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Outline

• Overview of TMT:
Telescope
Primary mirror control system 
Alignment and Phasing System

• Phasing segmented telescopes
Basic description
Narrow band phasing – capture range +/- λ/4
Coherence phasing – capture range >> +/- λ/4

• Predicted impact of telescope aberrations on high-
contrast imaging
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Introduction to the TMT Design

TMT is a segmented mirror 
optical-infrared telescope 
with a 30m filled aperture

Who: TMT is a collaborative effort 
between Canada, China, India, Japan, 
US, and the Caltech and UC astronomy 
communities 
Enclosure: Calotte for maximum wind 
protection and at minimum cost. 
Vents for mirror seeing
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TMT Telescope Concept Overview

Path of light through the aperture

Science Instruments 
Mounted on 
Nasmyth Platforms

Mount Structure

Flat 2.5m x 3.5m 
Tertiary Mirror (M3)

30m  Hyperboloidal f/1 
Primary Mirror (M1) 

3.1m Convex Hyperboloidal 
Secondary Mirror (M2)

Ritchey-Chrétien Optical 
Design
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Design Heritage of TMT

Fabrication Supports Warping harnesses HandlingEdge sensors Alignment & phasing

TMT's segmented mirror technology is based on the 
heritage of the Keck Observatory
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TMT Primary Mirror (M1)

492 segments
– 574 including spares

82 different types
1.44 m across corners
45 mm thick glass ceramic
2.5 mm gaps between segments
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Primary Mirror Control System 
(M1CS)

• Measures the shape of M1 using segment edge 
sensors

• Controls the shape of M1 using segment rigid-body 
actuators

• Maintains the shape of M1 in the presence of 
disturbances 

Changing elevation angle
Wind
Vibration sources
Temperature
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M1CS, Continued

• M1CS does not directly utilize optical sensors
• The alignment and phasing system (APS) provides 

the nominal zero points for M1CS control
APS is run every 2–4 weeks, typically following segment 
exchanges

• Additional low-order optical feedback is provided by 
the acquisition, guiding, and wavefront-sensor 
system (AGWFS) or the Adaptive Optics System (AO)

M1CS off: OPD 110 nm

M1CS on: OPD 29 nm

M1 surface error from 
wind disturbance
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Primary Segment Assembly (PSA)

Segment

Actuator Mirror
Cell

Fixed 
Frame

Actuator 
Output
Flexure

Moving 
Frame

Segment

Actuator Mirror
Cell

Fixed 
Frame

Actuator 
Output
Flexure

Moving 
Frame
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Mirror Cell
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M1CS Edge Sensors

• Sense the relative positions of each of the 492 segments of TMT
• Mounted on the back of the segments

Two sensor halves on each inter-segment edge
2772 pairs, total (each pair = one sensor)

• Incorporate integral electronics
• Measure

Output 1:  sum of
height difference between segments

+ (dihedral angle between segments
× the sensor effective lever arm, Leff)

Output 2:  gap between segments
• A sensor boot and a dry-gas purge keep the sensors clean and dry
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M1CS as Part of Telescope Control

M1CS is one of several systems that maintains the shape and/or position of
TMT’s primary (M1), secondary (M2), and tertiary (M3) mirrors.

Principal
Systems
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What is APS and What Will It Do?

• The Alignment and Phasing System (APS) is a Shack-
Hartmann wavefront sensor responsible for the overall 
pre-AO wavefront quality of the TMT.

• In order to produce wavefronts of acceptable quality, 
APS will adjust as required a total of 11,814 degrees of
freedom (Dof)

Segment pistons, tip and tilts [492*3 DoF]
Segment surface figures (via warping harnesses) [492 * 21 DoF]
Rigid body DoFs of M2, M3 [6 total DoF]

• Align the telescope in less then
120 minutes after a segment exchange
30 minutes when performing a maintenance alignment
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• PCS is an F/15 camera that is responsible for:
Tip/tilt alignment of the segments
Phasing of the segments
Positioning in tip/tilt/piston of secondary (M2)
Measurements of segment surface errors for warping of 
segments

• PCS delivery dates: K1:1989; K2:1994
• Two almost identical systems installed
• Software and computers are identical for the 2 telescopes
• 60,000 lines of executable code and 500 functions
• Used by OAs ~1 night/telescope month
• Used for 39 telescope-years
• Successfully phased both telescopes > 600 times (combined)

Keck PCS System Summary
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Alignment and Phasing 

• Techniques were developed on Keck 1
• Worked the first night on Keck 2

Before After

First Light on Keck 2 PCS

30 μ

-30 μ

0 μ
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Keck/PCS vs. TMT/APS
Keck/PCS TMT/APS

