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Why is this work needed? 
 

•  A-priori databases for current constellation radiometer-based precipitation 
are empirically generated from (mostly) ground-based radar precipitation 
observations. 

•  Future databases are envisioned to be physically generated, in order to 
apply common physics across all platforms/sensors 

 
•  Therefore the emissivity vector needs to be specified for each sensor type 

•  And some way of “connecting” to the land properties used for creating 
each database profile, when carrying out the retrieval 
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 “connect” surface and 
environmental conditions at the 

time of the retrieval, to 
corresponding conditions within 

the database 
 

Current GPM-GPROF does this 
thru a “classification index” 



Outline 
 

•  Summary of 2015 updated TMI physical emissivity 
modeling and 1998-2014 daily gridded dataset 

•  Adaptation of observationally-based emissivity 
specification from Turk et. al. 2014 approach, using 
current 14 months of GMI/DPR 

 
•  Variability in the (non-raining) joint Ku-band radar 

backscatter cross section and emissivity, as a function of 
previous rainfall accumulations (“wet surface” effect) 

 
 

Contributions from P. Kirstetter, L. Li, Z. Haddad, J. Munchak, S. 
Durden, S. Ringerud, Y. Tian, and the PMM Land Surface Working 

Group 



Matched GMI/DPR Data  

Much of the time it is not raining, and the emissivity can be studied from 
the non-rain observations. 
 
Use DPR NS, MS and HS scans to globally collect “no-cloud” GMI scenes, 
relative to the sensitivity at Ku/Ka-band (…not a cloud radar….) 
 
Modifications to Turk et al. 2014 approach: 
 
1)  S1 (10-89 GHz) channel emissivities are retrieved from these 

observations, and the emissivity principal components are estimated by 
nonlinear TB combinations (one-time process). 

2)  Discriminant analysis to best separate PC’s of the “no-cloud” and 
“cloudy” scenes (one-time process) 

 
3)  For subsequent observations, the emissivity vector reconstruction is 

simply two matrix multiplications (and a third for the discriminant)  



Historical Context: Grody’s 1991 Scattering Index (SI) 

		

SI = F −TB85V
F = a0 +a1TB19V +a2TB22V +a3TB22V

2

SI >10 → scatteringmaterials

Grody, N.C. (1991), Classification of snow cover and 
precipitation using the Special Sensor Microwave Imager. 
J. Geophys. Res., 96, 7423-7435. 

Various	multispectral	tests	for	
discriminating	snow,	ice,	desert,	

precipitation	

Uses the 22V SSMI observations to estimate the non-scattering 
contribution to the 85V observations 



Today: Matched GMI/DPR Data  

DPR Ku/Ka-band radar available to collect globally spectral signatures of 
the “no-cloud” GMI scenes, relative to the low-end sensitivity at Ka-band 
(….not a cloud radar….) 
 
From these scenes, modern-era model analyses (….with their own 
characteristics....) available to estimate emissivities at GMI channel centers 
 
Emissivities are known to be correlated, and related in a non-linear way to 
the underlying surface properties 



Concept of the DPR antenna scan 

KuPR: 245 km (49 beams) 

KaPR: 120 km (25 beams) 

In the interlacing scan area (  ), the KaPR 
can measure snow and light rain in a high-
sensitivity mode with a double pulse width. 

The synchronized matched 
beam (  ) is necessary for the 
dual-frequency algorithm. 
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Ku-PR footprint (Normal scan, NS)                 : Δz = 250 m 
Ka-PR footprint (Matched-scan with Ku, MS)  : Δz = 250 m 
Ka-PR footprint (High-sensitivity beam, HS)   : Δz = 500 m 

Courtesy T. Iguchi, NICT 



3x3 DPR profiles 
surrounding each 

GMI 

min-detectable 
cloud 

cloud 

Using DPR for GMI Scene Discrimination 

4x4-km, 
250-m 
vertical 

Z(Ku) < 15 dB  and 
Z(Ka) < 15 dB  and 
Z(Ka-HS) < 15 dB 

(all bins)  è  “no cloud” 

N bins where Z(Ku) > 20 dB as a proxy for 
increased level of cloudiness and precipitation 

N > 20  è  “low probability” 
N > 50  è  “medium probability” 

N > 100  è  “high probability” 

37-GHz 
resolution 

increased likelihood 
cloudiness 

cloud 



Analysis Matched GMI/DPR Data  
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e10V
e10H
…
e89H
Tsfc
TWV

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

		 

TB10V
TB10H
…
TB89H
TB166V
TB166H

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Extensive, diverse collection from 1+ year 
of DPR “no-cloud” emissivity vectors 
everywhere within ±65 degree latitude, 
without regard to the surface type 

If there was some way to 
estimate each principal 
component from the 
observations, then the 
emissivity vector could be 
approximately reconstructed 
from the TB observations 

Principal component analysis : 

Assume nonlinear TB combinations and polarization 
ratios “carry” the information on the surface properties 



TB-Reconstructed Emissivity State Vector 

N=9 (10-89 GHz) 
High water vapor over 
land underestimated 
 
 
 
