
Exposing Hidden Parts of the SE Process: MBSE
Patterns and Tools for Tracking and Traceability

Maddalena Jackson
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-0319
mjackson@jpl.nasa.gov

Marcus Wilkerson
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-3487
Marcus.Wilkerson@jpl.nasa.gov

Jean-Francois Castet
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-3210
castet@jpl.nasa.gov

Abstract—An interesting benefit of applying Model-Based Sys-
tems Engineering (MBSE) is that the rigor and coordination
intrinsic to MBSE forces us to apply Systems Engineering to our
own traditional activities, processes, and products, which results
in richer, more expressive models, more powerful reasoning,
and a clearer and more effective Systems Engineering (SE) pro-
cess. Our MBSE frameworks and languages contain semantic
richness sufficient to describe our systems at any particular
point in time, often with an emphasis on the description of the
system at major milestones. This is unarguably a real asset.
However, when we apply MBSE in service of missions that are
in development, rapidly evolving, of a larger scale, and where
interpersonal communication is a critical part of the design
process, we discover that our frameworks and languages are still
not quite rich enough to enable us to ask the kinds of questions
and get the kinds of answers we want in order to address the
concerns of day to day work. This paper will discuss some
patterns and tools we have developed to help address some of the
not-always-explicit SE concerns that we have identified through
our MBSE work. Particularly, this paper will discuss flexi-
ble yet practical methods for defining and capturing maturity,
workflow, and agreement traceability within our system models,
extensible ways to perform and track model audits, and ways to
report and interact with this knowledge in the context of MBSE
applied to support NASA’s Europa Project.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. REQUIREMENT AND DESIGN EVOLUTION IN THE

SYSTEM MODEL . 1
3. CASE STUDY 1 (CS1): REQUIREMENTS WORKFLOW

AND MATURITY TRACKING . 3
4. CASE STUDY 2 (CS2): THE “MOUSE” TOOL 5
5. CASE STUDY 3 (CS3): THE “CAT” TOOL 6
6. CASE STUDY 4 (CS4): MODEL AUDITS - VALIDA-

TION AND METRICS CHECKING AND TRACKING . . 9
7. FUTURE WORK . 11
8. CONCLUSIONS . 11
ACKNOWLEDGMENTS . 11
REFERENCES . 11
BIOGRAPHY . 11

1. INTRODUCTION
The selection of NASA’s Europa Mission for concept and
technology development in June 2015 made it the first large-
scale flagship project at JPL to fully adopt an MBSE approach
starting at formulation [1]. The Project faces the challenge of

978-1-4673-7676-1/16/$31.00 c©2016 IEEE

all early adopters - being on the cutting edge, building infras-
tructure as we use it, and reconciling traditional approaches
with model-based techniques. The Europa Project (“Europa”)
uses the system model for critical tasks, such as requirements
derivation and design capture [2].

MBSE adoption by a JPL flagship mission presents a unique
opportunity to assess how we can apply MBSE to match and
then improve upon the traditional Systems Engineering pro-
cesses that Systems Engineers (SEs) follow to develop mature
requirement sets and system designs. We discovered that
while our initial modeling taxonomies and frameworks had
vocabulary sufficient to express requirements, constraints,
and our system design in the model at any point in time,
we did not have sufficient vocabulary to track and com-
municate the evolution of the requirements and design and
to reason about that evolution. In fact, the initial set of
modeling patterns and the MBSE approaches used by the
Europa mission concept were well suited to represent the end
state of the data, which presented challenges for SEs tasked
with using the model to perform the critical part of Systems
Engineering concerned with actually getting to that end state.
This paper discusses some of the approaches and tools we
have developed for and used on the project that have provided
value in supporting and facilitating this evolution aspect of
the SE process.

2. REQUIREMENT AND DESIGN EVOLUTION
IN THE SYSTEM MODEL

Rather than waiting until the system reached the level of
design maturity required for admittance to the model, the
Europa project modeling teams developed vocabulary and
model infrastructure to capture relevant data about the re-
quirement and design evolution so that SEs could evolve
the requirements and designs within the model. By adding
semantics to represent and track maturity of key elements and
negotiations and perform and record audits of the model, we
were able to provide SEs with process management data they
were used to controlling in the traditional paradigm.

These data help answer questions regarding the state of work
in the context of large, collaborative teams: what has been
done, what remains to be done and what are the current
gaps. With the benefit of a rigorous semantic model, we can
track richer metrics, such as the completeness and correctness
of our requirement patterns, completeness of requirement
traceability, and the quality of that traceability. This is all in
addition to the other MBSE benefits traditionally advertised.

