
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Advancing the Practice of Systems Engineering

Steven Jenkins
Engineering Development Office
Systems Engineering and Formulation Division

Copyright © 2016 California Institute of Technology. Government sponsorship acknowledged.
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Background

• In 2013 I was invited to speak at the JPL SE Workshop
on “Concepts of Model-Based Systems Engineering”

• I accepted the invitation but rejected the title
– I don’t like the term “MBSE”
– All engineering is model-based, and always has been
– We don’t say Model-Based Mission Design, although

differential equations and conic approximations are models
– We don’t say Model-Based Telecom Engineering, although

convolutional and block codes are models
• Instead I proposed to talk about

– What do systems engineers do?
– How can we do it better?
– In particular, what can we learn from advances in other

engineering disciplines?
• This is the result of a few iterations on that theme

INCOSE International Workshop2016-01-30 2

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

My Take on What Systems Engineers Do

• Systems engineers
– guide the collaborative design of complex systems
– in such a way that a recommended set of design options
– can be shown by analysis
– to exhibit behavior that achieves mission objectives
– subject to applicable constraints
– with acceptably high confidence

• Key ideas:
– Collaboration

• Delegation of decomposed design problems
• Integration of peer components into systems

– Analysis
• Predicting behavior from design
• Synthesizing design from desired behavior

2016-01-30 INCOSE International Workshop 3

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

How Can We Collaborate and Analyze Better?

INCOSE International Workshop2016-01-30 4

Collaboration Analysis

Language Abstraction Automation

To improve these:

We can employ these:

Let’s look more closely…

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

A Closer Look at Language

2016-01-30 INCOSE International Workshop 5

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Language Example: VHDL

• In the early 1980s the Department of Defense initiated
development of a language standard for specifying the
design of Application-Specific Integrated Circuits
– It was becoming increasingly difficult to procure

replacement parts for older designs
– Designs were incompletely and inconsistently specified
– The result came to be known as VHSIC Hardware

Description Language, or VHDL
• First release of the full standard was 1987,

accompanied by MIL Std 454, which mandated VHDL
documentation for DoD ASIC acquisition

• Successive revisions have occurred every few years
• VHDL enjoys wide support across industry:

– simulation and synthesis tools
– education and training (Amazon has 1231 hits for “VHDL”)

2016-01-30 INCOSE International Workshop 6

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

More on VHDL

• Not every vendor implements every feature, nor the
latest revision of the standard

• Use of VHDL does not lead to fully unambiguous design
specification
– The standard itself acknowledges some ambiguities

• That notwithstanding, an evolving standard with
widespread industry acceptance has led to:
– improved communications among practitioners
– more standard training
– market opportunities for more specialized simulation and

analysis tools
– enhanced competition among manufacturers

• Key Conclusion: a common language can stimulate and
enable major advances in collaboration and analysis

2016-01-30 INCOSE International Workshop 7

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Language and Systems Engineering

• Systems engineering has a historical vocabulary
– system, requirement, verification, configuration item, etc.

• We even have a little bit of taxonomy
– vehicle  flight vehicle  spacecraft  planetary orbiter
– requirement  functional requirement

• and notions of composition
– system  subsystem  assembly  subassembly  part

• but we have lacked language to help us to
– speak with precision about a complex system, its structure,

interfaces, functions, requirements, etc.
– reason about the completeness and consistency of the

system description
– analyze the behavior of the system
– communicate with others without losing meaning

• lots of ad hoc boxes-and-lines diagrams

2016-01-30 INCOSE International Workshop 8

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Language Progress: SysML

• Since 2001 the Object Management Group has been
developing the Systems Modeling Language (SysML)

• SysML is a primarily graphical language, historically
targeted at human-to-human communication

• It provides notation to describe system structure,
behavior, analytical relationships, and requirements

• It supports limited machine-to-machine interchange
(improving) and limited reasoning

• Multiple commercial implementations are available
from large (e.g., IBM) and small (e.g., No Magic)
vendors

• JPL has considerable positive experience with SysML
• Using SysML will help us collaborate and analyze

– More helpful at present for human collaboration

2016-01-30 INCOSE International Workshop 9

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Language Progress: OWL

• Since 2001 the World Wide Web Consortium (W3C) has
been developing Web Ontology Language (OWL)

