
Generating Real-Time Robotics Control Software from
SysML

Peter Godart
NASA Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-5017
Peter.T.Godart@jpl.nasa.gov

Johannes Gross
NASA Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-2191
Johannes.Gross@jpl.nasa.gov

Rudranarayan Mukherjee
NASA Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-2677
Rudranarayan.M.Mukherjee@jpl.nasa.gov

Abstract— In this paper, we outline an approach for auto-
generating real-time robotics control code from hierarchical
state machines and hardware configurations encoded in Systems
Modeling Language (SysML). We propose a software architec-
ture that provides an abstract SysML layer with access to device
state information and a set of primitive device commands, such
as move_actuator and release_brake, allowing a user to
build up a complete functional state machine directly in SysML.
The SysML diagram is then exported to a standard SCXML
file format and subsequently used to auto-generate hardware
control code. Once this architecture is in place, the only explicit
code elements that need to be written are the primitive device
commands, which can be easily unit tested and reused across
different systems. The motivation for this work was the need for
a test bed that enables the rapid prototyping of mechanisms and
control algorithms for a spacecraft that could ultimately be used
for preparing Martian rock samples for their return to Earth.
To this end, our software system was also designed to allow
for the run-time specification of the hardware layout in SysML,
with the hardware-level control functions kept agnostic to the
specific parameters or communication bus of any particular
device. Further, we outline a system for specifying both the state
machine and hardware configuration in the MagicDraw IDE in
such a way that the system can be simulated before any code
is generated. The resultant software system is easy to debug,
understand, and allows users to choose how much information
is encoded as a visual or text-based representation.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. BACKGROUND . 1
3. EXAMPLE APPLICATION . 2
4. SYSTEM MODELING . 3
5. AUTO-GENERATING REAL-TIME SOFTWARE 6
6. DISCUSSION . 9
7. SUMMARY . 9
ACKNOWLEDGMENTS . 10
REFERENCES . 10
BIOGRAPHY . 10

978-1-5090-1613-6/17/31.00 c©2017 IEEE

1. INTRODUCTION
Visual programming languages have the potential to enhance
software development for robotic systems. They allow for
better readability of control logic, facilitate rapid prototyping,
and work well to protect users against syntactical errors;
however, they often abstract too much away, limiting the
level of specificity necessary for real-time device control.
Further, the trend in the robotics community away from vi-
sual programming languages means that most useful robotics
software libraries are targeted towards systems developed in
languages like C, C++, and Python. Regardless of which
language is chosen for development, however, it is common
practice to use block diagrams in the process of creating state
machines and general control algorithms. Such diagrams are
useful for the communication and elucidation of ideas, but
they do not typically encode enough information to directly
translate to hardware-level control software.

One such format for creating these block diagrams is SysML
[1]. SysML is an industry standard for encoding robotics
control algorithms using human-readable block diagrams.
Users of this standard benefit from numerous language-
specific Interactive Development Environments (IDE), a large
community of developers, and a lengthy history of examples
and case studies. In a typical robotics use case, it serves as a
visual representation of a robotic system’s internal hierarchi-
cal state machine, which controls everything from low-level
actuator commands to high-level behaviors. While directly
useful as an organizational tool for the robotics software
engineer, SysML itself cannot run hardware. As a result,
the aforementioned benefits of using this language are lost in
lower levels of abstraction, as the engineer must inevitably
re-implement the state machine in a language that is also
understood by computer processors. Our system of auto-
generating code from the SysML block diagrams provides
a middle ground between visual and textual programming
languages, preserving the benefits of both.

2. BACKGROUND
Auto-coding Hierarchical State Machines

The Hierarchical State Machine (HSM) has long been used
for encoding autonomous behaviors in robotic systems for

1

both flight and research projects. An HSM allows a developer
to concisely specify a sequence of actions to be performed
based on the state of the system and sensory inputs. Further,
an HSM allows for states to contain sub-states, which inherit
the methods and attributes of their parent state, providing
developers a means for eliminating redundant code. There are
methods for writing these state machines directly in program-
ming languages such as C/C++ [2]; however, debugging er-
rors in state machine logic can be time-consuming due to the
inherent verbosity of most popular low-level programming
languages. In response to this issue, there have been numer-
ous attempts, summarized in [3], to auto-generate real-time
code from block diagram state machine representations. The
resultant code is, by virtue of its visual representation origins,
self-documenting and therefore much easier to debug. This
method of implementing the logic for robotic autonomy has
been used with success throughout the research community
and is also currently being used to generate flight code at
JPL [4]. The flight code produced using this method handles
the complex message passing framework implementation of
a given state machine, but it still requires developers to fill
auto-generated code stubs with device-level control code.

