acquisi5on	 4+1	d.o.f,	no	communica5on	 4+1	d.o.f,	no	communica5on	

31 
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1. Local interferometry

(Proof Mass to Optical Bench)


2. Inter-Spacecraft interferometry

(Optical Bench to Optical Bench)
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•  2 proof masses per spacecraft 

•  one for each sensitive 
direction 

•  drag-free 

•  2 lasers per s/c 

•  6 one-way measurements 

•  local phase measurements 

•  all measurements sent to ground 

•  combined in post-processing 
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Laser Frequency Noise

Spacecraft separation measured by laser “ruler”. 
 Laser’s wavelength is analogous to ruler’s tick 
marks 
Changes in spacecraft separation are 
indistinguishable from changes in wavelength. 

(singel-arm 
interferometer) 

Difference between two equal 
length arms is immune to (common) 
ruler length changes. 

(Michelson 
interferometer) 

In LISA ΔL ≈ 50,000 km
1 pm/√Hz ��δν/ν < 10-20 /√Hz 

Best laser: δν/ν ~ 10-8/√Hz (@ 3 mHz)



National Aeronautics and Space 
Administration
Jet Propulsion Laboratory
California Institute of Technology

Arm Locking2 

Time Delay Interferometry3 K. McKenzie, R. Spero, and D. Shaddock, 
Phys. Rev. D 80 (2009)

J. W. Armstrong, F. B. Estabrook and 
M. Tinto
ApJ  524  814 (1999)

IIP07 Folkner

LISA lab

Pre-Stabilization1 

3 (maybe 2) steps to reduce frequency noise 
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•  LISA arm is the best frequency reference.


•  High bandwidth feedback possible despite 33 s delay. 


Simple model of a LISA arm
 Impulse Responses
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Arm locking performance


Modified Dual Arm Locking, McKenzie, Spero, Shaddock, PRD 80,102003 (2009)


By using both LISA arms, 
laser can be stabilized to 
required level without 
explicit prestabilization.  
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•  Measurement is  
(prompt)−(delayed) 



•  s(t) phase of interference  
p(t) laser phase 
 



•  Measurements combined 
using knowledge of delays
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 TDI


Combination

Interferometry


Test Bed

Phase


Measurements

USO Noise

Correction


•  Clock frequency multiplied to  
6 GHz for high SNR of phase 
fluctuations 


•  Transmitted to distant spacecraft as 
sideband on science signal 


•  Detected sideband/sideband beat 
signal ∼ 2 MHz


•  Clock tone separated from science 
signal within phasemeter, separately 
recorded
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at JPL 

•  The LISA TDI scheme has been demonstrated  
at JPL in a Sagnac Interferometer  
 

•  Frequency noise removal to interferometer 
displacement limit 
•  Clock noise removal 
•  Clock Tone Transfer via GHz phase 

modulation 
•  Interpolation of data streams onto common 

time-base 

 
•  Also, on the JPL TDI testbed  

•  Optical ranging PRN to 0.2m rms 
•  Optical Communications 20 kbps 

G. de Vine, B. Ware, K. McKenzie, R.E. Spero, W. M. Klipstein and D. A. Shaddock PRL (2010)

 A. Sutton, K. McKenzie, B. Ware, and D. A. Shaddock OE (2010) 
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•  Optical

•  Telescope

•  Point ahead actuator

•  Optical tracking/in-field guiding (arm breathing)

•  Metrology

•  Fiber noise

•  Bench*

•  Differential wave front sensing (DWS)

•  Fast steering mirror (FSM)

•  Acquisition*

•  Alignment

•  Baffles

•  Quad photodiodes (QPD)

•  Contamination


•  Laser frequency noise suppression

•  Laser + laser amplifier*

•  Cavity pre-stabilization

•  Arm locking

•  TDI


•  Thermal control*

•  Structural/mechanical stiffness*


•  Phase measurement

•  Clock noise suppression

•  Inter-spacecraft comms

•  Signal reconstruction

•  Phasemeter

•  Phaselocker

•  Multiple tones


•  Laser Ranging Processor (LRP)

•  acquisition controller

•  FFT streaming

•  Data acquisition

•  State machine

•  Science measurement

•  Laser control


•  GRS

•  Launch lock

•  Vacuum

•  Charge control

•  Drag-free control

•  Micro-newton thrusters


LISA Pathfinder

GFO

Testbed

*Work to go
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LISA Pathfinder 
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LISA Pathfinder 
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•  Launched December 3, 2015

•  Is retiring largest risk:  GRS (accelerometer) sensitivity

•  “Met preflight requirements”

•  Paper release/announcement planned for late this month
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LISA To Do 

•  Optical bench is larger and 
more complicated than LPF


•  1 W laser vs 25 mW GFO

•  30-40 cm telescope vs 1 mm 

GFO

•  Point ahead actuator

•  Telescope with In-field guiding 

•  Thruster lifetime
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Status 

•  LISA 
Pathfinder  

Measurements 
underway 

•  LRI delivery 
to Airbus for 
ATLO 

Underway 

•  GFO launch  2017 

•  LISA/eLISA 
launch ~ 2030 
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Next steps before LISA 

Drag-free Accelerometers: Proven 
•  GOCE (2009-2013)  
(~10-12 ms-2/√Hz) 

•  LISA Pathfinder/ST7 (Underway) 
 (~10-14 ms-2/√Hz) 
 

Inter-Spacecraft Laser Interferometry 
•  GRACE Follow-On (2017) 

•  (< 90 nm/√Hz)  

GOCE (ESA) 

LISA 
Pathfinder/ST7 
(ESA/NASA) 

GRACE-FO 
(GFZ/NASA) 

These technologies set the stage for the next generation of inter-spacecraft 
interferometers for geodesy (GRACE II) and towards gravitational wave detection 
(LISA). 
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