• OWL is a textual knowledge-representation language
– emphasis is on reasoning and data interchange
– strong foundations in formal logic and computer science
– it’s strong where SysML is weak and vice-versa

• OWL is not an SE language but it is easily specialized
• Multiple commercial implementations are available in

the form of editors, reasoners, and application
development frameworks

• JPL has considerable positive experience with OWL and
with SysML/OWL integration

• Using OWL will help us collaborate and analyze
– More helpful at present for machine interchange
– Very strong for logical reasoning and analysis

2016-01-30 INCOSE International Workshop 10

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

A Closer Look at Abstraction

2016-01-30 INCOSE International Workshop 11

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Abstraction Example: The Reed-Solomon Code

• The Reed-Solomon code is an error-correcting code
• Shannon’s 1948 Mathematical Theory of

Communication that put telecommunications on a firm
theoretical basis

• Reed and Solomon made a major advance with
Polynomial Codes over Certain Finite Fields (1960)
– it considered a message as coefficients of a polynomial

over a Galois (finite) field
– Polynomials have been known since the 17th century but

were not considered to have practical application beyond
very low degrees

– The idea that a 255th-degree polynomial might have
practical utility was, until recently, far-fetched

• The power of 300 years of algebra then allowed:
– precise calculation of the minimum distance

• i.e., the key figure of merit for an error-correcting code
– proof that no linear code can do better

2016-01-30 INCOSE International Workshop 12

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

More on Reed-Solomon

• Reed and Solomon’s 1960 paper was not a practical
solution for information transmission
– Digital electronics was in its infancy
– The decoding algorithm was vastly too complex for

technology of the time (or today)
• The proof that a solution existed, however, stimulated

research into efficient decoders, and by 1969
Berlekamp and Massey had published a practical
algorithm

• Moore’s Law has continued to enlarge the boundary of
“practical”

• Reed-Solomon codecs are everywhere now
– e.g., Xilinx FPGA $9.95 (quantity 250,000)

• Key Conclusion: the right abstraction can stimulate
collaboration and analysis that defeats difficult
problems

2016-01-30 INCOSE International Workshop 13

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Abstractions and Systems Engineering

• What are some abstractions that can empower systems
engineering as a discipline?
– other than physics and applied math, which we know well
– knowledge representation (computer science)
– graph theory (math)
– category theory (math)
– operations research (applied math)
– complexity theory (computer science)
– utility theory (economics)
– potentially many others

• We’ll take a closer look at at knowledge representation
and graph theory

2016-01-30 INCOSE International Workshop 14

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Knowledge Representation

• KR is a specialization of artificial intelligence that
focuses on
– using symbols to represent facts in a domain
– reasoning about facts

• OWL (remember?) is a KR language
– so that covers the representing facts with symbols

• What do we mean by reasoning?
– We’ll talk about two examples, but using words instead of

formal symbols
• The examples are oversimplified and the value added

by automated reasoning may seem trivial, but bear in
mind
– the principles apply to more subtle real-world problems
– any qualitatively simple problem can become complex by

virtue of scale

2016-01-30 INCOSE International Workshop 15

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Consistency Analysis

• KR systems give us the ability to describe “legal”
statements in a domain of discourse, e.g.,
– Component performs only Function
– Component presents only Interface
– Requirement specifies exactly one of

• Component, e.g., “The widget shall be made of aluminum.”
• (Component performs Function), e.g., “The widget shall wash

windows.”
• (Component presents Interface), e.g., “The widget shall adhere

to the USB 2.0 specification.”

• All other sentences in our KR language are “illegal”
• Efficient, practical reasoners are available to check

large collections of sentences for consistency with rules
– These are useful for ensuring that we adhere to our own

rules for system specification
– Collaboration and analysis require consensus on meaning

2016-01-30 INCOSE International Workshop 16

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Query Answering

• Given a set of facts about a set of named individuals
– e.g., components, functions, requirements

• We may want to ask which elements satisfy a particular
predicate, which may itself be the conjunction of other
predicates

• Understanding relatedness in this way is essential for
integrated analysis

• For example, to calculate some performance metric m
for a Function F, we may need to know precisely how F
relates to other design elements
– see example following
– each relationship becomes a clause in a query

