
Page 1

Quality Attributes for Mission
Flight Software:
A Reference for Architects

Dan Dvorak and Lorraine Fesq
Jet Propulsion Laboratory, California Institute of Technology

Jonathan Wilmot
NASA Goddard Space Flight Center

SATURN Conference
San Diego, CA
May 2-5, 2016

Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. The research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Page 2

Agenda

• Introduction

• Rationale

• Attributes

• Use Cases

• Next Steps

3Software Architecture Review Board

Mission & Charter of SARB

Mission:
Manage flight software complexity

through better software architecture

Background
•Established in 2009 based on recommendation from Flight Software Complexity study
to NASA Chief Engineer
•Targets projects in Formulation Phase to maximize impact

Charter
• Provide constructive feedback to flight projects in the formative stages of software

architecting
• Focus on architectural improvements to reduce and/or better manage complexity in

requirements, analysis, design, implementation, verification, and operations
• Spread best architectural practices, principles, and patterns across flight software

centers
• Contribute to NASA Lessons Learned

Page 4

Importance of Software Quality Attributes

• Quality Attributes have a significant impact on the system
design, software architecture and cost
– Requirement for software portability

• Consider abstraction layers

– Requirement for software decoupling
• Consider a message passing interface (aka Software Bus)

• It’s uncommon to see Quality Attribute requirements at the
mission level
– Quality Attribute requirements tend to be derived requirements
– Software architects and engineers need to do a little “selling” to convince

project management it’s in the project or organization’s best interest
• Organizations tend to think across missions and will more readily consider

cross-cutting requirements

• Quality Attributes and associated priorities should be traded,
documented, and reviewed early by all stakeholders

Page 5

Creating the Quality Attribute Table
What Problem were We trying to Solve

• A method to objectively evaluate an architecture in the
domain of space mission flight software
– Space Universal MOdular Architecture(SUMO) architecture survey
– NASA’s Software Architecture Review Board (SARB)

• Many of the surveyed software architecture description
documents had a list of quality attributes, but:
– Attributes were inconsistent
– Attribute definitions were inconsistent
– Attribute lists were incomplete
– Available architecture documents outside the domain
– Missing objective evaluation criteria

Page 6

Creating the QA Sheets

• SUMO started this effort to evaluate several software
architectures at NASA, DoD, and in industry in the hope
of establishing a level of commonality that could be
exploited to reduce cost and expand markets

• NASA’s SARB picked up this effort to provide more
objective evaluation criteria for use during architecture
reviews

• The authors worked with software architects across
NASA centers and DoD
– Most notably ARC, JPL, JSC, GSFC, AFRL, APL, and NAVAIR

• Reviewed documents available on the internet
• Created an initial list and refined it over several months

Page 7

Quality Attribute Table

• The table is not comprehensive and is intended to be extended
– Initial set of 14 attributes came from the SARB’s experience in mission-critical

embedded real-time systems.
– New evidence and verification criteria
– Additional tactics, new AKA terms

• The SARB expects to update the table as needed
• Projects can add more domain specific tactics and evidence/verification

criteria

Page 8

The QA table (1)

• Column A: The Quality Attributes
– The first column in each row is the quality attribute to be addressed. This

column contains the chosen term indicating the non-functional requirement
or property of the architecture to be implemented or reviewed. The term
was selected through consensus by the SARB members, since different
perspectives led to differing opinions as to which terms best fit the desired
property.

– Quality Attributes are:

• Portability
• Interoperability
• Modifiability
• Performance
• Availability
• Reusability
• Predictability

• Usability
• Scalability
• Verifiability
• Manage complexity
• Security
• Safety
• Openness

Page 9

The QA table (1)

• Column B: Description of the QA and other terms used to describe the
quality
– Each Quality Attribute identified in Column A is defined in Column B to help

the user understand what is meant by the term. For example, “Portability” is
defined as “A design and implementation property of the architecture and
applications supporting their use on systems other than the initial target
system.” Numerous references were used to define each

• Column C: Aspects of the QA
– The term “Aspect of” is intended to define a context for the attribute. The

