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The work described here was performed at the Jet Propulsion Laboratory, California Institute of 

Technology, under contract with the National Aeronautics and Space Administration (NASA). 
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• System overview 

• Tracking and communications functions 

• Uplink beacon signal 

• Detector array and readout 

• Signal processing algorithms 

• Background subtraction and centroiding 

• Parameter estimation 

• Performance results 

• Monte-Carlo simulation 

• Laboratory testing 

Outline 
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• Uplink beacon provides reference pointing information without increasing mass of 

flight transceiver.  

• Uplink signal position is estimated in order to  

– Adjust flight terminal platform attitude and calculate point-ahead angle for downlink 

transmission 

– Acquire and demodulate uplink data  

• A single detector array reduces alignment errors and optical losses 

– Used to estimate location of dim laser beacon to point transmit beam to Earth ground receiver  

– Tracks angle of the transmit beam to confirm the point-ahead angle 

– Photon counting array has best combination of sensitivity and bandwidth 

• Signal processing needed for simultaneous spatial acquisition, tracking, parameter 

estimation and data demodulation 
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Beacon Processing Modes 

1. Uplink beacon detection 

• Use ephemerides to point platform toward Earth. 

Scan terminal over uncertainty region and search 

array to determine if beacon is present. Estimate 

initial detected beacon location. 

2. Transit 

• Close platform attitude control loop with centroid 

estimates from single subwindow and move beacon 

to designated tracking subwindow. 

3. Uplink tracking and downlink point-ahead 

• Maintain beacon position, close beacon control loop 

with centroid estimates over tracking subwindow. 

• Turn on downlink signal, calculate point-ahead 

angle, and confirm downlink position using centroid 

estimates of retro-reflected downlink beam. 

• Demodulate and decode uplink command data. 

 

Detection 

uplink beacon 

Transit 

Tracking 

uplink 
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Uplink Signal Format 

• JPL deep space uplink signal concept uses a nested modulation format 

consisting of  

– Beacon sync pattern: square wave 

 

 
 

– Low rate command channel: 2-PPM with 2 intersymbol guard time (ISGT) slots 

 

 

 
– Optional high rate data channel: 8-PPM with 4 ISGT slots 

 

 

• Square wave beacon enables background subtraction, improving statistics 

for signal detection and position estimation. 

• Background subtraction is implemented using a pair of up-down counters 

offset by command channel slot width 

• 50% average duty cycle beacon is optimal for signal estimation 

Tslot 
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• Up-down counters alternately increment and decrement pixel counts at beacon 

frequency  

 

 

 

 

 

 

 

 

 

 

 

• The up-down counter (UDC) outputs U and V  have mean and variance 

 

 

 

   where N is the number of beacon cycles,  is the slot timing offset, and Ts is the  

   slot time.  

• Modified square law statistic                                     , where S is up-counts, removes 

background dependence from mean of square law statistic W . 

 

Up-down Counter Statistics 

beacon signal intensity per pixel timing offset ϵ 

+ + - - + + - - + + - - + + - - 

+ + - - + + - - + + - - + + - - - 
2nd up-down counter V 

1st up-down counter U 

no dependence 

on background 
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•Subwindow centroid estimate                   is calculated using the modified 

square-law statistics                                           : 

 

                                                                 

                                                              , 

  

PCD Array Pixel Processing 

output from pixel in ith row and jth column of subwindow:  

up-down count 1 

up-down count 2 

up count 

centroid output from subwindow:  
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• Blocking limits maximum detectable counts, and comprises two effects 

• Detector dead time – no arrival within  sec from prior arrival can be detected 

• ROIC frame rate/single photon detection limit – at most one count per frame recorded 

• Non-paralyzable blocking model 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Detector dead time depends upon adjustable quenching parameter (typically >0.5 µs) 

• ROIC frame time is also on microsecond time scale  

• We combine both effects into one with blocking time   = 2.048 µs  

Detector/ROIC Blocking Model 
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Recorded photoelectron events 

   

Detected photoelectron events 

ROIC frame T 

   

dead time  

Poisson photon arrival process 

   
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Impact of Blocking 

• Per pixel blocking time of 2.048 µs (equivalent to ROIC frame time) 

• Uplink signal slot duration = 65.536 µs → fractional slot blocking time of 0.03 

• Effect of blocking on 2-PPM link performance is minimal for this dead time ratio, under 

low flux conditions (Chen, Stephens, Boroson) 

• Blocking impact on acq/tracking error must be evaluated under high flux conditions. 