2016-01-30 INCOSE International Workshop 17

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Query Answering Example

Function F1 Function F2Item I1

Component C1 Component C2Junction I2

performs performs

sends

joins joins

receives

traverses

Environment E1 Environment E2

inhabits inhabits

2016-01-30 INCOSE International Workshop 18

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Graph Theory

• Graph theory is a branch of mathematics devoted to
analysis of relationships between pairs of objects

• It has produced time- and space-efficient algorithms for
many interesting problems, including
– identifying connected components (fault propagation)
– determining reachability from a to b (comm reliability)
– finding shortest path from a to b (comm routing)
– topological sorting (planning and scheduling)
– finding cycles (requirements flowdown errors)

• It is applicable to systems engineering because
– Complex systems are partially understood through analysis

of relatedness and partitioning into weakly-coupled
components

– KR systems often represent knowledge as graphs
• as shown in the previous example

2016-01-30 INCOSE International Workshop 19

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

A Closer Look at Automation

2016-01-30 INCOSE International Workshop 20

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Automation Example: Mechanical CAD

• 1960s:
– in-house mainframe-based systems

• 1970s:
– simple drafting automation
– transition from mainframes to minicomputers
– foundation work in geometry modeling (NURBS)

• 1980s:
– transition from 2D to 3D
– transition from minicomputers to workstations
– transition from wireframe to surface modeling

• 1990s and beyond:
– transition to personal computers
– emergence of feature-based modeling
– integrated CAD at system scale and below

• e.g., Boeing Dreamliner

2016-01-30 INCOSE International Workshop 21

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

More about MCAD

• Each decade saw a dramatic increase in available
computing power
– not just CPU speed, but number of CPUs

• As computing power increased, the MCAD industry
steadily enlarged the set of problems it can tackle
– Collaboration: visualization, animation
– Analysis: optimization, simulation

• Over 50 years, these changes have completely
revolutionized the practice of mechanical
engineering
– from the largest aerospace companies to bike shops
– no one wants to go back to the old days

• Key Conclusion: Automation can drive major
engineering innovation—but we have to adapt in
order to exploit it

2016-01-30 INCOSE International Workshop 22

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Moore’s Law and Systems Engineering

• There have been dramatic
increases in CPU power,
memory, and storage
capacity of computer
systems in the last 40
years

• High-performance
computing has gone from
an expensive, exotic niche
to a mass commodity

• Has systems engineering
incorporated this new
reality into its doctrines
and practices?

2016-01-30 INCOSE International Workshop 23

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Automation and Systems Engineering

• We don’t design a spacecraft to fly a fixed mission
– that is, to execute a fixed trajectory and sequence
– stuff happens and we have to adapt to it

• So the design problem splits into two coupled pieces:
– design the mission assets to have a range of behaviors to

be selected during mission execution (system design)
– select from available behaviors during execution to achieve

mission objectives (planning and scheduling)
– and analysis must account for both

• Planning and scheduling problems are nearly always
computationally complex due to combinatorics

• Solutions rely on clever algorithms and advances in
computation that move the tractability limits
– brute force becomes practical when computation is cheap

• Computers can be the robotic explorers of design space

2016-01-30 INCOSE International Workshop 24

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

A Grand Challenge for Systems
Engineering

2016-01-30 INCOSE International Workshop 25

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Don’t Be Stupid

• For this purpose, I’m defining being stupid as

• or alternatively,

making a mistake you could have avoided
through minor adjustments in procedure or
priority, without benefit of hindsight

making a mistake for which the best explanation
you can come up with is “We were stupid.”

2016-01-30 INCOSE International Workshop 26

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

An Example: Apollo 13 Failure

• Apollo 13 was the third scheduled lunar
landing, launched April 11, 1970
– suffered catastrophic service module

failure during translunar cruise
– lunar landing was scrubbed, crew returned

safely with tiny margins—a very close call
• The Apollo 13 Review Board concluded

• What were the mistakes?
• Which ones can we avoid in the future?

[…] the accident was not the result of a chance
malfunction in a statistical sense, but rather
resulted from an unusual combination of
mistakes, coupled with a somewhat deficient
and unforgiving design.

2016-01-30 INCOSE International Workshop 27

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Apollo 13: What Happened?