Optical bench size ~0.6 by 1.2 m ~3 by 4 m

Telescope pupil Does not rotate Rotates

Phasing mask Uses micro-prisms Fresnel propagation: clear apertures

Number of subimages ~500 ~30,000

Degree of automation Some Very high

Incomplete mirror operation Not required/not often used Will occur often and non-island 
configurations must be supported

Warping harnesses Standalone algorithms, manual
adjustment

Algorithms incorporated into APS, 
automated motors

Perform off-axis wavefront
measurements

No Yes

Pupil and image tracking 
capability

No Yes

Guiding capability No Yes
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APS & PCS Optical Benchs
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APS Location

APS mounted on the elevation axis APS mounted off the elevation axis 

APS
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Outline of Phasing Topics

• Review of current telescopes and techniques
• Basic description of “Shack-Hartmann” phasing
• Narrow band phasing – capture range +/- λ/4 

How it works
On-sky Keck results
Testbed results

• Coherence phasing – capture range >> +/- λ/4
How it works
On-sky Keck results

• Phasing is the adjustment of segments in piston degree of 
freedom only
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Shack Hartmann Test
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Segment Phasing

Side View

piston 
error

Image plane
illuminated spot

0.9 m
12 cm

Top View

Phasing subaperture size selected to be smaller then r0.
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In and Out of Phase Subimages

0  Error Piston =

4
  Error Piston λ
=
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Phasing Template Sequence
(891 nm filter, 10 nm FWHM)

Step Size =   =  40 nmλ
22
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Phasing Keck Telescope

• 78 edge-sampled 
spots used in phasing

• 120 mm diameter
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Narrowband Phasing – Keck Data
(852 nm filter)
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Phasing:  852 nm vs 651 nm

Meas. edges according to 651 nm filter  (nm)
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Narrowband Phasing Limitation

• When edge step approaches λ/4 (220 nm), measurement becomes 
uncertain by λ/2

• “Effective” capture range reduced to:  220 nm – max edge residual

Residual Edge Height (nm)
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Phasing with Perfect Segments
(use Segment Tip/Tilt to align edges)

Piston RMS = 2 nm
RMS edge residual = 9 nm
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Multiple Choices for Forming Sub-Images
Lenslets, Prisms, Masks

Lenslets
Need to worry about quality
Commercially available
Expensive

Prisms
Good image quality
Hard to make large arrays

Masks (Fresnel diffraction)
Good image quality
Inexpensive
System parameters define if 
this approach will workprism convex 

lens

lenslets image 
plane

image 
plane
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Fresnel Phasing

• Fresnel number of a lens: F = a2/fλ
a =  radius of lens
f  =  focal length of lens
λ = wavelength of observation

For F < 1, Fresnel and Fraunhofer diffraction patterns are 
very similar.
This means that to a first approximation one can replace the 
lenslet array with a mask consisting of clear apertures.
For the nominal design of the TMT Alignment and Phasing 
System, the Fresnel number of the lenslets is   F = 0.6.  [The 
Keck system has F = 1.3.]
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ESO Alignment and Phase Experiment

• The ESO Active Phasing Experiment (APE), originally conducted at the 
VLT, has been set up in the ESO optical labs.

• APE, with its 61 segment actively controlled mirror, provides an ideal 
testbed for Fresnel phasing.

• We conducted a series of experiments at ESO using APE to confirm 
Fresnel phasing (with generous support from ESO).
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Sample Phasing Image I

• APE phasing image:  all edge steps have 0 (circular 
subimages) or λ/4 (split subimages) phase errors.
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Sample Phasing Image II

• APE phasing image:  one segment pistoned by 100 
nm.
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Measured vs. Theoretical 
Edge Steps – Fresnel Phasing

RMS Piston 
Error: 18 nm                

Applied Edge Step (units of λ/22)
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Applied Mirror State
(Segment Piston = 100 nm)

Measured Mirror State
(Segment Piston = 93 nm)

Measuring Piston Error 
of a Single Segment

Error in segment piston from first measurement = 7.0 nm
Error in segment piston after 2 iterations = 2.0 nm
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Applied Mirror State
(RMS = 29  nm)

Measured Mirror State
(RMS = 24 nm)

Measuring A Random 
Mirror Configuration

RMS piston error of first measurement = 9.0 nm
RMS piston error after sending 2 iterations times = 3.6 nm
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Coherence Phasing

• Exploits the broadband nature of light
• When the phase step exceeds the coherence wavelength      

the image becomes a superposition of multiple in-phase 
subimages resulting in an elongated sub-image

• We quantify this with the coherence parameter:
Maximum correlation – Minimum Correlation

• Each segment edge is stepped through 11 different phase 
steps and the coherence parameter calculated. 

