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Cirrus Clouds are Everywhere!
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Why Study Cirrus Clouds?

e Cover large part of the Earth

* Reflect solar radiation (albedo effect)

e Trap thermal radiation (greenhouse effect)

e Balance between these effects determines sign of forcing

* Regulate strat-trop exchange

 Impact chemical composition of atmosphere by facilitating

multiphase chemistry
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Motivation for this Work

* In order to quantify radiative effects of cirrus, we need:
v" Microphysical properties (ice crystal size distribution and shape)
v' Structural properties (height and spatial extent)
v' Optical properties (optical thickness)

e Optically thin cirrus clouds have weak signature in space-
based measurements

 Airborne experiments sparse because of location of cirrus
clouds

* Understanding of cirrus clouds, especially optically thin ones,
remains weak

* Need to develop methods to better understand cirrus
properties
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Proposal

e Use limb-scanning near-IR measurements onboard Global
Hawk during ATTREX project

e Similar physical principles as satellite observations
(observation of ice absorption signature in scattered/reflected
sunlight)

* Limb geometry significantly increases sampling distance

e For very thin cirrus, path enhancement close to geometric
(vertical extent of cirrus clouds vs. view along cirrus cloud for
hundreds of kilometers)

 Enhanced sensitivity will yield new insights into structure and
properties of cirrus clouds and also allow comparisons with
satellite observations of the thinnest clouds
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Mini-DOAS Limb Scanning Strategy
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Ice Absorption
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FOMS-LIMB RT Model

e Based on the widely used VLIDORT model

horizontal dependency

Vo

Figure 1. Dhstration of the LS geomety. The radiaton mavels
alomg the L5 LOS from the TOA at point E downward to the tan-
gent point T, then upward to the TOA at A. Zeniths origimate at
the center of the spherical Earth O and radiate outward through the
amosphere (from Fiz. © of Loughman et al., 2004).

e Assumes a spherical shell atmosphere, with a series of
optically uniform layers extending from surface to TOA, and no
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FOMS-LIMB RT Model

* For single scatter field, RTE solved accurately for a spherical

atmosphere

e For multiple scatter field, quadrature solutions to RTE
computed in plane-parallel framework, but post-processing
(source function integration) done in full spherical geometry

e Source function integration proceeds by solving RTE in each
segment of path for which the optical properties are

unchanged.
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Radiance Variation with Viewing Angle

FOMS Sun-normalized Radiances: 52A 30, AZM 45, albedo 0.1
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FOMS-LIMB Comparisons with VLIDORT

% Differences, SS+MS field , VLIDORT vs. FOMS: SZA 30, AZM 45, albedo 0.1
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FOMS-LIMB Comparisons with McArtim
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Ongoing/Next Steps

e Validate against Monte Carlo models

e Use FOMS-LIMB in an optimal estimation framework to
retrieve the physical and optical properties of cirrus clouds

e Validate retrievals using ATTREX in-situ data

e Use the cirrus cloud properties to get a better estimate of
shortwave and longwave forcing due to thin and subvisible
cirrus clouds

 Apply the knowledge gained on the physical properties of
cirrus clouds to study the impact of ice surfaces on BrO and
NO, chemistry in the TTL
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