• O2 tank no. 2 had a loosely fitting fill tube assembly
• The tank was jarred at the prime contractor’s plant,

which may have displaced the fill tube
• KSC used improvised (but in spec) ground detanking

procedures due to difficulties with normal procedures
• The improvised procedures required operating tank

heaters for long periods
• Thermostatic relays failed (closed!) during detanking
• The tank wiring was damaged by excessive heating
• Use of heaters in flight led to catastrophic failure

2016-01-30 INCOSE International Workshop 28

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Apollo 13 Root Cause Analysis

• O2 tank no. 2 had a loosely fitting fill tube assembly
– a mistake but probably not stupid

• The tank was jarred at the prime contractor’s plant,
which may have displaced the fill tube
– a mistake but the tank exhibited normal function afterward

• KSC used improvised (but in spec) ground detanking
procedures due to difficulties with normal procedures
– probably caused by the displaced fill tube
– a mistake but not obviously so at the time

• The improvised procedures required operating tank
heaters for long periods
– a mistake but not obviously so at the time

• Thermostatic relays failed (closed!) during detanking
– a mistake but not necessarily stupid
– the failure signature is there (subtly) in test records

2016-01-30 INCOSE International Workshop 29

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Apollo 13 Root Cause Analysis

• The tank wiring was damaged by excessive heating
– a mistake but largely invisible, not stupid

• The 1962 tank heater relay specification was 28V
– not a mistake

• In 1965 the prime contractor revised the specification
to 65V
– not a mistake

• The tank supplier ordered new switches but did not
revise the tank design specifications

– Avoiding this mistake alone would almost certainly have
prevented the failure

The thermostatic switch discrepancy was not detected by
NASA, NR, or Beech in their review of documentation, nor
did tests identify the incompatibility of switches with the
ground support equipment at KSC [….] It was a serious
oversight in which all parties shared. [My emphasis.]

2016-01-30 INCOSE International Workshop 30

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

We Must Prevent This Kind of Mistake

• We have unambiguous language to talk about
– Properties of things

• e.g., load has voltage rating, power supply has voltage
– Taxonomies of things

• e.g., relay is a kind of load, power supply is a kind of source
– Whole-part relationships of things

• e.g., tank has heater, heater has relay
– Interconnectivity of things

• e.g., relay connected to GSE power supply
– Constraints on connections and things connected

• e.g., load voltage rating ≥ supply voltage

• We have algorithms to find and evaluate
– every constraint binding every connection

• whether directly asserted or inherited from parent types

• We have the computational power to verify the above
– this one isn’t particularly challenging

2016-01-30 INCOSE International Workshop 31

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Not Being Stupid Gets Harder Every Year

• Humans in general and JPL in particular have been
flying machines in space for nearly 60 years
– The basic phenomena are well-understood
– Risks of failure due to epistemic uncertainty continue to

decline
• But systems yearly become more and more complex

– What does that really mean?
– System design descriptions become longer
– Vocabulary of system design becomes richer
– and therefore…

• Risks due to stupid mistakes grow geometrically
• If we don’t address this problem, who will?
• If we don’t do it now, how will we ever?
• How would you address it?

INCOSE International Workshop2016-01-30 32

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

OK, But What About MBSE?

• My definition of modeling (you’re welcome to it) is
– the systematic application of

• language
• abstraction
• automation

– to enhance
• collaboration
• analysis

• MBSE, therefore, is simply the above applied to systems
engineering

• It is not, and must not become a religion
• It’s just technique; the only good reason to use it is

that it works

2016-01-30 INCOSE International Workshop 33

	Advancing the Practice of Systems Engineering
	Background
	My Take on What Systems Engineers Do
	How Can We Collaborate and Analyze Better?
	Slide Number 5
	Language Example: VHDL
	More on VHDL
	Language and Systems Engineering
	Language Progress: SysML
	Language Progress: OWL
	Slide Number 11
	Abstraction Example: The Reed-Solomon Code
	More on Reed-Solomon
	Abstractions and Systems Engineering
	Knowledge Representation
	Consistency Analysis
	Query Answering
	Query Answering Example
	Graph Theory
	Slide Number 20
	Automation Example: Mechanical CAD
	More about MCAD
	Moore’s Law and Systems Engineering
	Automation and Systems Engineering
	Slide Number 25
	Don’t Be Stupid
	An Example: Apollo 13 Failure
	Apollo 13: What Happened?
	Apollo 13 Root Cause Analysis
	Apollo 13 Root Cause Analysis
	We Must Prevent This Kind of Mistake
	Not Being Stupid Gets Harder Every Year
	OK, But What About MBSE?