• For a fractional slot blocking time of , slot counts are approximately Gaussian with 

𝑬 𝑲𝒃𝒍𝒐𝒄𝒌𝒆𝒅 =  
𝑲𝒖𝒏𝒃𝒍𝒐𝒄𝒌𝒆𝒅

𝟏+𝜹𝑲𝒖𝒏𝒃𝒍𝒐𝒄𝒌𝒆𝒅
  and  𝑽𝒂𝒓 𝑲𝒃𝒍𝒐𝒄𝒌𝒆𝒅 =  

𝑲𝒖𝒏𝒃𝒍𝒐𝒄𝒌𝒆𝒅

𝟏+𝜹𝑲𝒖𝒏𝒃𝒍𝒐𝒄𝒌𝒆𝒅
𝟑 

 

 

 

 

 

 

 

 

 

 

 

• Saturation results in degraded ability to distinguish signal from background, both 

spatially and temporally 

 

 

 

 

 

 

 

 

 

 

Expected photoelectron flux on 32x32 array (beacon+Earth) 
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8 µrad pixel FOV 
23 avg counts/slot in max pixel  

32 µrad pixel FOV 
73 avg counts/slot in max pixel  
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Monte Carlo Simulation 

• Single photon counting detector array model and signal processing simulated in 

software 

• Model assumptions 
• Gaussian signal beam, uniform Earth radiance, uniform dark flux and detection efficiency 

• No pixel crosstalk 

• Unblocked Poisson arrivals or Gaussian blocking model 

 

Earth 

beacon 
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Signal Detection 

Up-count statistics (UC, sum) 
simulation, 60 Hz update 

Modified square-law statistics (MSQ) 
simulation, 60 Hz update 

Probability of missed detection 
• Pixel modified square-law statistics are used to 

distinguish modulated signal from background 

• Statistic from maximum pixel is compared to 

threshold to detect signal 

• For Mars far-range case, statistic integration time 

of 20 - 40 msec is sufficient to achieve 10-6 

probability of missed detection 

• In practice, platform stability will limit integration 

time 
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Uplink Beacon Centroiding 

• Centroid bias and jitter varies as beacon position 

within pixel changes 

• Up count centroid has high bias and low jitter; 

MSQ centroid has low bias and high jitter 

• Blocking degrades centroiding performance 

Expected MSQ centroid bias 

Expected MSQ centroid jitter 
Beacon in crosshairs 

of 2x2 pixel window 

Up-count bias induced by beacon 

offset from Earth center 
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Laboratory Testing 

Photon counting camera testbed used to conduct static testing of detector and algorithm performance 

• 32x32 pixels, 100 μm pitch 

• ~40% detection efficiency  

• 8 kcount dark flux per pixel 

•  ~2 μs ROIC frame, blocking time 
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Centroid Characteristic 

• Centroid characteristic curve is dependent upon pixel size, beacon spot size, and 

signal and background flux rates. 

• Simulations and measured testbed centroid values show qualitative agreement.  

Simulated centroid characteristic curve Measured centroid v. beacon displacement  
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Laboratory Centroid Measurements 
 

no Earth background, estimated total beacon flux ~97,000 counts/sec  

Uplink  

Downlink 
Hot pixel 

Uplink  

Up counts (sum counts) MSQ statistic 

Uplink           Uplink           Downlink       
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Uplink + Earth 

Downlink 
Hot pixel 

Up counts (sum counts) 

Uplink 

MSQ statistic 

estimated Earth flux per pixel ~98,000 counts/sec/pixel 

Laboratory Centroid Measurements 
 

Uplink           Uplink           Downlink       
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Uplink + Earth 

Downlink 
Hot pixel 

Up counts (sum counts) 

Uplink 

MSQ statistic 

estimated Earth flux per pixel ~203,400 counts/sec/pixel 

Laboratory Centroid Measurements 
 

Uplink           Uplink           Downlink       
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Performance Results 
 

• Uplink UC centroid changes as Earth flux increases, MSQ centroid does not 
• MSQ centroid jitter increases with increasing Earth flux 

‒ At <1.5e5 Earth counts/sec/pixel, per axis jitter < 1 μrad 
• Earth-beacon centroid difference ~ 1 pixel in X, ~0.75 pixel in Y (8 μrad, 6 μrad)  
• Earth flux per pixel for Mars 2.7 AU ~1.6e5 counts/sec/pixel (assuming 1 nm filter, 3 dB 

optical losses, 40% DE, irradiance of 0.0087 W/m2/sr/μm ) 
• Measured values track simulation results using Gaussian blocking model 
• Downlink jitter < 0.16 μrad per axis 
• Additional results with better calibrated measurements expected in next few months 
 

up-count 

centroid bias 
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Summary 

• Developed beacon detection and centroiding algorithms for deep space 
optical transceiver acquisition and tracking using a flight-like photon 
counting detector array 

• Demonstrated real-time signal processing with photon counting camera in 
testbed environment emulating background and Earth conditions  

• Evaluated algorithms using total flux (up) and background-subtracting 
(modified square law) pixel statistics with modulated beacon 

– Modified square law statistics enable accurate signal detection and 
position estimation in presence of strong background 

– Analysis and simulation results based upon estimated channel 
parameters and blocking models demonstrated good fit to experimental 
data 

– Demonstrated sub-microradian centroiding accuracy sufficient for deep-
space downlink pointing 

• Further work required to characterize system level performance  

– New detector array with integrated microlenses in next 3-4 months 

– Integration with vibration isolation platform and closed loop platform 
control in next year 

 