 
N=11 (10-166 GHz) 
Improvement in over-
land total vapor with 
inclusion of 166 GHz 
channels 
 
 
 
 
N=7 (19-85 GHz SSMIS) 
SSMIS (no 10 GHz) 
dataset from 1-year of 
F17-GPM 15-min 
coincidences   
 

e36H                             Tsfc                        Total Vapor 



3 PC-based discriminant, using 9-channels in the 
regression, is a good compromise, also since S2 
(166, 183 GHz) channels not always available 

Discrimination Performance 
N(Ku) > 20 dB in column 

N>0   N>20   N>50   N>100 



15-months 
merged global 
GMI+DPR all 

surfaces 

Add model 
surface and 

pressure 
levels fields 

Compute 
emissivity for 
S1 channels 

“No clouds” 
as determined 
by the NS+HS 

reflectivity 
profile? Cloudy scene 

observations 

Clear scene 
observations  

Clear scene 
observations 

Compute relations 
between all first 

and second-order 
TB combinations 
and each EOF 
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Cloudy scene 
observations 

EOF 
analysis 

Calculate 
EOFs of state 
vector from TB 

Discriminant 
analysis using EOFs 
that separate clear 

and cloudy  

1) Estimation of no-cloud surface control parameters  

Application to observations* 

GMI TB 
observations 

Calculate 
discriminant from 

TB to estimate 
POD(“no clouds”) 

Reconstruct 
state vector  

high 

low previous time 
search 

N 

Y 

Calculate 
EOFs of state 
vector from TB 

2) Discrimination 

state vector 
(length 11 for GMI)  

* Different coefficients for SSMIS, AMSR-2 



Hudson Bay 10H 18H 36H 

89H 166H 183±8H 



22 September 2014 
Hudson Bay Land-Water 

No clouds evident in 
all three DPR scans  

Trace of all 13 GMI 
channels 

Simulated TB difference 
(using ECMWF) Near 
seamless land-coast-
water transition across 
all 9 GMI (S1) channels 

Resultant emissivity at 
first 9 GMI (S1) 
channels 

Hudson Bay 

DPR NS 

DPR MS 

DPR HS 

With this method, the 
emissivity vector is 
estimated directly from 
the TBs (nothing else 
needed), along with a 
probabilistic confidence 
measure 

CloudSat 



10H 

SE Alaska 

18H 36H 

89H 166H 183±8H 



20 February 2015 
Alaska winter mountainous terrain 

No clouds evident in 
all three DPR scans  

Trace of all 13 GMI 
channels 

Simulated TB difference 
(using ECMWF) within 
10K across all 9 GMI 
(S1) channels 

Resultant emissivity at 
first 9 GMI (S1) 
channels 

DPR NS 

DPR MS 

DPR HS 

Extension to 166 GHz 
being examined for very 
dry cold scenes 

CloudSat 

GMI 



Discrimina)on	
POD(“no-cloud”)	

90%	High	
Confidence	

	
<	90%=Reduced	
Confidence	

Observa)ons	
TB	10H	
TB	89H	
TB	166H	

	
MRMS	
1-hr	rain	

Rain/Emissivity State Timeseries near a point:  S of Pensacola, FL 

12	months	
1	May	2014	–	1	May	2015	

Mid-Latitude, Over-Water, No Coastal/Mixed Pixel Conditions 



MERRA	Ts	
ERA-I	Ts	
Est.	Ts	

	
	
	
	

MERRA	Tvap	
ERA-I	Tvap	
Est.	Tvap	

	
	
	

Est.	e10H	
Est.	e89H	

	
MRMS	
1-hr	rain	

Rain/Emissivity State Timeseries near a point:  S of Pensacola, FL 
Closed Circles= High Confidence, Open Circles= Reduced Confidence 



Observa)ons	
TB	10H	
TB	89H	
TB	166H	

	
MRMS	
1-hr	rain	

Discrimina)on	
(“no-cloud”)	
90%	High	
Confidence	

	
Reduced	

Confidence	

12	months	
1	May	2014	–	1	May	2015	

Rain/Emissivity State Timeseries near a point:  West of Lubbock, TX 

Soil type and scrub-like vegetation exhibit rapid rain response and dry-down 



MERRA	Ts	
ERA-I	Ts	
Est.	Ts	

	
	
	
	

MERRA	Tvap	
ERA-I	Tvap	
Est.	Tvap	

	
	
	

Est.	e10H	
Est.	e89H	

	
MRMS	
1-hr	rain	

Closed Circles= High Confidence, Open Circles= Reduced Confidence 
Rain/Emissivity State Timeseries near a point:  West of Lubbock, TX 



Observa)ons	
TB	10H	
TB	89H	
TB	166H	

	
MRMS	
1-hr	rain	

Discrimina)on	
(“no-cloud”)	
90%	High	
Confidence	

	
Reduced	

Confidence	

12	months	
1	May	2014	–	1	May	2015	

Meghna River Seasonal Wetland (“Haor”) 

Can also experience rapid emissivity change across inundated areas 



MERRA	Ts	
ERA-I	Ts	
Est.	Ts	

	
	
	
	