Before we continue discussion of the tools we developed, let
us consider a concrete example of the difficulties introduced

1

Table 1. Systems engineering concerns

Maturity Tracking Model Audits
• What do I need to be working on right now?
• What is on my plate that I need to deal with?
• In this evolving design process, have I closed all the loops
with everyone?
• Does anyone need anything from me?
• Have the people I made requests of responded?
• How is the work progressing in the areas I am responsible
for or that I have oversight of? How is my design doing, do I
have any unknowns or work to go?
• Am I burning down my action items and work to go?
• Are my sub-areas burning down their work?
• What do I tell my managers? How do I demonstrate
forward progression of my work towards our goals?
• How has a given element changed over time and why?
• Where did this requirement come from, who has looked at
it, what reviews and quality checks has it passed?

• What is the quality of the model right now? (How does it
hold up against my rules for “high quality?”)
• Is that an improvement from last month?
• Are there errors? (Have we made mistakes using the
ontology incorrectly? Are our elements lacking any required
attributes? Did we forget necessary structure?)
• Are we burning down unknowns and uncertainties?
(TBDs, TBRs, action items, assumptions)
• Is the model complete (in terms of what I asserted has to
be present)?
• Where do we need to focus our efforts in order to improve
quality?
• Are we going to meet our target for completeness and
correctness?

by an inability to track system evolution. If our modeling
patterns assert that a requirement has a rationale, specifies
a product, and traces to some functional needs, we run into
ambiguity when we run a model audit during the require-
ments derivation process: we were unable to differentiate
between requirements that do not match the pattern because
they have been modeled incorrectly and requirements that
do not match because they are merely in work. We are
also unable to determine if requirements are at low levels of
maturity, being worked by SEs, and thus are not expected to
have these attributes and requirements that we would expect
of mature requirements, or if the requirements are finalized
and thus should have the attributes but do not (a modeling or
process error). Extending our model vocabulary to provide
state of development of our requirements allows us to subject
elements to audits that are appropriate to the fidelity of the
requirement.

SE process questions

Before developing infrastructure to support the SE process,
we first identified a set of questions asked by SEs to guide
and scope our work. These questions fell broadly into two
categories: the evolution of maturity state and visibility into
the status of the model via model audits for correctness and
completeness. The questions are captured in Table 1.

In addition to addressing these questions, we needed to
identify and explain our requirements derivation process to
stakeholders and to communicate the vision for successful
requirements development to the rest of the SE team. As
with any traditional requirements development activity, we
also needed to be able to communicate the status and work to
go to the rest of the team. These needs and questions drove
the infrastructure development, which will be discussed in the
remainder of the paper.

Answering the questions with the model

We developed new vocabulary, tools, and infrastructure to
address the two categories of questions discussed above.
The development can be broadly categorized as enabling the
following capabilities:

(1) Track changes in maturity on a per-element basis accord-
ing to the rules of maturity state machines: we identified
a set of states that convey the maturity of model objects
and the conditions/stimuli under which these elements can
evolve in their maturity. We then created a software plugin
that abstracts the management of these maturity states into a
simple interface used to record transitions.

(2) Execute model audits and track results over time: we
developed a way of asserting what should be true about the
model in terms of correctness and completeness and a tool to
report and record the results in the model.

Figure 1. Maturity and audit tools analyze the system
model to report their results. They also store the data

back into the model upon request.

Table 2. Development focus

Maturity Tracking Model Audits
State machines that de-
scribe the allowed states
and legal transitions for
particular kinds of objects
for a particular workflow
(legal evolution of maturity
for particular classes of el-
ement)

User interface and tool that
“executes” the state ma-
chine and records transition
with appropriate metadata

Model audit configuration
element and elements to
record audit results.

Validation rules, code, and
executor

2

Figure 2. The requirement maturity state machine encodes the states and transitions a requirement must go through
before it is of sufficient maturity to be included in a released requirements document.

Europa is no exception to the experience of early adopters:
advancing the state of the art requires new tools, infrastruc-
ture, and methodology. The infrastructure described here
(depicted in Figure 1 and described in Table 2) demonstrates
value added by using new tools built on MBSE to begin
standardizing, capturing, implementing, and then reasoning
about the state of our design process and state of the model
itself. The rest of this paper will describe three real uses of
maturity state machine trackers and then an application of the
model audit tracker in support of the requirements derivation
and system design process on the Europa Project.

