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SMAP Overview
• Science

– NASA-developed Earth science 
satellite

– Maps the soil moisture content and 
freeze/thaw state of Earth’s land 
mass

– Contributes to our understanding of 
Earth’s water, carbon and energy 
cycles, climate and weather 
forecasting, as well as providing 
accurate flood and drought prediction.

• Mission
– Launched on January 31, 2015 from 

Vandenberg AFB on a Delta II rocket
– 685km, near-polar, sun-synchronous 

orbit
• Spacecraft

– Shared spinning feed horn and 
antenna for radar and radiometer

– 3-axis reaction wheel stabilized with 
hydrazine attitude control

– Passive thermal control
– 863 kg dry mass

Composite soil moisture data of the top 5 centimeters of soil for 
August 25-27, 2015.
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SMAP Launch Vehicle Selection

• NASA directed SMAP to maintain 
compatibility with three launch 
vehicles until the project’s Critical 
Design Review (CDR) in July 
2012:
– Minotaur IV+ (Orbital), Falcon 9

(SpaceX), Delta II (ULA
• Successfully incorporated the 

chosen launch vehicle (Delta II) 
without impact to the launch date:
– Designed spacecraft to 

accommodate all launch vehicles, 
where possible and

– Minimized post-selection changes in 
the design
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LV Ascent Timeline: Thermal Effects

• Baseline 14 minute ascent time 
increased to 57 minutes before in 
thermally safe attitude

• Thrusters could cool too much to 
create a potentially damaging 
“frozen start”
– Added pre-heat sequence during 

ascent to guarantee catalyst beds 
reached a minimum temperature of 
8°C at the time of the first detumble

• Launch-stowed reflector-boom 
assembly (RBA) and the Command 
and Data Handling (CDH) assembly 
could overheat with the ascent’s 
solar incidence angle
– Added longitudinal roll of LV 

second stage during ascent to more 
evenly distribute solar radiative
heating
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LV Ascent Timeline: Energy Effects

• Early design included one 8S52P 78Ah Lithium-ion 
battery
– Supported 14 minute Minotaur IV+ launch ascent through 

solar array deployment and sun-pointed attitude
– Mounted on the outside of the spacecraft bus
– Design, procurement, structural and thermal 

accommodations, and mass properties were well-
established by Critical Design Review

• Rather than increasing size or exiting battery, added 
three new 8S10P 15Ah batteries to the Delta-II-
specific Launch Vehicle Adapter (LVA) ring to support 
57 minute ascent
– Increased battery capacity by 45Ah or about 58%
– Appeared to the power bus as a single 8S82P 123Ah 

battery 
– Lowest predicted state of charge following launch vehicle 

ascent was about 75%
• New location minimally perturbed the baseline 

configuration
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Spacecraft/Launch Vehicle Interface

• Launch Vehicle Adapter (LVA) from spacecraft to separation ring was one 
of the few components to be intentionally finalized after launch vehicle 
selection

• Caused additional bolted joint scar mass
• Decoupled design of separation system from the rest of the spacecraft
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Forward Separation Ring

Launch Vehicle Adapter
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Fairing Envelope

Minotaur IV+ Delta II
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Close 
clearances

Reaction Wheel Installation

• Restrictive Minotaur IV+ fairing drove early 
spacecraft bus and reflector configuration
– Ultra-compact reflector-boom design
– Complex Reaction Wheel Assembly (RWA) 

installation process
– Many deeply-buried components within spacecraft 

bus
– Solar array with no outward-facing cells while stowed

• Spacious Delta II fairing provided relief, but at a 
stage in development when extra volume could 
not be realized
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Fairing Access

• Spacecraft designed to fit snugly within Minotaur IV+ fairing
• Post-fairing-encapsulation access required for:

– Installation of the flight battery enable plug
– Installation of the flight arming plug for propulsion and pyrotechnic systems
– Gas and liquid service valves

• Larger Delta II fairing created significant reach from the fairing door to the plugs and 
valves

• Located plugs and valves in close proximity to allow access through one door
• Required to demonstrate feasibility in Self Contained Atmospheric Protective Ensemble 

(SCAPE) suit
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Lift Capability & Fuel Budget

• Lift capability driven by Minotaur IV+
– Minotaur IV+ lift capability of 1156 kg was driving for SMAP spacecraft

• Project eliminated some redundancy to meet requirement
– Delta II had much larger lift capability

• Good mass margin to accommodate late-breaking problems
• Did not reincorporate redundancy after CDR

• Fuel budget driven by Minotaur IV+
– Minotaur IV+

• ±18.5 km perigee altitude injection error, ±0.5 °/sec per axis tip-off rates 
• 80 kg capacity fuel tank needed

– Delta II
• ±9.3 km perigee altitude injection error, <1°/sec per axis axis tip-off rates 
• 66 kg capacity fuel tank needed

– Did not reduce tank size
– Used extra propellant margin for lifetime station-keeping, collision avoidance 

maneuvers, and fault recovery maneuvers
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Launch Vehicle Environments

• Dynamic environments envelope was established that bounded worst-
case load cases from each of the candidate launch vehicles

• Falcon 9 was not driving in any case, although it had more uncertainty.
• Final design that had positive structural margin against all load cases 

encountered on the selected Delta II 
– Some margins appear large because SMAP was a stiffness-driven design
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Conclusion

• Design, operation, and performance were affected by LV selection
• Two key strategies:

– Stay as agnostic to launch vehicle selection as possible
– Leave some components unfinalized until after selection

• No effects of the timing of launch vehicle selection became critical-path 
items on SMAP’s development schedule.
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