SysML

Besides the modeling of state machines, SysML can be
used to capture the systems and domain specific information
across a wider range of a project. In the works of the
European Southern Observatory this has been demonstrated
on various telescope projects [5], [6], [7]. Also at JPL there
is a wide range of applications that SysML is used for, e.g.
Document Generation [8] or State Analysis [9]. Besides the
improvements on reliability and efficiency a more formal and
computer-aided approach promises, the long term trend can
be seen as an increasing data integration for engineering in
general. These are the foundations for scenarios as shown in
[10], [11], [12] that demonstrate the complete data integration
of a satellite design process.

3. EXAMPLE APPLICATION
JPL is in the process of formulating several Mars mission
concepts with the ultimate goal of returning Martian rock
samples to Earth for closer study. To this end, a Curiosity-
class rover, to be launched in 2020, will fill sample tubes
with Martian rock cores in key locations and leave them for
a subsequent rover to potentially collect and insert into orbit
around Mars. Once in orbit, a satellite would intercept the
bundled collection of tubes (the “OS” for “Orbital Samples”),
sanitize its exterior, and place it into an Earth-bound return
vehicle. The motivation for the work presented in this
paper was the need to develop highly reconfigurable software
for rapidly prototyping the mechanisms and the associated
control software in this OS rendezvous satellite. This soft-
ware requires an interface that allows systems engineers not
familiar with the specifics of real-time device-level software
to prototype, simulate, and run state machines on actual
hardware. We chose to use the HSM framework to achieve
this functionality, as this task requires the specification of
numerous routines that occur serially in the process of cap-
turing, cleaning, and releasing the sample tubes.

Further, due to the challenges associated with physically
simulating the retrieval satellite’s micro-gravity environment
in a lab on Earth, certain testbed elements must be simulated
in software while others have physical analogs. For example,
a representative orbital sample collection can be manipulated
on the end of a robotic arm to physically simulate micro-

gravity dynamics; however, in order to avoid collisions with
the arm, parts of the capture mechanism must be simulated
in software. To perform comprehensive system-level testing,
the physically represented and simulated components are
frequently swapped, necessitating that the test bed software
also have an interface for specifying which devices have
physical instantiations and which are simulated. In an effort
to consolidate the location and amount of information an
engineer must input in order to reconfigure and control a
particular prototype setup, the hardware specification, like
the HSM, is also implemented in SysML. As a result, a
single IDE can be used to set up and control a new system,
facilitating our desired ability for rapid prototyping.

Figure 1. The OS Rendezvous Concept Vehicle with the
orbital sample container approaching.

Hardware Setup

The examples used in this paper to illustrate our software sys-
tem all pertain to the aforementioned OS rendezvous vehicle
concept, of which a CAD representation is shown in Figure
1. This system consists of mechanisms to capture, reorient,
sanitize, and release the notional OS, as well as a suite of
mechanical and optical sensors for feedback to the autonomy
system. The capture mechanism consists of two sets of
blades that close around the approaching OS once it breaks
a laser beam. Once captured, wheels on the end of the blades
spin to reorient the spherical OS to an orientation acceptable
for its insertion into the Earth return vehicle. To abide by
planetary protection constraints, the exterior of the OS must
be sanitized before it can return to Earth. To this end, a shell
would be brazed in place around the OS to hermetically seal
the sample tubes. The sanitary OS container would finally be
placed into the return vehicle by means of a robotic arm with
two degrees of freedom, and the vehicle released from the
rendezvous satellite. All SysML diagrams used as examples
in this paper refer to this mechanical system. Figure 3 shows
some of the types of actuators and sensors used in this system,
and Figure 2 shows the variables used to describe the state
of these devices. Figure 10 indicates how actual telemetry
channels map to these state variables. These figures are
described in further detail in Section 4.

Hardware Simulator

In order to test the validity of the software system outlined
in this paper, we worked closely with M3TK, a multi-body
dynamics simulator that is able to simulate hardware systems
in real-time [13]. This simulator, developed at JPL, is able

2

to process device commands sent via TCP messages from
our auto-generated control software and execute them in
simulation as they would occur in a physical system, thereby
enabling us to rapidly interchange device elements to test
the functionality of our control software without putting
hardware at risk. M3TK provides immediate visual feedback
on the state of the system, facilitating efficient algorithm
development. Figure 1 shows the simulator’s graphical output
for the OS rendezvous satellite that was the focus of this
work. Moreover, the commands sent to M3TK are identical to
commands sent to physical hardware elements, consequently
enabling us to swap out physical and simulated devices with
little effort. Whether or not a particular device is simulated is
specified at the SysML hardware topology level, as described
in Section 4.