3. CASE STUDY 1 (CS1): REQUIREMENTS
WORKFLOW AND MATURITY TRACKING

Our first case study targets the real-life problem of evolving
our requirements from low confidence shall statements to
the high-confidence, authoritative, binding specifications we
include in our released documents. We decided to formalize

the process by which requirements evolve in quality and
maturity into something that can be managed in the model.
While our process is informed by the recommendations of
experts [3] [4] and JPL standard practice, the adoption of
MBSE allowed us to track and manage our own process and
state of work and to communicate with our managers in a
consistent, standardized, rigorous, and analyzeable way (one
that was not available through the tools at our disposal).

The state machine depicted in Figure 2 represents the set
of states and transitions a requirement can experience as
it increases in maturity from a candidate for considera-
tion to eventual baselined and configuration controlled state.
Each state machine transition a requirement experiences is
recorded as an entry in its maturity “changelog.” For each
transition, we record important metadata that cannot be
inferred by comparing the current model against historical
model snapshots.

The value of this state machine approach is that we can infer,

3

Table 3. Explanation of the states of the requirements maturity state machine. The states are ordered approximately
by the order in which a requirement should progress through them.

State Definition
Elevator Requirement has been proposed, but no SE representing a technical discipline has taken ownership and

responsibility for deriving the requirement. Activity taken: identification of a technical domain area and
responsible SE; FS Requirements Team links requirement with domain area and SE in the model.

Deep Freeze and
Dumpster

Requirements are “on hold” (pending resolution of trade studies, design decisions, appropriate design
maturity, etc.) or have been removed from consideration. Activity taken: Requirements Team performs
periodic review of Deep Freeze.

Candidate Responsible SE and technical domain area have been identified and linked in the model. SE has not yet
asserted that the requirement is justified in technical discipline narrative. Activity taken: Responsible SE
develops explanatory narrative; grounds requirement in mission approach.

Provisional Responsible SE has asserted requirement is explained in narrative. Activity taken: requirements team
verifies existence of justification; Requirements Team assesses requirement and narrative against standard
requirement quality metrics; iterates with SE to meet quality concerns. Req Team moves requirement to Rec
and Neg state when quality targets met.

Reconciliation and
Negotiation

Requirements Team has asserted that requirement meets internal quality metrics and goals. Activity taken:
technical and programmatic stakeholders assess requirement. Negotiation and iteration with responsible SE
and Req team considers requirement impact, ramifications, and effects on and from other technical concerns.

Reconciled Technical stakeholders have accepted and approved the requirement. Activity taken: Requirements Team
identifies appropriate formal specification document(s).

Baselined Requirement has been added to standard project configuration controlled specification(s) for requirements.
Activity taken: none, work is complete.

from the current maturity of a given requirement, what review
and quality assurance it has been subjected to and what gates
it has passed. When SEs see requirements of “Baselined”
maturity, they know that the requirements have gone through
our standard process to get there, giving us confidence that the
appropriate scrutiny has been subjected and the appropriate
eyes have reviewed them. This approach ultimately gives us
confidence that our requirements meet the SE standards of
quality for the asserted level of maturity.

The maturity states through which a requirement flows are
enumerated in Table 3, approximately in the order in which
we expect them to occur.

CS1: Requirement evolution

A requirement usually starts in the “Elevator” which means
that it has been proposed, but no SE has taken responsi-
bility for it. The requirement must “exit” the Elevator at
the appropriate technical discipline. When that person and
domain are identified and linked in the model, the require-
ment’s maturity becomes Candidate and the responsible SE
must now explain why that requirement needs to exist. The
transition to Provisional happens either on request from the
responsible SE or after polling SEs to find requirements
that they claim have been fully explained. Transition to
Provisional requires Requirement Team internal review and
concurrence, which involves assessment against our project
and institutional standards for good requirements. At any
time, a relevant design change can push a requirement back to
the Candidate state, as a change in design may have changed
the problem space in which the requirement was derived.

Progress towards Baselined requirements entails scrutiny of
requirements from reviewers representing increasing levels
of authority (both technical and programmatic). Once the
requirement has been Reconciled, we identify the appropriate
version-controlled Project documents and add the require-
ment, which moves its maturity to Baselined. Its inclusion in
documents under Project Configuration Management (CM)

subjects it to the existing, model-external project CM process
if future changes are needed.

