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Background

• In 2013 I was invited to speak at the JPL SE Workshop 
on “Concepts of Model-Based Systems Engineering”

• I accepted the invitation but rejected the title
– I don’t like the term “MBSE”
– All engineering is model-based, and always has been
– We don’t say Model-Based Mission Design, although 

differential equations and conic approximations are models
– We don’t say Model-Based Telecom Engineering, although 

convolutional and block codes are models
• Instead I proposed to talk about

– What do systems engineers do?
– How can we do it better?
– In particular, what can we learn from advances in other 

engineering disciplines?
• This is the result of a few iterations on that theme
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My Take on What Systems Engineers Do

• Systems engineers
– guide the collaborative design of complex systems
– in such a way that a recommended set of design options
– can be shown by analysis
– to exhibit behavior that achieves mission objectives
– subject to applicable constraints
– with acceptably high confidence

• Key ideas:
– Collaboration

• Delegation of decomposed design problems
• Integration of peer components into systems

– Analysis
• Predicting behavior from design
• Synthesizing design from desired behavior
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How Can We Collaborate and Analyze Better?
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Collaboration Analysis

Language Abstraction Automation

To improve these:

We can employ these:

Let’s look more closely…
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A Closer Look at Language
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Language Example: VHDL

• In the early 1980s the Department of Defense initiated 
development of a language standard for specifying the 
design of Application-Specific Integrated Circuits
– It was becoming increasingly difficult to procure 

replacement parts for older designs
– Designs were incompletely and inconsistently specified
– The result came to be known as VHSIC Hardware 

Description Language, or VHDL 
• First release of the full standard was 1987, 

accompanied by MIL Std 454, which mandated VHDL 
documentation for DoD ASIC acquisition

• Successive revisions have occurred every few years
• VHDL enjoys wide support across industry:

– simulation and synthesis tools
– education and training (Amazon has 1231 hits for “VHDL”)
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More on VHDL

• Not every vendor implements every feature, nor the 
latest revision of the standard

• Use of VHDL does not lead to fully unambiguous design 
specification
– The standard itself acknowledges some ambiguities

• That notwithstanding, an evolving standard with 
widespread industry acceptance has led to:
– improved communications among practitioners
– more standard training
– market opportunities for more specialized simulation and 

analysis tools
– enhanced competition among manufacturers

• Key Conclusion: a common language can stimulate and 
enable major advances in collaboration and analysis
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Language and Systems Engineering

• Systems engineering has a historical vocabulary
– system, requirement, verification, configuration item, etc.

• We even have a little bit of taxonomy
– vehicle  flight vehicle  spacecraft  planetary orbiter
– requirement  functional requirement

• and notions of composition
– system  subsystem  assembly  subassembly  part

• but we have lacked language to help us to
– speak with precision about a complex system, its structure, 

interfaces, functions, requirements, etc.
– reason about the completeness and consistency of the 

system description
– analyze the behavior of the system
– communicate with others without losing meaning

• lots of ad hoc boxes-and-lines diagrams

2016-01-30 INCOSE International Workshop 8



National Aeronautics and 
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Language Progress: SysML

• Since 2001 the Object Management Group has been 
developing the Systems Modeling Language (SysML)

• SysML is a primarily graphical language, historically 
targeted at human-to-human communication

• It provides notation to describe system structure, 
behavior, analytical relationships, and requirements

• It supports limited machine-to-machine interchange 
(improving) and limited reasoning

• Multiple commercial implementations are available 
from large (e.g., IBM) and small (e.g., No Magic) 
vendors

• JPL has considerable positive experience with SysML
• Using SysML will help us collaborate and analyze

– More helpful at present for human collaboration
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Language Progress: OWL

• Since 2001 the World Wide Web Consortium (W3C) has 
been developing Web Ontology Language (OWL)

• OWL is a textual knowledge-representation language
– emphasis is on reasoning and data interchange
– strong foundations in formal logic and computer science
– it’s strong where SysML is weak and vice-versa

• OWL is not an SE language but it is easily specialized
• Multiple commercial implementations are available in 

the form of editors, reasoners, and application 
development frameworks

• JPL has considerable positive experience with OWL and 
with SysML/OWL integration

• Using OWL will help us collaborate and analyze
– More helpful at present for machine interchange
– Very strong for logical reasoning and analysis
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A Closer Look at Abstraction
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Abstraction Example: The Reed-Solomon Code

• The Reed-Solomon code is an error-correcting code
• Shannon’s 1948 Mathematical Theory of 

Communication that put telecommunications on a firm 
theoretical basis

• Reed and Solomon made a major advance with 
Polynomial Codes over Certain Finite Fields (1960)
– it considered a message as coefficients of a polynomial 

over a Galois (finite) field
– Polynomials have been known since the 17th century but 

were not considered to have practical application beyond 
very low degrees

– The idea that a 255th-degree polynomial might have 
practical utility was, until recently, far-fetched

• The power of 300 years of algebra then allowed:
– precise calculation of the minimum distance