Figure 2. Block Diagram of the OS Rendezvous Concept
Vehicle and its components.

4. SYSTEM MODELING
The system model for the OS rendezvous concept ve-
hicle is created as a SysML Block Diagram. In Fig-
ure 2 the main blocks of the system model are shown.
The OS_rendezvous_vehicle is linked to Actuator,
Sensor, and RetainmentPin blocks, indicating the three
types of devices that are supported for this particular sys-
tem. The CaptureAndOrient block is the subsystem
that corresponds with the autonomy process. Inside this
block all the relevant state variables for the autonomous
control of the system are declared. In the Internal Block
Diagram of the OS_rendezvous_vehicle, shown in
Figure 10, the incoming variables for all the actuators and
sensors are connected to the state variables defined in the
CaptureAndOrient block. This separation allows for a
flexible extension of the vehicle. Every additional actuator
or sensor that is used can be added as a new link to the
standard actuator and sensor blocks. This relation takes care
of the message receiving since the code just tries to write to
a component of the OS_rendezvous_vehicle with the
appropriate name.

State Machine Modeling

For the simulation, the MagicDraw [14] add-on Cameo
Simulation Toolkit [15] offers a current implementation of
the fUML standard [16]. This execution framework allows
for Groovy and Java-Script code to be executed inside of
OpaqueBehaviors. Each separate state machine is executed

in its own thread, so we can read messages and execute the
autonomy logic at the same time. The simulation framework
is used in two separate use cases. First, the simulator is
used off-line to test the state machine and the state variables.
This way, the threshold values can be adjusted and the state
transitions can be checked for completeness. The second
use case is in on-line mode while the generated code is
controlling the system or a simulator. In this case, one process
is reading messages and updating the state variables. On
the transitions we use ChangeEvents to trigger the transition
from one state to another. This way, any time a variable
gets updated, the state machine checks whether a transition
is possible. In Figure 4 the first part of the state machine for
the CaptureAndOrient component is shown.

In each state we can define actions that are executed on entry
or on exit. The transitions between the states are triggered
on changes of a variable. Thus when running the system
in telemetry mode, the transitions are attempted at the rate
of the incoming messages. Whether a transition is feasible
or not is decided by logical expressions involving the state
variables. In the diagram, before the logical expression that
is the guard of the transition we can see a when(true). This
is a ChangeEvent on the transition that attempts to transition
on every update of the variables. The SysML ChangeEvents
field Change Expression is not exported to SCXML, the file
format used as input to the auto-coder, so only the guards can
be used for the logical expressions.

In Figure 5 the simulation console of the Cameo Simulation
Toolkit is shown. On the left all instantiated components
can be seen. In the middle, the system output is printed,
and on the right the state variables with their current values
are shown. The console allows the user to send triggers via
existing signals. It also highlights the currently executed
element in the diagrams. In Figure 4 the visited elements
are marked green, the last visited element is marked yel-
low and the currently executed element (the transition from
ArmsClosed to OSCaptured) is marked red.

Figure 3. Device block diagram.

3

Figure 4. State machine of the OS Rendezvous Vehicle for the capture of the orbital sample container.

Figure 5. Debug environment of Cameo Simulation Toolkit used for control of model execution.

4

Hardware Setup Model

MagicDraw is also used to specify device parameters such
as actuator gear ratio and position limits as well as the
hardware topology (i.e. which devices are attached to which
communication bus and what order). Figure 3 shows a sample
actuator device and the parameters specific to its operation. In
this example, the parent device class is BusElement, which
can refer to a number of actuator or sensor instantiations that
share the same communication protocol. Within actuator or
sensor instantiations, the user can further specify the type of
actuator or sensor. For instance, an actuator on this example
bus can either be revolute or prismatic and a sensor can only
be a potentiometer. Figure 6 illustrates how the user would
link specific actuator or sensor instances together in the order
that they physically appear on a particular communication
bus. At this level of specification, simulated and actual
hardware devices would be similarly represented as is shown
in Figure 3. The key difference would be that the buses
for simulated and actuator hardware devices would be kept
separate.

Figure 6. Bus topology specification.

Once specified at the SysML level in MagicDraw, the
hardware topology and parameter configuration is then ex-
ported to YAML [17] using a custom MagicDraw exporter
and subsequently read into the autonomy software at run-
time. Figure 7 shows an example of what is output by
this exporter for a part of the system shown in Figure 3
and Figure 6. YAML complements the hierarchical na-
ture of our device specification in that it allows for in-
heritance as denoted by <<: followed by the tag of the
structure from which you want to inherit elements. Tags
are specified using the & character followed by the tag
name and are dereferenced in an inheritance statement us-
ing the * character. In this example, under devices
in the bus topology specification, the first device, named
JOINT_CONTROL_BLADE_1, inherits the bulk of its pa-
rameters from simcat_actuator_revolute, which in
turn inherits additional information from actuator. This
paradigm results in a compact device specification format that
can easily be parsed at runtime by the autonomy software.