Following this process, requirement reviews become more
efficient by ensuring that stakeholders are presented only with
requirements that are ready for their level of scrutiny, which
allows them to fully align their review with their technical
expertise. In addition to more focused stakeholder reviews,
this approach simplifies the enormous task of overseeing
and guiding the evolution of hundreds of requirements from
unrelated, low-confidence fragments into high-quality speci-
fication sets.

CS1: Transition metadata

Direct comparison of model versions is not sufficient for
our needs. In a simple model compare, we can observe
(for example) that the text in a requirement changed, but
we do not know why, who approved the change, or what
triggered the change. Without such metadata we do not have
sufficient information to answer the questions that we wanted
to address earlier. Additionally, such model compares are
(currently) tedious and extremely labor intensive, as entire
model snapshots must be compared rather than inspecting the
history of individual elements.

Instead, we identified metadata to capture and analyze per
maturity transition. These data include the original and next
state, the reason for the update, the instigator, and a comments
field, all of which are entered in the form interface discussed
above. After form submission, we record the time and date of
the change and the name of the person working in the model.
The stored data is shown in Figure 3 as a screenshot from the
model “database.”

Requirement Maturity Tracker Tool

To avoid the painful prospect of entering the metadata by
hand, we developed a plugin to our MBSE tool to do it for us.
This mechanism is not dissimilar to JIRA or other workflow

4

Figure 3. Requirement state transition metadata as
captured in the system model.

and issue management tools (albeit much simpler), but we
chose to implement our own simple tool. In-house devel-
opment presented a better option because we are managing
requirements in the system model, linking them to the rest
of the model, and needed maturity status and history to be
available from the model - and integrating an external tracker
was more difficult given our constraints.

The requirement maturity tracking tool, when executed on
a requirement or a batch of requirements in the same state,
provides the user with a simple form for selecting the next
state or next transition and record some other data. A
screenshot of the form is shown below:

Figure 4. Requirement maturity state update form
presented to users who are executing a state transition.

The form simplifies the process by reducing the amount of
data shown to the user to only what is relevant. The tool is
aware of the requirement’s current maturity state so it uses
the rules of the governing state machine to present only the
next possible states and transitions as selectable options. The
modeler also selects the initiator of the change and provides
notes sufficient to explain the transition when needed. Since
the responsible engineer of the requirement is modeled, the
tool offers to send an email notification to that person (plus
anyone else the modeler feels like adding to the recipients
list).

CS1: Transition history

One of the previously shown “history entries” is created in
the model each time the tool is used to execute a requirement
maturity state change. From the resulting “change log,” we
can quickly generate reports of current maturity state (for any
number of requirements), last major change, trending and

maturity evolution “burndown” charts, or other graphics or
reports that we need to identify work to go or to communicate
to our managers and team. The following screen shot shows
an example of the history entries of a particular requirement
in the model. The individual requirement’s history is stored
within the requirement element and can be easily queried
out. An example history record for a requirement is shown
in Figure 5.

Figure 5. Each requirement maturity state transition
has its own record in the system model.

Returning to the discussion of value added, we argue that the
visibility, transparency, process standardization and common
vocabulary resulting from this approach instill confidence in
the system and ultimately, with the automation introduced
by the maturity tracking tools, lower the MBSE barrier to
infusion. By delivering a product that is oriented towards
answering SE questions and addressing stakeholder concerns
in a simple and straightforward way, we reduce the inertia of
adoption.

4. CASE STUDY 2 (CS2): THE “MOUSE”
TOOL

After observing the usefulness of the requirements maturity
tracker, we realized we could benefit from defining and track-
ing the maturity of other classes of elements in our model. We
were able to find common maturity vocabulary for these and
use one common set of maturity states and state machine. The
meaning of each state varies with the class of element, but this
variation is defined and managed in our Systems Engineering
Management Plan so that it is universally understood across
the project.

Figure 6. The MOUSE state machine.

The shared state machine is not as review and process centric
as the requirements maturity tracker, but it easily allows us
to set benchmarks and targets for maturity of various classes
of elements for our design iterations and reviews. This
more generic maturity tracker is in heavy use and universally
applied to several classes of elements on the Europa project.
Known as MOUSE (Maturity Object Updater for Systems

5

Figure 7. Tracking maturity of constraints using MOUSE allows us to compare the maturity state of any constraint
with that of its parents.

Engineering), it is a tool that is formally delivered by our
modeling infrastructure software development team to the
entire Europa modeling team for their use. The state machine
and form interface are similar to those of the requirements
tracker, although the transition triggers are not elaborated at
all.