• The resulting coherence parameters are fit to a Gaussian and 
the edge step error calculated
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Typical Broadband Sequence
(Actual Keck Data)

• Step Size = 6 µm
• Coherence Length = 

40 µm
• (891/10 filter)
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Coherence vs. Edge Step – Keck Data 
(891/10 nm)
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Broadband Phasing Parameters

Mode Wave-
length

nm

Bandwidth

nm

Coherence 
Length
µm

Step 
Size
µm

Accuracy

nm

Capture 
Range
µm

Star 
Magnitude

V

Phasing-
1000

891 10 40 6 1000 ±30 4

Phasing-
300

852 30 12 2 300 ±10 5

Phasing-
100

870 100 3.8 0.6 100 ±3 6

Phasing-30 700
[eff]

200
[eff]

1.2 0.2 30 ±1 7

Capture range and accuracy for a specific application 
can be optimized by changing the number of steps and 
the coherence length of the filters used.
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Solving 2π Ambiguities: Coherence 
Length Is a Better Approach

Synthetic Wavelength
Defined by 
30 μm to ¼ λ in 4-6 exposures
Highly sensitive to meas. 
Uncertainty and Systematic Errors
Gives wrong answer if out of 
range (see Lofdahl & Erikson)
Don’t need to move segment

Coherence Length
Defined by 
30 μm to ¼ λ in 22 exposures
Moderately sensitive to meas. 
Uncertainty
Gives no answer if edge step 
out of range
Must move segments

21

21

λλ
λλ
−

Initial segment alignment errors and segment aberrations mean that edges 
are often out of range 
APE Experiments confirmed problems with artificial wavelengths
Getting one edge wrong will “propagate” through the whole mirror
The coherence technique essentially guarantees you don’t get  the wrong 
answer
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Ground-Based Optical Segmented 
Telescopes-Phasing Techniques

• Keck : “Shack-Hartmann” Phasing (used >1000 times)
• GTC: “Shack-Hartmann” Phasing
• ESO Alignment and Phasing Experiment

SHAPS: “Shack-Hartmann” Phasing
ZEUS: “Zernike Unit for Segment Phasing”
PYPS: “Pyramid Phase Sensor”
DIPSI: “Diffraction Image Phase Sensing Instrument”

• Planned telescopes 
Thirty Meter Telescope (TMT): “Shack-Hartmann” Phasing
European-ELT: “Shack-Hartmann” Phasing
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Phasing Methods 
Demonstrated at Keck

• Multiple phasing tests have been 
demonstrated and tested at Keck:

Phasing Technique Accuracy 
(RMS Surface Error)

Broadband Shack-Hartmann 30 nm

Narrowband Shack-Hartmann 6 nm

Phase Discontinuity Sensing 35 nm

Dispersed Fringe Sensing 65 nm
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2006 Feasibility Design study for a 
“Planet Formation Instrument for TMT”

Investigated the impact of telescope aberrations on contrast
– Used a nulling coronagraph as a “baseline”. 
– This allowed a decoupling of the effects of contrast impacts form the 

diffraction suppression system and telescope aberrations.
Relevant conclusions from that study:
– The telescope will not limit contrast at the 10-8 level
– The relatively small segment gaps do not limit contrast, but the larger 

obscurations from M2 and it’s supports are challenging
– Segment-to-segment reflectivity variations are an issue

Will require amplitude control using a 2nd DM
– Segment phasing and telescope alignment in general is not a driver in the 

performance
– Residual segment aberrations are a key driver in the performance
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PFI Study, Continued

• Long exposure requirement after speckle suppression is 10-8 

(goal of 10-9) from 3 to ~64 λ/D (34 to ~725 milliarcsecs)

• This implies an instantaneous contrast of 2 x 10-7 (goal of 2 x 10-8)
• Investigated the following M1 static errors:

Segmentation and obscuration of pupil
Amplitude Errors
Segment aberrations after correction with warping harness
Segment alignment errors (tip/tilt and Piston)
Whiffletree print through
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Wave-Optics Simulation

• Telescope Pupil (Fortran or Matlab)
4 mm gaps would require ~32K X 32K pixel FFTs use Gray Pixel 
approximation to generate pupils

Also generated exact central obscuration and supports
1K x 1K active pupils (30mm/pixel)
Phase error added in pupil plane

• AO System (Uses ARROYO)
Wavelength:1.65 um, mono-chromatic
Spatially filtered Shack-Hartmann WFS with 32x32 pixels per subaperture 
127 x 127 Actuator DM with a least-squares reconstructor
Iterate until converged

• Diffraction Suppression (Matlab)
Lyot Coronagraph: Radial Sinc2

Two stage Nuller with 3.12 meter shears
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Segmentation and Obscuration of Pupil

• 738 Segments
• Segments are 0.6 m 

on a side
• 4 mm gaps
• Central obscuration: 

3.65 m circle
• 3-50 cm compression 

supports
• 6-10 mm support 

cables
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Wavefront Error Table
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Segment Aberrations
Before and After AO