Language: YAML

GENERIC DEVICE TYPES
actuator: &actuator
device_type: "ACTUATOR"

sensors: &sensor
device_type: "SENSOR"

SPECIFIC DEVICE TYPES
simcat_actuator: &simcat_actuator_revolute
<<: *actuator
slave_type: "SIMCAT_ACTUATOR"
gear_ratio: 100
actuator_enc_ticks: 2000
max_velocity: 1000.0
max_acceleration: 1000.0
motion_type: "ROTATE"
motion_mode: "POSITION"
direction: -1
lower_pos_limit: -1000.0
upper_pos_limit: 1000.0

simcat_sensor_analog: &simcat_sensor_analog
<<: *sensor
slave_type: "SIMCAT_SENSOR_ANALOG"
num_slaves: 1

BUS TOPOLOGY
devices:
- <<: *simcat_actuator_revolute
ecat_id: "SIMCAT_ACTUATOR_ID_1"
name: "JOINT_CONTROL_BLADE_1"
initial_pos: -2.9517
initial_vel: 0.0

- <<: *simcat_sensor_analog
name: "SENSOR_LASER_BOTTOM_SHELL"
channel: "SIMCAT_SENSOR_ANALOG_CH0"
sensor_type: "MOT_SENSOR_POT_DEVICE"

Figure 7. Custom MagicDraw YAML exporter output.

Work Flow

Figure 8 shows a high-level block diagram of the end-to-end
software development process facilitated by the use of our
auto-coder and MagicDraw modeling tools. When presented
with a new hardware system, simulation, or combination of
the two, the user begins software development by creating
SysML diagrams in MagicDraw to specify the state machine
logic and the hardware topology as previously described.
Once simulated in MagicDraw to ensure system behavior is
as expected, the state machine SysML diagram is exported
to SCXML using a built-in MagicDraw exporter, and the
hardware topology is exported to our custom YAML speci-
fication using a custom exporter. The user then runs our auto-
coder, which is implemented as an executable Python script,
on the SCXML file to auto-generate C code. This C code is
included in the control software source code and compiled
along with the rest of the source code to produce a binary
file that can be run to execute the state machine specified
in the first step of this process. The YAML configuration
file produced from the hardware topology SysML diagram is
read into the control software at runtime, providing a mapping
between devices and communication buses as referred to by
the primitive control functions called in the state machine.
Note that the block labeled “HSM Intermediate” in Figure
8 represents an intermediate text-based HSM representation,
the details of which are provided in Section 5. Our auto-
coder can alternatively generate C code from this type of file
as well.

While normal operations require that a user only input in-

5

formation in two locations within MagicDraw, there are
situations in which other software elements must be edited as
well. First, the requirements of a particular hardware system
may necessitate that a new primitive device-level command
be implemented. For example, a set of primitive commands
which previously only had to control single actuators at a time
may not be sufficient for controlling an industrial robotic arm
that can only accept Cartesian space commands. In this case,
a developer would add this new function directly in the C
source code, represented by the “Static Source Code” block
in Figure 8. This function would also need to be declared
in the primitive command header file, which is automatically
included in the auto-generated C code header file, placing the
function in the scope of the HSM. The static source code must
also be updated whenever a new type of device is added at
the SysML hardware topology level. Primitive commands
are responsible for sending generic device-level command
messages to a hardware server that parses the messages and
relays the commands to actual hardware using device-specific
drivers. The instructions for translating messages based on
device type must therefore be modified whenever a new
device type is added. In practice, these changes are often
minimal and are easily unit-tested.

Figure 8. Diagram showing the typical work flow for our
system. Bold font boxes require user input.

Communication Between MagicDraw and Control Software

For debugging purposes, we also found it useful to implement
a two-way TCP/IP interface between MagicDraw and the
control software. The control software sends device telemetry
to MagicDraw, which displays the data as the values of the
variables defined at the hardware configuration layer as in
Figure 10. The right pane of Figure 5 shows the Magic-
Draw output used for this purpose. MagicDraw also uses
the telemetry information to evaluate guards and update the
simulated state of the HSM. This functionality enables real-
time visual feedback that proves to be an essential HSM
logic debugging tool. We also implemented a function that

enables MagicDraw to send the allowable device-level prim-
itive commands directly to the hardware layer of the control
software, a functionality useful for developing and debugging
the primitive commands themselves.