The history entries are recorded as a per-element change
log of transition metadata, although the specific metadata
recorded vary slightly (more emphasis is put on the comments
field and the transition triggers are not recorded due to their
extremely generic nature in MOUSE).

Capturing the maturity of additional model elements allows
us to add to the richness of our other MBSE-driven products.
For example, in element traceability diagrams, we can show
maturity of the elements along the traceability graph [5].
We assume fundamentally that in order for an element to
become stable and mature, the elements it depends on (often
called its “parents”) must precede the dependent element in
stability and maturity. A traceability diagram (which shows
a network of elements that exist in response to their parents)
that includes individual element maturity helps us understand
where we need to focus our efforts. [6][7] Figure 7 shows a
derived constraint on the far right and its parents, and their
parents (etc.) extending leftwards. The maturity of each
constraint is communicated by the color of the node on the
diagram.

As we can see in this diagram, there are two things that
should really concern us [5]. First, the “Spacecraft Thermal
Survival” constraint should be of a higher maturity than its
child, but it is not. This indicates that attention needs to be
paid to the derivation of that requirement and loops need to
be closed with the constraint originators. Second, we have
three constraints at Baseline, but their parent is at Draft. This
is logically problematic, as constraints are derived in order to
describe our approach to addressing parent constraints from
higher levels. Here we can easily see areas we need to
investigate and resolve.

The fact that we can see these areas of concern so quickly
and easily is an improvement over our traditional paradigm.
In the past, we have had no way to understand and assess the
full traceability story of elements easily at all, and when we
did construct traceability chains like this, identifying issues
required labor-intensive digging. With our approach and
tools, the issues are apparent at a glance and the appropriate
stakeholders to work the problem can be identified within
seconds.

In another example (the hierarchy of our functional domain
areas, which originate our requirements) visualized in Figure
8, we see that our lowest level domain areas are the least
mature while our upper level domain areas are more mature,
indicating that they are (correctly) receiving the attention of
our engineers [5]. This provides assurance to SEs and the
team that our work is progressing appropriately and focused
on the right areas.

Figure 8. Visualization of the hierarchy of functional
domain areas. A parent domain (left) should always be at

the same or higher maturity than its children (right).

Interestingly, when visualizations showing maturity were first
introduced, the upper level functional areas often were at
lower maturities than the lower level areas, which violates
against our principle of maturity of parents increasing before
that of children. However, watching the maturities of these
elements since introduction, we now see that the problem
has been addressed, and the expected propagation of higher
maturity from left to right is actually happening. This figure is
included to give the reader a general understanding of the size
and scale of the data set in which maturity is being assessed;
for the SE, the value is in the ability to see the tide and flow
of our work on both large and small scales, which instills
confidence in the system.

5. CASE STUDY 3 (CS3): THE “CAT” TOOL
The last area of maturity tracking we will discuss is the
Constraint Allocation Tracking (CAT) Tool. This tool allows
us to track the state and evolution of agreements between
“parent” functional discipline areas and responding “child”
areas. The agreements in question pertain to allocation of
constraints: when a constraint is derived by a parent and
allocated to a child to address, both parties must agree to the
allocation. This is analogous to requirements derivation and
flow. Figure 10 shows the allocation and tracking graphically.

To provide some context for this use case: on the Europa

6

Figure 9. State machine encoding the evolution of constraint allocations. The target destination for each allocation is
the “Allocation Final” state.

Figure 10. We want to track the state of agreement
between parent and child technical and functional

domain areas.

project, our requirements derivation process involves enu-
merating our conceptual needs (i.e., without reference to
implementation) as “constraints” within the purview of one
domain area (such as temperature control or angular mo-
mentum management). A functional domain area generates

constraints that must be satisfied in order to address the
needs of that conceptual area, and allocates these derived
constraints to other functional domain areas so that they can
explain how Europa intends to address them.

Each domain area is the responsibility of an SE. The SE
takes the constraints that are allocated to their domain area
and crafts an explanation of the approach the Europa project
is taking to addressing those issues, often deriving more
constraints, which may be passed to other appropriate domain
areas for elaboration. When the work is complete, full
traceability exists between all of the constraints, where the
project’s approach to satisfying every issue inbound to a
functional domain area is fully explained in narrative and
linked in the model to a set of new derived constraints.

This derivation process is a rigorous engineering design pro-
cess, and takes time to complete. We discovered that while
the SE teams understood the final product they were working
towards (formal requirements originating in implementation-
agnostic needs and rich narrative), we had virtually no insight
into the status of the process itself.