• i.e., the key figure of merit for an error-correcting code
– proof that no linear code can do better
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More on Reed-Solomon

• Reed and Solomon’s 1960 paper was not a practical 
solution for information transmission
– Digital electronics was in its infancy
– The decoding algorithm was vastly too complex for 

technology of the time (or today)
• The proof that a solution existed, however, stimulated 

research into efficient decoders, and by 1969 
Berlekamp and Massey had published a practical 
algorithm

• Moore’s Law has continued to enlarge the boundary of 
“practical”

• Reed-Solomon codecs are everywhere now
– e.g., Xilinx FPGA $9.95 (quantity 250,000)

• Key Conclusion: the right abstraction can stimulate 
collaboration and analysis that defeats difficult 
problems
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Abstractions and Systems Engineering

• What are some abstractions that can empower systems 
engineering as a discipline?
– other than physics and applied math, which we know well
– knowledge representation (computer science)
– graph theory (math)
– category theory (math)
– operations research (applied math)
– complexity theory (computer science)
– utility theory (economics)
– potentially many others

• We’ll take a closer look at at knowledge representation 
and graph theory
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Knowledge Representation

• KR is a specialization of artificial intelligence that 
focuses on
– using symbols to represent facts in a domain
– reasoning about facts

• OWL (remember?) is a KR language
– so that covers the representing facts with symbols

• What do we mean by reasoning?
– We’ll talk about two examples, but using words instead of 

formal symbols
• The examples are oversimplified and the value added 

by automated reasoning may seem trivial, but bear in 
mind
– the principles apply to more subtle real-world problems
– any qualitatively simple problem can become complex by 

virtue of scale

2016-01-30 INCOSE International Workshop 15



National Aeronautics and 
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Consistency Analysis

• KR systems give us the ability to describe “legal” 
statements in a domain of discourse, e.g.,
– Component performs only Function
– Component presents only Interface
– Requirement specifies exactly one of

• Component, e.g., “The widget shall be made of aluminum.”
• (Component performs Function), e.g., “The widget shall wash 

windows.”
• (Component presents Interface), e.g., “The widget shall adhere 

to the USB 2.0 specification.”

• All other sentences in our KR language are “illegal”
• Efficient, practical reasoners are available to check 

large collections of sentences for consistency with rules
– These are useful for ensuring that we adhere to our own 

rules for system specification
– Collaboration and analysis require consensus on meaning
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Query Answering

• Given a set of facts about a set of named individuals
– e.g., components, functions, requirements

• We may want to ask which elements satisfy a particular 
predicate, which may itself be the conjunction of other 
predicates

• Understanding relatedness in this way is essential for 
integrated analysis

• For example, to calculate some performance metric m
for a Function F, we may need to know precisely how F
relates to other design elements
– see example following
– each relationship becomes a clause in a query
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Query Answering Example

Function F1 Function F2Item I1

Component C1 Component C2Junction I2

performs performs

sends

joins joins

receives

traverses

Environment E1 Environment E2

inhabits inhabits

2016-01-30 INCOSE International Workshop 18



National Aeronautics and 
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

Graph Theory

• Graph theory is a branch of mathematics devoted to 
analysis of relationships between pairs of objects

• It has produced time- and space-efficient algorithms for 
many interesting problems, including
– identifying connected components (fault propagation)
– determining reachability from a to b (comm reliability)
– finding shortest path from a to b (comm routing)
– topological sorting (planning and scheduling)
– finding cycles (requirements flowdown errors)

• It is applicable to systems engineering because
– Complex systems are partially understood through analysis 

of relatedness and partitioning into weakly-coupled 
components

– KR systems often represent knowledge as graphs
• as shown in the previous example

2016-01-30 INCOSE International Workshop 19



National Aeronautics and 
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

31 Systems + Software

A Closer Look at Automation
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Automation Example: Mechanical CAD

• 1960s:
– in-house mainframe-based systems

• 1970s:
– simple drafting automation
– transition from mainframes to minicomputers
– foundation work in geometry modeling (NURBS)

• 1980s:
– transition from 2D to 3D
– transition from minicomputers to workstations
– transition from wireframe to surface modeling

• 1990s and beyond:
– transition to personal computers
– emergence of feature-based modeling
– integrated CAD at system scale and below

• e.g., Boeing Dreamliner
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More about MCAD

• Each decade saw a dramatic increase in available 
computing power
– not just CPU speed, but number of CPUs

• As computing power increased, the MCAD industry 
steadily enlarged the set of problems it can tackle
– Collaboration: visualization, animation
– Analysis: optimization, simulation

• Over 50 years, these changes have completely 
revolutionized the practice of mechanical 
engineering
– from the largest aerospace companies to bike shops
– no one wants to go back to the old days

• Key Conclusion: Automation can drive major 
engineering innovation—but we have to adapt in 
order to exploit it
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Moore’s Law and Systems Engineering

• There have been dramatic 
increases in CPU power, 
memory, and storage 
capacity of computer 
systems in the last 40 
years