5. AUTO-GENERATING REAL-TIME
SOFTWARE

The following section describes our auto-coder implementa-
tion, which generates C code from State Chart XML files;
however, this process can be generically extended to other
programming languages and HSM specification formats.

Software Structure

Our auto-coder implementation outputs two high-level func-
tions responsible for controlling the progression of the state
machine and executing associated actions in hardware. These
two functions are exposed to the main process loop, which
runs cyclically in real-time, via the inclusion of an auto-
generated header file. The first function handles messages
sent from other software modules and is called in the main
process loop after the messages are read in. This function is
called once for every new message received, and it updates
the state machine depending on the message type and current
HSM state. Figure 9 shows an example of the dispatch
function, hsm_dispatch, for a state machine that has two
states, S1 and S2. This function switches on the current
state of the HSM, and calls the state-specific message handler
function accordingly. The message handler, an example of
which is also shown in Figure 9, switches on the type of
message passed in as an argument and executes whatever
code was specified in the SysML diagram and then returns
zero if it has no parent states or otherwise calls the message
handler of its parent state. This functionality enables the
inheritance properties crucial to the HSM paradigm.

// Language: C

int hsm_dispatch(hsm* self, msg* message,
msg_type type) {

switch(self->state) {
case S1:
return S1_handle_message(self, message, type);

case S2:
return S2_handle_message(self, message, type);

// etc.
}

}

int S1_handle_message(hsm* self, msg* message,
msg_type type) {

switch(type) {
case M1:
// Code specified in SysML

case M2:
// Code specified in SysML

// etc.
}
return 0;
// If current state has parent state:
// return (parent_state)_handle_message(self,

message, type);
}

Figure 9. Auto-generated message dispatch function.

The second high-level function generated by our auto-coder
checks the conditions specified as transition guards and up-
dates the state machine accordingly if any evaluates to true.

6

Figure 10. Internal Block Diagram showing the routing of the incoming signals to the state variables.

This function is called once per cycle of the main process
loop. Figure 11 shows an example of this function for a state
machine with two states, S1 and S2. Similar to the mes-
sage dispatch function, this function switches on the current
state of the HSM and calls a state-specific conditional check
function. This function, an example of which is also shown
in Figure 11, evaluates the if-else statements represented as
gates at the SysML level. The code executed for any of the
if-else statements that evaluate to true is also specified at the
SysML level. Additionally, to enable inheritance, each state-
specific condition check function calls the condition check
function of its parent state if it has one and otherwise returns
zero.

An explicit goal of this auto-coder implementation was for
it to output code that, once compiled in the case of using C,
can directly control hardware. That is, the user has access

to primitive device-level control functions as well as device-
specific state information at the SysML level. Such primi-
tive functions, for example, include move_actuator(),
release_brake(), and set_digital_output().
To control actual hardware using such a command, the
user can specify the arguments to the method call in
SysML. For example, the inputs to the move command
are move_actuator(id, position, velocity),
where id is the identifier derived from the topology shown
in Figure 6. A header file containing the declaration of these
functions is automatically included in the auto-coder output
header file, placing them in the scope of the auto-generated
HSM process functions. At compilation, the file defining the
primitive device-level functions is then included as a source.

In order for the state machine to be able to access device
state information (e.g. actuator position) for use in evaluating

7

// Language: C

int hsm_check_conditions(hsm* self) {
switch(self->state) {
case S1:
return S1_check_conditions(self);

case S2:
return S2_check_conditions(self);

// etc.
}

}

int S1_check_conditions(hsm* self) {
if (/* Condition specified in SysML */) {
// Code specified in SysML

} else if (/* Condition specified in SysML */) {
// Code specified in SysML

}
// etc.

return 0;
// If current state has parent state:
// return (parent_state)_check_conditions(self);

}

Figure 11. Auto-generated guard evaluation function.

guards, a process separate to the main control process queries
all devices in the system and sends the relevant state informa-
tion to the main control process via UDP messages. These
messages are processed in the control process loop and an
array of structs containing device state information is updated
accordingly. A pointer to this array is stored in the hsm struct
passed as an argument to hsm_check_conditions, and
thus the device state can be used at the SysML level in
the guard statements. Further, the position of a particular
actuator in this two-dimensional array corresponds with both
the communication bus it is on and its position on that bus.
This array is allocated at run-time based on the hardware
topology specified in SysML.