A systems engineer responsible for a functional domain area
would open their work area and see their model-generated list
of inbound constraints, but would not know when or why the
constraints had been allocated, or if any constraints had been
added, removed, or modified. Perhaps most significantly,
systems engineers had no way of accepting or rejecting the

7

Figure 11. A visualization of all constraint flow between concepts related transitively to the Operability concept.

allocations, and no way of asking questions unless they
started keeping track of relevant information on their own,
outside the model. This was exactly what we wanted to avoid.
To prevent the decentralization of information and lack of
transparency that would follow, we developed a state machine
to guide the negotiation process for constraint allocation and
gave it metadata sufficient to allow each party to respond and
discuss with each other.

The CAT state machine (shown in Figure 9) appears compli-
cated, but this is not surprising considering that it captures
permutations in the state of negotiations between two parties.
There are three “review” states capturing the need for the
parent, child, or both parties to review the allocation. These
states are followed the possible states of dual provisional
acceptance, rejection by one party, and arbitration requested.
The arbitration state causes a mediating team, which is mon-
itoring all allocations in this state, to step in and resolve the
issue. The desired end state is that both sides fully agree on
the allocation. The difference between full agreement and
provisional agreement is the maturity state of the allocated
constraint itself: full agreement on a draft constraint (which is
expected to undergo potentially significant revisions) makes
little sense, as the agreement would have to be reassessed
every time the constraint changed.

The interface is very similar to the Requirements Maturity
Tracker and MOUSE, except that the states and transitions
available to the user are different (due to the differences
between the state machines):

CS3: recorded allocation maturity data

This is the most complicated maturity tracker (because it
involves a dual agreement), so its tracked data is slightly more
complex. In addition to the standard properties (to, from,
who, why, and when) we added two properties, described in
Table 4, that provide a field in which each SE involved in the
negotiation may write comments that are visible to the rest of
the team (such as a reason for rejecting the allocation).

The CAT is in use for every constraint allocation in our model
and SEs use the states and fields to ground and organize their
negotiations. We use the CAT as a criterion for assessing the
maturity of the technical domain areas: in order to reach base-
line, all incoming and outgoing constraint allocations must be

Figure 12. Using the CAT tool, users fill out this form to
execute an allocation maturity state change.

Table 4. Additional transition metadata in the CAT tool

Property Purpose
Parent’s
notes
about the
Allocation

Provides a place for the parent concept
author or responsible entity to make com-
ments or annotations about the allocation.
Intended to be used as a place for dialog
between parent and sub.

Child’s notes
about the Al-
location

Provides a place for the child concept
author or responsible entity to make com-
ments or annotations about the allocation.

fully agreed upon (this ensures that we cannot approve a piece
of the design approach where there is a state of disagreement;
it ensures that both allocators and responsible engineers have
the proper authority to agree to what they assign or have been
assigned).

From the CAT history data, we can query or reconstruct the

8

Figure 13. Model audit reports begin with a summary of validation rule violations.

“story” of the allocation can be reconstructed. Figure 11
shows all requirement allocations in our system related to the
functional domain of Operability: it shows at left the parent
domains that allocate requirements to it, and at right, the
children it allocates requirements to. As this figure represents
the allocation and requirements derivation currently in work,
it is a reflection of both work done and work to go. When a
viewer selects any edge in the visualization shown in Figure
11, the particular requirements allocated and the maturity of
the allocation agreement are displayed in a table below the
diagram. [5]

The ability to allocate and track requirements allocation gives
us a way to efficiently direct work with minimum overhead of
polling SEs for status, thus easily integrating MBSE into an
improved workflow.

6. CASE STUDY 4 (CS4): MODEL AUDITS -
VALIDATION AND METRICS CHECKING

AND TRACKING
The last example of new infrastructure developed in support
of Europa’s SE process is a framework to collect and track
metrics and model audit results in the system model itself.

As described earlier, transition to MBSE requires that the
model itself not introduce errors and risk into our engineering
analysis and process. To help ameliorate that concern we
audit our models, providing assurance that the model con-
forms to carefully crafted standards for representing the data
correctly and completely. Our model audits include standard
element inventory counts, which we use to communicate the
size, scope, and state of the system as we always have done.
Both kinds of data tracked in our model audits can be used to
report trending and burndown of work to go.

While most MBSE tools have built-in validation rule check-
ing, we needed advanced capabilities: a) new validation rules
and configurable validation rule sets b) flexible reporting and
provision of data to other tools and c) tracking the results of
our audits and metrics reports over time. Our MBSE tool did
not provide all of those capabilities, so we developed a simple
framework and set of tools to meet our needs for the present.
Future MBSE can now use this capability demonstration to
generate requirements for a more enterprise-level metrics and
audit capability.

