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Research: Thermal Analysis in Planetary
Sampling

e Protect the samples
* Protect the hardware




Research: Thermal Analysis in Planetary
Sampling

* Prevent significant alteration of samples
e Baking of clays

e Kaolinite (Martian analog found on earth)
e Clay mineral named after Kao-Ling, China
e Famous for being baked into porcelain aka “China’

e Evolution of volatiles, especially water

)

¥ Credit: UNESCO

 What about sample is natural, what is a side effect of sampling
process?
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* Prevent catastrophic phase change (i.e. freeze-in)
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Research Goals

1. Perform experiments on Solar System analog materials
to characterize thermal profiles

2. Create a simulation code that accurately predicts
thermal profiles

3. Characterize trends based on rock properties
Inform future spacecraft design and operations
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Materials Tested

Kaolinite (Highly Variable)
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Experimental Preparation
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3.5 m? vacuum chamber at
Honeybee Robotics, Pasade

Subsystems for Automated Subsurface
mpling Instruments (SASSI)
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Drill Data Products

Amplitude
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“Exterior Rock”
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Finite Element Model
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Thermal Model

Heat Equation
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Energy Balance

Heat Out Via Cuttings

il

%

Heat Remaining in Bit

(85% heat to rock
15% heat to bit
according to
Ulhmann et. al.,
2003)

Heat In/Out
Via Boundary <>

Heat Generation

Heat Remaining in Rock
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Energy of Impact

Based on Hack, 2002
and Simon, 1963
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Results

Material

Test No. Pressure [Torr] Temperature g

G Indiana Limestone 760 Earth 0.4
2 Indiana Limestone 7 Earth 0.3
9 Indiana Limestone T60 LNs Dipped 0.4
10 Indiana Limestone i LN2 Dipped 0.4
14 Saddleback Basalt 760 Earth 0.65
15 Saddleback Basalt T Earth 0.4
16 Saddleback Basalt 760 LN2 Dipped 0.75
17 Saddleback Basalt T LN2 Dipped (.6
11 Kaolinite 760 Earth 0.3
12 Kaolinite 7 Earth 0.35
13 Kaolinite 760 LNa2 Dipped 0.5
22 Travertine 760 Earth 0.5
23 Travertine T Earth 0.4
24 Travertine TG0 LN2 Dipped (.5
19 Water Ice 760 Earth 0.35
20 Water Ice T Earth 0.35
25 Water lce T60 LNz Dipped 0.7
27 Water Ice T LN2 Dipped 0.9
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Percussive Efficiency vs UCS, Rocks
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UCS = Unconfined Compressive Strength. A measure of how hard it is to crush rock

Higher UCS — more energy localized to impact area — higher efficiency
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Soft Rock Hard Rock
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Hard rock —higher n, an analogy

Hard material
undergoes

g localized damage
at Impact site
Soft, compliant,

> material disperses

energy via waves

Not a perfect analogy because even with lower n, softer rocks still drilled
faster

Image credit: www.jacorre.com
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How does atmospheric pressure affect efficiency?
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Percussive Efficiency vs UCS, Rocks
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Earth Pressure: m = 0.0032xUCS+.2632, R? = 0.6808.
Mars Pressure: 7 = 0.0022xUCS+.2209, R? = 0.7616

. H IS dependent on pressure: Zacny and Cooper, 2007 shows friction
rops 10-15% at Mars pressure



How does rock temperature affect core temp increase?

Maximum Core AT UCS, All Tests
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How does pressure affect core temp?

Maximum Core AT vs Adjusted UCS, All Tests
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Acquisition Scheduling

 Limestone sample
e 55 mm depth
e AT in rock no more than 30 °C, 2 min pause if hit

Test 6, Scheduled with 30 K Threshold on Cuttings Test 6 TC 1 Temperature Profile
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Sampling time increases 5x for this case



Suggestions for Future Work

 Fine-scale analysis at bit/rock
boundary

e Currently mm-scale model and
measuring ability

e Grain scale or smaller i1s desired

o Study icy-soil mixtures: relevant to
Mars subsurface

© 2016 California Institute of Technology. Government
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Work at JPL: Mars 2020 Sampling & Caching
Subsystem
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Mars Science Laboratory a.k.a.
Spirit & Opportunity, 2003 Curiosity, 2011

Sojourner, 1996
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Science Objectives How Objectives Addressed

A. Geology

* Characterize the processes that
formed and modified the local
geologic record

B. Astrobiology

e Perform investigations of
habitability, biosignatures, and
potential evidence of past life

C. Sample Caching

* Assemble a returnable cache of
samples for possible future return
to Earth

* Ensure compliance with future
needs in the areas of planetary
protection and engineering

D. Human Exploration
e Contribute to the preparation for
human exploration of Mars

2/19/2016

Cameras, ground-penetrating radar, x-
ray fluorescence, Raman spectroscopy,
weather sensing

Cameras, ground-penetrating radar, x-
ray fluorescence, Raman spectroscopy,
weather sensing

Coring drill, caching subsystem

Oxygen production, mineralogy
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We made the news! 3:30
https://youtu.be/0OjQz3STH19w?t=198
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Percussion Mechanism
© Motor—driven resonant
spring/mass hammer

Core Break Lockout (CBLO)

J Prevents rotation of sample tube
during core breakoff

Chuck Mechanism
. Engages and releases
interchangeable bits

Spindle / STIG
J Provides high speed bit
rotation for coring
J Provides high torque bit

rotation for core break

Regolith
Bit

l Coring Bit Ié
l Abrading Bit I’ :

Service
Loop

Breakaway
J Limits slip loads
into robotic arm

Stabilizers
. Sense contact with rock

J Robotic Arm preloads
stabilizers to rock surface

Feed Mechanism
. Ball screw advances bit into rock

o Maintains weight-on-bit (WOB)

o Feed guide rails support translating
assembly

Structure

© 2016 California Institute of Technology. Government
sponsorship acknowledged.
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Corer Mechanisms: Bits

Eccentric Breakoff

2/19/2016

Bit
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Core broken Retained by lip
in shear
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Approximately to scale
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RA and Turret docked to Bit
Carousel for Bit Exchange

Docked

(RA and Feed removed for clarity)

! (RSM removed

_ Feed forward and
for clarity)

acquire bit from Bit
Carousel

© 2016 California Institute of Technology. Government

2/19/2016 sponsorship acknowledged.

45



2/19/2016

Thermal-Vacuum Chamber

2 m class robotic arm

Drill

Mars analog rocks
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For added mission realism...
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Testing geometry and materials
* Does the bit succeed in cutting rock and removing powder from
the hole?
* Excessive heating of sample, excessive power consumption?

Do we contaminate samples with bit tooth material (tungsten
carbide)?

© 2016 California Institute of Technology. Government
sponsorship acknowledged.
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Questions?
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