Intermediate Textual HSM Representation

In order to auto-generate code from a block diagram state
machine representation, the state machine must first be con-
verted to a textual representation that can be easily parsed in
software. There are numerous schemes for converting SysML
diagrams to other text-based state chart representations. For
this application, a built-in MagicDraw exporter is used to
convert SysML to State Chart XML (SCXML) [18]. We
also found it useful to convert the SCXML file to another
custom intermediate text-based HSM representation. Figure
12 shows an example of this custom format. The primary
motivation for this additional step was to provide our system
with backwards compatibility for prior code generation work
performed at JPL under the ATHLETE project [19]. We
built on the HSM specification framework developed for
the ATHLETE software system by adding guard statements
explicitly in the textual HSM representation. This addition
enables a more direct translation between SysML and this
legacy framework.

Auto-coder Implementation

Our auto-coder conceptually builds upon work done in [19]
and adheres to principles described in [2], though it was
developed from scratch in Python 2.7. The code generation is
performed in two parts. First, the SCXML file output from
MagicDraw is converted to the intermediate textual HSM
representation format described in the previous section, with
its output saved as a text file. Second, the intermediate HSM

// Language: Custom HSM representation

state S1 {
@entry {
// Entry code

}
@M1:
// Code to execute when message M1
// is received
=> S3 // Transition to state S3

@M2:
// Code to execute when message M2
// is received

$guard var_1 > var_2:
// Code to execute when var_1 is
// greater than var_2

@exit {
// Exit code

}
}

state S2 : S1 {
@entry {
// Entry code

}
$guard var_3 == var_4 && var_5 < var_6:
// Code to execute when var_3 equals var_4
// and var_5 is less than var_6

@exit {
// Exit code

}
}

Figure 12. Example of intermediate textual HSM
representation. States can have an arbitrary number of

message and guard statements.

text file is read in and processed by a separate Python function
that outputs two files, a main C code file and its associated
header file. Note that this second step was broken out into
a separate function to address the compatibility concerns
previously described.

In the process of auto-generating the C code from SCXML,
the auto-coder first processes the intermediate HSM repre-
sentation and stores the state topology as a linked list of
state class objects to organize and preserve the state machine
hierarchy. Figure 13 shows the organization of class objects
utilized in this auto-coder. Parent states, if they exist, are
linked to their child state(s) via the parent attribute within
the State class instance of their child state(s). Guards and
message event handlers are implemented as classes as well
and are stored in lists inside of their associated state class
instance. Once processed and organized in this format, a
function steps through the linked list and produces the C
code to fill in the message handling and condition checking
functions described previously. State entry and exit code is
copied into separate entry and exit functions for each state.
When a state transition occurs in either a message dispatch or
condition checking function, the exit function for the current
state is called, followed by the entry function for the next
state. If the next state is located outside of the current
parent state, the parent state’s exit function is called after the
current state’s exit function. This process of calling entry and
exit functions is applied recursively for transitions that occur
between states that are multiple levels apart in the hierarchy.

From an operational perspective, the auto-coder can take in
an arbitrary number of SCXML files and alerts the user to
a wide array of compatibility errors (e.g. the user inadver-
tently passes in two SCXML files from two different state
machines). The auto-coder will also alert the user if any

8

states are not reachable or if a particular non-terminal state
terminates the state machine. Finally, the auto-coder enforces
the rule that state transitions cannot occur with the entry or
exit functions of a state machine.

Language: Python 2.7

class State:
def __init__(self, name, parent_state=None):

self.name = name
self.entry_code = ’’
self.exit_code = ’’
self.guards = []
self.state_msgs = []
self.parent = parent_state

class State_msg:
def __init__(self, name):

self.msg_name = name
self.msg_code = ’’

class State_guard:
def __init__(self):

self.guard = ’’
self.action_code = ’’

Figure 13. Organization of state information in
auto-coder implementation.

Auto-coding Timers

Our auto-coder handles the after guard type in SysML
differently from other guard types, in which the conditional
statement is copied directly into the C code condition check
function. By specifying, for example, after 5s in a
guard statement, the system should transition through the
guard 5 seconds after it is reached. In order to handle
this without adding additional auto-generated functions that
must be called in the main process loop to check timers, the
after Ns statement prompts the auto-coder to insert code
that first queries and stores the current system time in the hsm
struct. This code, implemented using the standard time li-
brary in C, is inserted in the entry function of the state with the
timer guard. The auto-coder then inserts an if statement into
the state-specific condition checking function that evaluates
if the current time is N seconds greater than the time recorded
upon entering the current state. To enable this to work in
this particular implementation, #include <time.h> is
inserted into the auto-generated header file.