The software determines, for each element for each rule,
whether the rule was passed, failed, or skipped, as shown
conceptually in Figure 14. The tool can record the results
it in the model, return the results to another piece of software,

Figure 14. A collection of model elements are checked
against each rule and binned according to whether it

passes, fails, or was skipped.

Figure 15. Model audit rules are stored in the model and
each element passes, fails, or is skipped for each rule.

report the results as a log in the model, or any combination of
the three. We store validation rule sets as “templates” in the
model and automatically create a property representing the
particular rule to store that rule’s results in our model audit
history elements (shown in Figure 15).

9

Figure 16. Each audit rule is reported with statistics and then a detailed list of elements that violated the rule. Clicking
the hyperlinks takes the user to that element in the system model.

The audit result objects make querying and potentially vi-
sualizing or otherwise reporting past and present audit data
very simple (there is no need to open model versions and
compare them). As with the previous trackers, we use the
concept of a history and history entries to record the results
of the validation rules and metrics checks. Each history
entry contains references to the elements that passed, failed,
or were skipped for that rule. The potential size of these
reference data (unique identifiers for elements are stored as
text), and the number of rules checked and frequency of audit
runs do present some concerns for size of the models, but so
far the advantages to having the data directly available in the
system model have outweighed those concerns.

A primary output of the validation checker is a detailed
log report of the results. Modelers can use the log to fix
model issues in real-time or investigate the previous state of
the model. The tool also provides the capability to inspect
historical results and re-generate the report for that execution.
The summary and body portions of the report are shown in
Figures 13 and 16.

From the report and history data, we can generate burndown
charts and other metrics required in order to do our work,
inital examples of which are shown in Figures 17 and 18.

Figure 17. Bar chart showing an overview of
requirement maturity compared with the goal state.

These images are visualizations of the historical data obtained
from the metrics report. These are preliminary visualizations
that show temporal evolution of requirement maturity (in bar
chart form; a more traditional burn-down chart is another
representation not shown here). The radar chart shows the
evolution of our requirement set over time, where progress is
demonstrated as the graph expands towards the edges of the
radar. At the time of this writing, more advanced interactive
visualizations are in development to communicate these data.

Figure 18. Radar chart showing metrics completeness
over time.

CS4: Implementation

The model audit tool is implemented as a Jython plugin to
our MBSE tool. The software consists of three elements:
a) specialized ValidationRule classes which take elements,
check them against the classes rule, and add them to passed,
failed, skipped bins depending on the implementation of the
check() method; b) a ValidationRuleSet which handles the
validation rules; and c) rule orchestrator code which handles
the chaining/check ordering/preconditions for the rules. The
rules map to documented, tested, and reviewable rules imple-
mented in code. The two main code classes are depicted in
simplified form in Figure 19.

Figure 19. Simplified class diagram depictions of a
ValidationRule and a ValidationRuleSet.

Because this was a functional, rapidly developed prototype,
we did not attempt to implement more formal semantics such
as pre/post conditions and chaining of rules. In the future we
expect to audit our models using formal semantic reasoning
software, and this work can provide many use cases and drive
requirements on that more formal integration.

10

7. FUTURE WORK
Maturity Tracking

We need to further investigate making the data as compact as
possible for model size reasons, and begin to investigate other
repositories for storing our history metadata. We would need
a repository that is federated with our other models and tools
(so that we do not sacrifice the MBSE principle of Single
Source of Truth), accessibility, and transparency for the sake
of performance and scalability.

The other area of future work is in richer visualizations and
other tools to enhance accessibility of model data. Our goal
is to build our tool ecosystem so that SEs can explore and
manipulate data in ways that support their existing workflows.

Model Audits

The Model Audit Tracking Tool has been used largely for
reporting and tracking requirements metrics, but there is now
a desire to adopt it more widely on project. Deployment
beyond current application requires improvements to docu-
mentation, training, and some code refactor to make it fully
generic and modular. Lastly, like the maturity tracking, we
need to investigate the possibility of outsourcing the historical
results to a separate yet federated repository.

8. CONCLUSIONS
Use of these tools, which formally support targeted aspects
of the SE process, added credibility to the MBSE effort early
in the lifecycle of the Europa project and instilled a degree
of trust in the model capabilities, content, and scalability
that had been difficult to demonstrate in the past. Process
and auditing are best practices that help encourage and retain
users of MBSE.

