The Airborne Methane Plume Spectrometer (AMPS): Quantitative imaging of methane plumes in real time

Andrew K. Thorpe*, Christian Frankenberg, Robert O. Green, David R. Thompson, Andrew D. Aubrey, Pantazis Mouroulis, Michael L. Eastwood, Georgios Matheou

Jet Propulsion Laboratory, California Institute of Technology

*Andrew.K.Thorpe@jpl.nasa.gov
- Large uncertainties in CH$_4$ emissions from oil and gas systems
- Atmospheric observations consistently suggest higher emissions than predicted by inventories (Kort et al., 2008; Miller et al., 2013; Brandt et al., 2014)
Detection of emissions requires:
- Surveys of a large fraction of producing areas
- Unequivocal detection and attribution

Measuring concentrations at the surface to pinpoint emissions is:
- Impractical/costly
- Requires monitoring equipment is installed at each wellhead
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and next generation instrument (AVIRIS-NG)

- Grating spectrometers
- 380 to 2,500 nm
- 34° field of view
- High spatial resolution

<table>
<thead>
<tr>
<th>AVIRIS-NG(^1) and AVIRIS(^2) key measurement characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Position</td>
</tr>
<tr>
<td>Response</td>
</tr>
<tr>
<td>Calibration</td>
</tr>
<tr>
<td>Radiometric</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Precision (SNR)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
<tr>
<td>Spatial</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Sampling</td>
</tr>
<tr>
<td>Response</td>
</tr>
<tr>
<td>Sample distance</td>
</tr>
<tr>
<td>Geom. model</td>
</tr>
<tr>
<td>Uniformity</td>
</tr>
<tr>
<td>Spectral cross track</td>
</tr>
<tr>
<td>Spectral IFOV variation</td>
</tr>
</tbody>
</table>

\(^1\)Green et al., 1998, \(^2\)Hamlin et al., 2011
AVIRIS and AVIRIS-NG have been used to characterize Earth’s surface and atmosphere.
AVIRIS and AVIRIS-NG were not designed for CH$_4$ mapping

Quantitative CH$_4$ retrievals have been developed
Absorption spectroscopy (Thorpe et al., 2014)
- Best fit simulated radiances with known gas abundance to observed radiance with unknown gas abundance
- Permits estimate of gas abundances below the aircraft
CH$_4$ Mapping with AVIRIS and AVIRIS-NG

- Garfield County, CO
 (natural gas extraction using hydraulic fracturing)

- Four Corners, CO NM
 (coal bed CH$_4$)
Garfield County, CO
- Gas wells using hydraulic fracturing
- AVIRIS-NG flight 1.4 km AGL (above ground level)

(Aubrey et al., 2015)
CH$_4$ Mapping with AVIRIS and AVIRIS-NG

- Four Corners, CO & NM
 - Coal ventilation shaft
 - AVIRIS-NG flight 1.4 km AGL
CH$_4$ Mapping with AVIRIS and AVIRIS-NG

- Four Corners, CO & NM
 - Coal ventilation shaft
 - AVIRIS-NG flight 1.4 km AGL
AMPS measurement technique

- AMPS will allow quantitative retrievals of CH$_4$, CO$_2$, CO, H$_2$O, and N$_2$O
- AMPS designed to detect CH$_4$ emissions as low as 0.17 m3/h (6 standard cubic feet per hour, scfh)
 - Order of magnitude smaller than what current airborne systems can detect

![Large Eddy Simulation (LES) for 6 scfh CH$_4$ emission](image)
- Spectrometer requirements derived from plume model
 - 10 cm spatial resolution
 - Continuum level signal-to-noise ratio (SNR) > 175
 - Optimal spectral resolution of 1 nm (1 nm FWHM)
AMPS imaging spectrometer design has been identified that provides:
- High spectral resolution
- Fine spatial sampling
- Wide field-of-view
- High SNR

AMPS key measurement characteristics

<table>
<thead>
<tr>
<th>Spectral</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>1900 to 2420 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>1 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>1 to 1.5 x sampling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>+0.05 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radiometric											
Range	0 to max Lambertian										
Precision (SNR)	≥300 @ 2300 nm,										
Accuracy	≥90% (<5% uncertainty)										
Accuracy	≥99% characterization										

Spatial											
Range	36 degree field of view										
Sampling	1 milliradian to 1.5 x sampling										
Sample distance	0.3 m to 20 m										
Geom. model	Full 3 axes cosines										
Flight platforms and observing strategies

- For low flux rates (0.17 m³/h, 6 scfh)
 - Fly high and fast
 - Traditional fixed wing aircraft (e.g., ER-2, Proteus, Twin Otter, WB-57, B-200)

- For larger flux rates
 - Fly low and slow
 - Helicopter
Real time CH$_4$ plume mapping

- Currently operational with AVIRIS-NG
- CH$_4$ plumes overlain on true color images with accurate latitude and longitudes for suspected emission sources
Real time CH\(_4\) plume mapping

- Permits:
 - Sharing plume characteristics and location information with ground crews
 - Verification of plumes using ground based sensors like thermal cameras and in situ gas samplers

![FLIR Gas Finder thermal camera](image1)

![Picarro in situ CH\(_4\) sensor](image2)
Real time CH$_4$ plume mapping

- Plume observed in real time at Four Corners
 - Location information provided to ground crew
 - Thermal camera used to verify plume from tanks
• AVIRIS-NG has observed CH$_4$ plumes for:
 • Oil fields (conventional and enhanced recovery)
 • Gas fields (conventional and unconventional)
 • Multiple leaks from gas pipelines

Potential application: CH$_4$ from oil/gas operations
AVIRIS-NG sensitivity shown below (cyan)
- Based on CH$_4$ controlled release experiment
- AMPS sensitivity (green) will permit detection of smaller emission sources

Potential application: CH$_4$ from oil/gas operations
Potential application: CH$_4$ from oil/gas operations

- Identifying CH$_4$ emission sources has potential value for:
 - Site operators
 - Identify and mitigate CH$_4$ emissions (safety hazard, lost revenue)
 - Opportunity to reduce environmental footprint
 - Regulatory agencies and scientific community
 - Understanding the size and distribution (spatial, temporal) of emissions

AVIRIS-NG real time CH$_4$ plume detection at Four Corners
Potential application: CH$_4$ from other sources

- Wastewater treatment facilities and agricultural emissions
 - Considerable sources of the global CH$_4$ budget

- Quantify emissions from natural sources like terrestrial and marine seeps
Potential application: CO$_2$, CO, H$_2$O, N$_2$O

- Stationary combustion and wildfires (CO$_2$, CO, N$_2$O)
- Cattle feedlots and wastewater treatment (N$_2$O)
- Leak detection from CO$_2$ capture and storage facilities
Conclusions

- Airborne Methane Plume Spectrometer (AMPS) is an advanced imaging spectrometer
 - Enable quantitative imaging of CH$_4$, CO$_2$, CO, H$_2$O, and N$_2$O plumes
 - Unprecedented spatial resolution and precision
 - Real time detection and geolocation of gas plumes
Acknowledgements

- JPL:
 - AVIRIS-NG team
 - Brian Bue (real time CH$_4$ mapping)
 - Simon Hook and Bill Johnson (thermal camera)

- Chevron Energy Technology Company:
 - Andrea Steffke, Christian Haselwimmer, et al. (controlled release)

- United States Geological Society:
 - Raymond Kokaly, Gregg Swayze (surface spectroscopy)
 - Roger Clark (retired)

- University of California, Santa Barbara:
 - Dar Roberts (surface spectroscopy)