6. DISCUSSION
Core Benefits

We tested our software system extensively on both physical
and simulated hardware and found that our auto-coder signif-
icantly reduced the amount of time necessary for prototyping
system autonomy logic. In particular, our method of code
generation is well-suited for a hardware system in which the
number and arrangement of physical and simulated devices
is frequently changing. By providing the developer with the
primitive device-level commands at the SysML level, iter-
ating on control algorithms is intuitive and straightforward,
as the entirety of the control logic can be viewed directly
in the SysML diagram. Numerous previous auto-coder ap-
proaches require that the user fill in auto-generated function
stubs that appear as non-descriptive state handler functions in
the SysML diagram, obscuring some of the state machine’s
functionality at that level. Further, we developed a build
system utilizing GNU make that condenses the compilation
instructions to a single top-level Makefile, which takes care

of running the auto-coder and linking the auto-generated code
together. This allows a developer not intimately familiar
with the underlying software infrastructure to build and run
the system with minimal effort. The auto-coder catches
mistakes made in specifying the state machine and outputs
error messages that suggest how to fix issues at the SysML
level. Finally, we implemented our auto-coder scheme to
take advantage of the features provided by the MagicDraw
IDE. Our state machines can be simulated directly within
MagicDraw, giving the developer the ability to test algorithms
without recompiling the code base. Additionally, this same
functionality also enables the state machine to be simulated in
real-time alongside the actual control software system. This
feature provides the user with visual feedback that the HSM
is proceeding as expected.

Expanding Auto-coder to Other Languages

Though our auto-coder outputs C code for the OS rendezvous
test bed application described in this paper, our methods
can be extended to similar systems written in different pro-
gramming languages. The key structural element that en-
ables our method of auto-generating code is a main control
loop that can cyclically call functions to dispatch relevant
messages to the state machine and evaluate state machine
guards. These functions require a method for calling state-
specific handler functions depending on the current state
of the system. In C, for example, this is accomplished
with switch-case statements while Python requires the use
of conditional statements or dictionaries. The code that gets
executed within the state-specific handler functions is taken
directly from the SysML HSM specification, and thus the user
must ensure code compatibility with the desired language.
Further, code compatibility issues at the SysML layer can be
largely avoided by reducing the allowable functions to a set
of primitive device-level commands in the same scope as the
process that is executing the HSM code.

Future work

An important functionality that is lacking in this system is
a method for formally analyzing and verifying the human-
generated state machines to ensure that its behavior is as the
user intended. That is, the progression of a particular HSM
obeys externally specified constraints. This functionality is
especially important for developing algorithms that will ulti-
mately be used in a flight application for which formal HSM
verification is a requirement. A scheme for auto-generating
Promela verification code to be plugged into dedicated model
checking software is presented in [4]. Future implementa-
tions of our auto-coder will support this functionality.

The integration of the autonomy logic in SysML is, in
addition to the advantages demonstrated in this work, one
step in the general direction towards complete engineering
data integration. The physics model that is used to simulate
parts of the hardware can also be generated from SysML
as shown in [20]. The plan is to connect the models of
the autonomy software and the physics simulation within
SysML to further reduce inconsistencies and streamline the
development process. With this integration we can improve
re-usability since the control and the physical behavior of a
component can be specified in a single model.

7. SUMMARY
The culmination of the work presented in this paper is a
method for structuring a real-time robotics control software

9

system to facilitate auto-generating code to execute a hierar-
chical state machine. Our software structure enables the auto-
generation of code that does not require further developer in-
put in order to directly control hardware. We also describe our
system for auto-generating code from SysML diagrams and a
method for specifying such diagrams in the MagicDraw IDE
in such a way that the state machine can be simulated and run
in MagicDraw alongside the real-time control software. The
resultant framework provides users with powerful debugging
tools and a means for writing system autonomy logic in a self-
documenting manner. This system was implemented in C, but
the techniques presented in this paper can extend generically
to most other programming languages.

ACKNOWLEDGMENTS
The research described in this publication was carried out at
the Jet Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronautics and
Space Administration (NASA). Copyright 2016 California
Institute of Technology. U.S. Government sponsorship ac-
knowledged.

REFERENCES
[1] “OMG Systems Modeling Language (OMG

SysMLTM),” http://www.omg.org/spec/SysML/1.4/,
accessed: 2016-09-30.

[2] M. Samek and P. Montgomery, State-Oriented Pro-
gramming. Embedded Systems Programming, 2000.

[3] E. Dominguez, P. Beatriz, A. L. Rubio, and M. A. Zap-
ata, A Systematic Review of Code Generation Proposals
from State Machine Specifications. Information and
Software Technology, Volume 54, Pages 1045-1066,
2012.