MERRA	Tvap	
ERA-I	Tvap	
Est.	Tvap	

	
	
	

Est.	e10H	
Est.	e89H	

	
MRMS	
1-hr	rain	

Closed Circles= High Confidence, Open Circles= Reduced Confidence 
Meghna River Seasonal Wetland (“Haor”) 



Observa)ons	
TB	10H	
TB	89H	
TB	166H	

	
MRMS	
1-hr	rain	

Discrimina)on	
(“no-cloud”)	
90%	High	
Confidence	

	
Reduced	

Confidence	

12	months	
1	May	2014	–	1	May	2015	

Middle of Lake Superior, US/Canada 

Can also experience rapid emissivity change across inundated areas 



MERRA	Ts	
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MERRA	Tvap	
ERA-I	Tvap	
Est.	Tvap	

	
	
	

Est.	e10H	
Est.	e89H	

	
MRMS	
1-hr	rain	

Closed Circles= High Confidence, Open Circles= Reduced Confidence 
Middle of Lake Superior, US/Canada 



Observa)ons	
TB	10H	
TB	89H	
TB	166H	

	
MRMS	
1-hr	rain	

Discrimina)on	
(“no-cloud”)	
90%	High	
Confidence	

	
Reduced	

Confidence	

12	months	
1	May	2014	–	1	May	2015	

Northern Minnesota, US 

Can also experience rapid emissivity change across inundated areas 



MERRA	Ts	
ERA-I	Ts	
Est.	Ts	

	
	
	
	

MERRA	Tvap	
ERA-I	Tvap	
Est.	Tvap	

	
	
	

Est.	e10H	
Est.	e89H	

	
MRMS	
1-hr	rain	

Closed Circles= High Confidence, Open Circles= Reduced Confidence 
Northern Minnesota, US 



Applicability to Database Search: Example from Over-Ocean Warm SST 

Gulf of Mexico 
17 June 2014 

 
DJF   MAM 
JJA   SON 

Associated 
variability in 
surface and WV 
state variables 

!!
r = 1

N
[(uobs∑ −ui

sim)/σ i ]2 N =3

Search for “nearby” 
entries in leading 
EOF-space: 

Throughout the process, the only time that latitude/longitude was ever 
consulted, was to plot the points on the map 

suggests possible alternate 
ways to index databases 
(transformation of variables) 



Applicability to Database Search: Example from Midlatitude Inland Water 

Center of the 
Caspian Sea 

17 March 2015 
 

DJF   MAM 
JJA   SON 

Associated 
variability in 
surface and WV 
state variables 

!!
r = 1

N
[(uobs∑ −ui

sim)/σ i ]2 N =3

Search for “nearby” 
entries in leading 
EOF-space: 

Throughout the process, the only time that latitude/longitude was ever 
consulted, was to plot the points on the map 

suggests possible alternate 
ways to index databases 
(transformation of variables) 



Applicability to Database Search: Example from Bare Soil-Like, Daytime 

West Texas 
2 October 

2014 
 

DJF   MAM 
JJA   SON 

Associated 
variability in 
surface and WV 
state variables is 
carried 

Search for “nearby” 
entries in leading 
EOF-space: 

!!
r = 1

N
[(uobs∑ −ui

sim)/σ i ]2 N =3



Applicability to Database Search: Snow Covered, Cold, Dry 

NE Minnesota, 
snow-covered 
1 March 2015 

 
DJF   MAM 
JJA   SON 

Associated 
variability in 
surface and WV 
state variables 

Search for “nearby” 
entries in leading 
EOF-space: 

!!
r = 1

N
[(uobs∑ −ui

sim)/σ i ]2 N =3





Future Efforts 
 
Evaluate emissivity vector formulation for existing GPM a-priori 
databases (transformation of variables) 

 Replace search by (Tsfc, TotVap, class) with (u 
 
Evaluate utility of HF channels for cold-season precipitation using GPM-
CloudSat (W-band) coincidence dataset 
 
Work with an offline version of GPROF-GPM to test and evaluate use of 
observationally-based emissivity vector in forward TB radiometer 
simulations.  
 
Examine further extension to 166 GHz for very dry ( < 10 mm column 
vapor) cold season scenes, to better guide GPM snowfall and light rain 
TB simulations   



Minnesota Inland Lake   (10H) 

thaw period only 
a few days 
 
 
Ice/snow-covered 
 
 
More gradual 
freeze period 

MRMS	1-hr	
accumula8ons	
(blue	impulses)	

TB	85V	(black)	
TB	10H	(red)	
T2m	(thin	black	line)	14	months	

1	Apr	2014	–	1	Jun	2015	

Rapid emissivity change from freeze-thaw cycles 



Northern Canada Barren Grounds Lake   (10H) 
Exposed open 
water “leads”, or 
rain-on-snow? 
 
 
Slow change in 
snow cover as it 
ages 
 
 
Much shorter 
freeze period 

TB	85V	(black)	
TB	10H	(red)	
T2m	(thin	black	line)	14	months	

1	Apr	2014	–	1	Jun	2015	

More rapid emissivity change from freeze-thaw cycle and snow morphology 