“State/behavior” aspect of the QA “Predictability” can be rephrased as “the
predictability of the state/behavior of the architecture.” The QA “Portability”
has numerous entries for “Aspect of” that help provide context; they allow
the architect or evaluator to individually specify whether the application or
system is portable across real-time/non-real-time implementations, across
operating systems, across avionics platforms, or across any combination

Page 10

The QA table (2)

• Column D: Requirements
– Column D contains sample requirements that the architecture must satisfy to

claim support of a quality attribute. These requirements are verifiable statements,
and are specific to each “Aspect of” row, as they need to be associated with a
specific QA context.

• Column E: Rationale
– The “Rationale” column documents how each QA requirement adds value to an

architecture for a project or projects. The team did not list all possible rationale,
but focused on the one or two considered most important. For example, a project
may have a requirement that the “architecture shall support application execution
in real-time and non-real-time environments” allowing deployment on flight and
development/test (e.g. desktop) run-time environments

• Column F: Evidence of/Verification
– Provides evidence that the requirement has been verified, or how it will be

verified. For example, one aspect of portability is OS portability, and the
associated requirement (Column D) is: “The architecture shall support application
execution on a range of operating systems without modification of the application.”
This requirement would be convincingly met if the project “demonstrates execution
on multiple operating systems with no changes to the application”

Page 11

The QA table (3)

• Column G: Tactic to Achieve
– A tactic is a design decision that influences the control of a quality

attribute response [Bass et al, 2003]. Thus, Column G is where the
project identifies design decisions to be used in meeting the
requirements in Column D. Explicitly identifying such decisions enables
experienced reviewers to challenge a decision if they feel the tactic is
inadequate or insufficiently described. For example, in the aspect of
Portability related to operating systems, the QA table provides
“standards and abstractions” as general tactics

• Columns H-I: Project Prioritization and Project Intended
Variation
– Each row of the table has two columns for use by project software

architects, implementers, and reviewers. “Project Prioritization” and
“Project intended variation” are to be completed by project personnel in
the very early stage of development concurrently with the system
requirements. All QAs should be reviewed to decide/establish the priority
of each (Not Applicable, Low, Medium or High) in Column H.

Page 12

Using the Quality Attributes Table:
Architect/Project team

• Review the Quality Attribute list for things to
consider early in the architecture formulation phase

• Assign the Quality Attribute priorities
– Complete the table even if the QA is not applicable

• Create the variation points
• Create the architectural trades
• Get stakeholder input
• Develop and document additional tactics to achieve

Page 13

Using the Quality Attributes Table:
Developers

• Become a stakeholder in the architecture
– Provide inputs to the trades
– Help the architects understand any implementation, maintenance,

or performance impacts for the QAs being considered

• Use the “Tactic to achieve” for guidance on design
and implementation
– Help improve and expand the tactics

• Document the “Evidence of/verification”
• Include QAs requirements in design and code

reviews

Page 14

Using the Quality Attributes Table:
Reviewers

• Examine the alignment of Project Prioritization and
driving system requirements

• Are the tactics to achieve valid for intended attribute
• Are the trades sufficiently documented and contain

valid rationale
• Is the evidence included in the architecture

description document
• Have all the stakeholders been considered and their

interests addressed

Page 15

Next Steps

• Use the QA table to evaluate an architecture
– NASA’s core Flight System (cFS) software product line
– Potential to evaluate JPL’s Core software product line

• SARB will use the QA table for the next
architecture review

• Expand QA table based on reviews

	Quality Attributes for Mission Flight Software: �A Reference for Architects
	Agenda
	Mission & Charter of SARB
	Importance of Software Quality Attributes
	Creating the Quality Attribute Table�What Problem were We trying to Solve
	Creating the QA Sheets
	Quality Attribute Table
	The QA table (1)
	The QA table (1)
	The QA table (2)
	The QA table (3)
	Using the Quality Attributes Table: �Architect/Project team �
	Using the Quality Attributes Table:�Developers
	Using the Quality Attributes Table:�Reviewers
	Next Steps