We should be focusing more effort on assessing and analyzing
our current SE processes to build products that respond to
the questions SEs ask, and the day-to-day, week-to-week and
month-to-month kinds of visibility and history SEs need from
their infrastructure. These SE process requirements must be
supported by MBSE. This work is a small demonstration that
MBSE models can support the kind of tracking and quality
attribute metrics that we have traditionally kept. In fact,
MBSE can support not only our traditional metadata, but
we have shown use of the semantic richness of our models
to report insight about the state of the models that has not
been available to us in traditional document-centric systems
engineering.

MBSE efforts do not often plan for the collection and tracking
of maturity and metrics and the lack of planning becomes
problematic when urgent questions arise. And during the
transition process, when experienced SEs are not (yet) model
super-users, but are working with models through limited
portals or through other engineers designated as modelers,
they interact with the data in the ways that the always have
done and still need to do. So we need to focus more on our SE
stakeholder needs from a practical point of view and extend
our ontologies, model frameworks, and tool ecosystem to
meet their day-to-day needs. Such efforts transform MBSE
from a grand vision and abstract concept to something with
demonstrated practical value that will overcome the inertia of
adoption. It is the practical, real-life demonstrations of value
that will make or break MBSE going forward.

ACKNOWLEDGMENTS
The research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. The
authors wish to thank Brian Cooke and Todd Bayer for the
support this work received from the Project and for their
feedback, suggestions, and feature requests. Thanks also to
Alek Kerzhner, David Coren, and the whole MSET Team
for their support in adopting the tools and providing excel-
lent feedback, debugging, and suggestions for improving the
work.

REFERENCES
[1] T. Bayer, S. Chung, B. Cole, B. Cooke, F. Dekens, C.

Delp, I. Gontijo, and D. Wagner, “Update on the Model
Based Systems Engineering on the Europa Mission Con-
cept Study,” in Proceedings of Aerospace Conference.
Big Sky, Montana: IEEE, 2013

[2] G. Dubos, D. Coren, A. Kerzhner, S. Chung, J. Castet,
“Modeling of the Flight System Design in the Early
Formulation of the Europa Project,” pending publication
in Proceedings of Aerospace Conference. Big Sky, Mon-
tana: IEEE, 2016

[3] I. Hooks and K. Farry. Customer-centered Products :
Creating Successful Products Through Smart Require-
ments Management. New York: AMACOM, 2001.

[4] S. Robertson and J. Robertson, Mastering the Require-
ments Process (3rd Edition), Addison-Wesley, 2013.

[5] M. Jackson and M. Wilkerson, “MBSE-driven Visualiza-
tion of Requirements Allocation and Traceability,” pend-
ing publication in Proceedings of Aerospace Conference.
Big Sky, Montana: IEEE, 2016

[6] Data driven Documents: http://d3js.org/

[7] D3 Sankey Diagrams: http://bost.ocks.org/mike/sankey/

[8] INCOSE Insight, August 2015, Vol. 18, Issue 2.

BIOGRAPHY[

Maddalena Jackson received a B.S. in
Engineering from Harvey Mudd College
in 2008 and has been at JPL working
with MBSE since. She has served on
projects both as an SE (using MBSE)
and as a software developer in many
domains, from human exploration to
ground systems to cyber defense and
now NASA’s Europa Project. She is pri-
marily a member of the Europa Project’s

Flight System Requirements Team, the role for which she
developed the visualizations presented in this paper. She
is also Europa’s Model Systems Engineering Team Software
Management Lead, which oversees software developed in
support of MBSE activities on the project.

11

Marcus Wilkerson received his B.S.
degree in Aerospace Engineering from
the University of Colorado at Boul-
der in 2008. He is currently the
Flight System Requirements Team lead
for the Europa Project. He previ-
ously served as Integration and Test lead
for OPALS, an optical communications
technology demonstration on the Inter-
national Space Station.

Jean-Francois Castet is a Systems En-
gineer in the Autonomy and Fault Pro-
tection group at the Jet Propulsion Lab-
oratory (JPL), and he is part of the
Project System Engineering Team on the
Europa Project. He is also involved in
institutional activities to define modeling
patterns for system behaviors, as well
as infuse MBSE techniques into the fault
management discipline. He received a

M.S. degree from SUPAERO (Toulouse, France), and M.S.
and Ph.D. in Aerospace Engineering from the Georgia In-
stitute of Technology (Atlanta, GA).

12