RMS: 17.3 nm
P-V: 242 nm

RMS: 9.1 nm
P-V: 199 nm
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Contrast From Segment 
Alignment Errors

Segment piston and 
residual tip/tilt errors are 
about equal in 
magnitude
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Contrast From All M1 Phase Errors

Phase errors are 
dominated by residual 
segment aberrations
Contrast is:
– 1.4 x 10-7 at 3λ/D
– 5.6 X 10-8 from 3 to 

10 to λ/D
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Various Segment Aberrations

RMS: 40 nm
P-V: 352 nm

RMS: 26 nm
P-V: 272 nm

RMS: 11 nm
P-V: 153 nm

RMS: 17 nm
P-V: 242 nm

RMS: 4 nm
P-V: 38 nm
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AO Corrected Segment Aberrations

RMS: 21 nm
P-V: 354 nm

RMS: 14 nm
P-V: 257 nm

RMS: 6 nm
P-V: 126 nm

RMS: 9 nm
P-V: 199 nm

RMS: 2 nm
P-V: 36 nm
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Contrast Versus Segment 
Aberrations Assumptions
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Summary of Impact of Telescope 
Aberrations 

• The telescope alignment errors are not a significant source of error
• Residual segment aberrations are a concern
• The current TMT estimates need to be updated using the latest:

Diffraction suppression systems
Updated predictions of telescope aberrations

• There are now several papers that calculate the impact on contrast from 
segment alignment and residual figure errors:
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Backups



Information Restricted Per Cover Page 58

Contrast From All M1 Errors

Amplitude errors dominate 
and will be controlled
Segment aberrations 
dominant error term
Contrast is:
– 1.4 x 10-7 at 3λ/D
– 5.6 X 10-8 from 3 to 10 

to λ/D
If WH performed at 
theoretical limits the 
telescope would not impact 
achievable contrast
– 1.0 x 10-8 at 3λ/D
– 6.6 X 10-9 from 3 to 10 

to λ/D
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3 λ/D
Req. Goal

Contrast from Segmentation and Obscuration 
of Pupil

• Nuller exceeds 
contrast goals at 
all field angles
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TMT pupil with 1% 
segment reflectivity 
variations

Contrast From Segment Reflectivity 
Variations
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Contrast From Segment Reflectivity 
Variations

1% segment reflectivity 
variations just meets 
requirement
Contrast scales as 
amplitude error squared
Will need to control 
amplitude effects unless 
reflectivity variation is 
~0.3%
Pupil reflectivity 
variations can be 
controlled by a 2nd DM 
not conjugate to a pupil
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Summary of Shack-Hartmann Phasing

• “Shack-Hartmann” phasing is routinely used for 
phasing of segmented telescopes

• Has a capture range that can exceed ±30 µm
• Has an accuracy to better than 6 nm RMS
• Can work with both atmospheric and lab turbulence
• Is not sensitive to global aberrations
• Can be combined with a “normal” Shack-Hartmann 

camera
• Can support coherence length or artificial 

wavelength phasing
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Phasing and Shack-Hartmann 
Cameras Have Somewhat Different 

Requirements
• Phasing requires a method to adjust the pupil 

location
Mask/Lenslet array should be on a stage
A piece of glass in the collimated beam that can be tilted
Accuracy is ~5% of a subaperture diameter

• The phasing camera re-imaged pupil must be of 
sufficient optical quality

• Focal plane plate scale:
Normal phasing: ~2 times Nyquist sampled images
Broadband phasing: ~4 times Nyquist sampled images
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Keck Segment Phasing

• Optic:                  Array of micro-prisms 
• Wavelength:       611 to 891 nm
• Star Mag:            V = 4 to 8      
• Capture Range:       

BB    +/- 30 microns     
NB    +/- 200 nm 

• Accuracy:        
BB    +/- 30 nm             
NB    +/- 6 nm 
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Fresnel vs. Fraunhofer: 
In-Phase Segments
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Fresnel vs. Fraunhofer: 
Out-of-Phase Segments
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Title PagePhasing Reference Beam
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K2 1st run - Before
Primary Mirror Phase Error First Light (Keck II)

March 12, 1996
RMS Piston = 9.5 µm
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K2 1st run - After 
Primary Mirror After Broadband Phasing

March 14, 1996
RMS Piston = 0.14 µm

[µ
m

]

-30

-10

0

10

20

30

-20



Information Restricted Per Cover Page 70

K2 2nd run - Before 
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m
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June 14, 1996
RMS Piston = 7.4 µm

Primary Mirror Phase Error First Light (Keck II)
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K2 2nd run - After 
[µ

m
]
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June 14, 1996
RMS Piston = 0.025 µm

Primary Mirror After Phasing
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