• High-performance 
computing has gone from 
an expensive, exotic niche 
to a mass commodity

• Has systems engineering 
incorporated this new 
reality into its doctrines 
and practices?
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Automation and Systems Engineering

• We don’t design a spacecraft to fly a fixed mission
– that is, to execute a fixed trajectory and sequence
– stuff happens and we have to adapt to it

• So the design problem splits into two coupled pieces:
– design the mission assets to have a range of behaviors to 

be selected during mission execution (system design)
– select from available behaviors during execution to achieve 

mission objectives (planning and scheduling)
– and analysis must account for both

• Planning and scheduling problems are nearly always 
computationally complex due to combinatorics

• Solutions rely on clever algorithms and advances in 
computation that move the tractability limits
– brute force becomes practical when computation is cheap

• Computers can be the robotic explorers of design space
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A Grand Challenge for Systems 
Engineering
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Don’t Be Stupid

• For this purpose, I’m defining being stupid as

• or alternatively,

making a mistake you could have avoided 
through minor adjustments in procedure or 
priority, without benefit of hindsight

making a mistake for which the best explanation 
you can come up with is “We were stupid.”
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An Example: Apollo 13 Failure

• Apollo 13 was the third scheduled lunar 
landing, launched April 11, 1970
– suffered catastrophic service module 

failure during translunar cruise
– lunar landing was scrubbed, crew returned 

safely with tiny margins—a very close call
• The Apollo 13 Review Board concluded

• What were the mistakes?
• Which ones can we avoid in the future?

[…] the accident was not the result of a chance 
malfunction in a statistical sense, but rather 
resulted from an unusual combination of 
mistakes, coupled with a somewhat deficient 
and unforgiving design.
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Apollo 13: What Happened?

• O2 tank no. 2 had a loosely fitting fill tube assembly
• The tank was jarred at the prime contractor’s plant, 

which may have displaced the fill tube
• KSC used improvised (but in spec) ground detanking

procedures due to difficulties with normal procedures
• The improvised procedures required operating tank 

heaters for long periods
• Thermostatic relays failed (closed!) during detanking
• The tank wiring was damaged by excessive heating
• Use of heaters in flight led to catastrophic failure
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Apollo 13 Root Cause Analysis

• O2 tank no. 2 had a loosely fitting fill tube assembly
– a mistake but probably not stupid

• The tank was jarred at the prime contractor’s plant, 
which may have displaced the fill tube
– a mistake but the tank exhibited normal function afterward

• KSC used improvised (but in spec) ground detanking
procedures due to difficulties with normal procedures
– probably caused by the displaced fill tube
– a mistake but not obviously so at the time

• The improvised procedures required operating tank 
heaters for long periods
– a mistake but not obviously so at the time

• Thermostatic relays failed (closed!) during detanking
– a mistake but not necessarily stupid
– the failure signature is there (subtly) in test records
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Apollo 13 Root Cause Analysis

• The tank wiring was damaged by excessive heating
– a mistake but largely invisible, not stupid

• The 1962 tank heater relay specification was 28V
– not a mistake

• In 1965 the prime contractor revised the specification 
to 65V
– not a mistake

• The tank supplier ordered new switches but did not 
revise the tank design specifications

– Avoiding this mistake alone would almost certainly have 
prevented the failure

The thermostatic switch discrepancy was not detected by 
NASA, NR, or Beech in their review of documentation, nor 
did tests identify the incompatibility of switches with the 
ground support equipment at KSC [….] It was a serious 
oversight in which all parties shared. [My emphasis.]
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We Must Prevent This Kind of Mistake

• We have unambiguous language to talk about
– Properties of things

• e.g., load has voltage rating, power supply has voltage
– Taxonomies of things

• e.g., relay is a kind of load, power supply is a kind of source
– Whole-part relationships of things

• e.g., tank has heater, heater has relay
– Interconnectivity of things

• e.g., relay connected to GSE power supply
– Constraints on connections and things connected

• e.g., load voltage rating ≥ supply voltage

• We have algorithms to find and evaluate
– every constraint binding every connection

• whether directly asserted or inherited from parent types

• We have the computational power to verify the above
– this one isn’t particularly challenging
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Not Being Stupid Gets Harder Every Year

• Humans in general and JPL in particular have been 
flying machines in space for nearly 60 years
– The basic phenomena are well-understood
– Risks of failure due to epistemic uncertainty continue to 

decline
• But systems yearly become more and more complex

– What does that really mean?
– System design descriptions become longer
– Vocabulary of system design becomes richer
– and therefore…

• Risks due to stupid mistakes grow geometrically
• If we don’t address this problem, who will?
• If we don’t do it now, how will we ever?
• How would you address it?
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OK, But What About MBSE?

• My definition of modeling (you’re welcome to it) is
– the systematic application of

• language
• abstraction
• automation

– to enhance
• collaboration
• analysis

• MBSE, therefore, is simply the above applied to systems 
engineering

• It is not, and must not become a religion
• It’s just technique; the only good reason to use it is 

that it works
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