[4] E. Benowitz, K. Clark, and G. Watney, Auto-coding
UML Statecharts for Flight Software. 2nd IEEE
International Conference on Space Mission Challenges
for Information Technology, 2006.

[5] R. Karban, M. Zamparelli, B. Bauvir, B. Koehler,
L. Noethe, and B. A., Exploring Model Based Engi-
neering for Large Telescopes - Getting started with
descriptive models. Proceedings of SPIE - The Interna-
tional Society for Optical Engineering July 2008, DOI:
10.1117/12.788739, 2008.

[6] R. Karban, L. Andolfato, P. Bristow, G. Chiozzi, M. Es-
selborn, M. Schilling, C. Schmid, H. Sommer, and
M. Zamparelli, Model Based Systems Engineering for
Astronomical Projects. Modeling, Systems Engineer-
ing, and Project Management for Astronomy VI, Proc.
of SPIE Vol. 9150, 91500L doi: 10.1117/12.2055540,
2014.

[7] L. Andolfato, R. Karban, M. Schilling, H. Sommer,
M. Zamparelli, and G. Chiozzi, Experiences in Apply-
ing Model Driven Engineering to the Telescope and
Instrument Control System Domain. Model-Driven
Engineering Languages and Systems Lecture Notes in
Computer Science Vol. 8767, 2014, pp 403-419, 2014.

[8] C. L. Delp, D. Lam, E. Fosse, and C.-Y. Lee, Model
Based Document and Report Generation for Systems
Engineering. IEEE Aerospace Conference, Paper
2233, Big Sky, Montana, USA, 2013.

[9] D. Wagner, M. Bennett, R. Karban, N. Rouquette,

S. Jenkins, and M. Ingham, An Ontology for State
Analysis: Formalizing the Mapping to SysML. IEEE
Aerospace Conference, Big Sky Montana, USA,, 2012.

[10] J. Gross and S. Rudolph, Modeling graph-based satel-
lite design languages. Journal of Aerospace Science
and Technology, Volume 49, February 2016, Pages 63-
72, doi:10.1016/j.ast.2015.11.026, 2016.

[11] ——, Rule-Based Spacecraft Design Space Exploration
and Sensitivity Analysis. (in press): Elsevier, Journal
of Aerospace Science and Technology, 2016.

[12] ——, Geometry and Simulation Modeling in Design
Languages. Journal of Aerospace Science and
Technology, Volume 54, July 2016, Pages 183191,
doi:10.1016/j.ast.2016.03.003, 2016.

[13] R. Mukherjee et al., “M3tk: A Robot Mobility and
Manipulation Modeling Toolkit,” ASME 2014 Interna-
tional Design Engineering Technical Conferences and
Computers and Information in Engineering Confer-
ence., vol. 7, 2014, DOI: 10.1115/DETC2014-34832.

[14] NoMagic, MagicDraw.
http://www.nomagic.com/products/magicdraw.html,
visited 10/4/2016, 2016.

[15] ——, Cameo Simulation Toolkit.
http://www.nomagic.com/products/magicdraw-
addons/cameo-simulation-toolkit.html visited
10/4/2016, 2016.

[16] OMG, OMG Semantics of a Foundational Subset
for Executable UML Models (fUML). Version
1.2.1, OMG Document Number: formal/2016-01-05,
http://www.omg.org/spec/FUML/1.2.1/PDF/, 2016.

[17] “YAML Ain’t Markup Language (YAMLTM) Ver-
sion 1.2,” http://www.yaml.org/spec/1.2/spec.html, ac-
cessed: 2016-09-30.

[18] “State Chart XML (SCXML): State Ma-
chine Notation for Control Abstraction,”
https://www.w3.org/TR/scxml/, accessed: 2016-09-30.

[19] B. H. Wilcox, T. Litwin, J. Biesiadecki, J. Matthews,
M. Heverly, J. Morrison, J. Townsend, N. Ahmed,
A. Sirota, and B. Cooper, “Athlete: A cargo handling
and manipulation robot for the moon,” Journal of Field
Robotics, vol. 24, no. 5, pp. 421–434, 2007, DOI:
10.1002/rob.20193.

[20] J. Gross and R. Mukherjee, Integrating Multibody Sim-
ulations with SysML. Proc. ASME IDETC/CIE 2015,
Boston, USA, August 2-5, 2015.

BIOGRAPHY[

10

Peter Godart began work as a Tech-
nologist in the Robotic Manipulation
and Sampling Group at JPL in 2015
after graduating with SB degrees in
mechanical and electrical engineering
from MIT. His research interests in-
clude self-reconfigurable robotic limbs,
autonomous robotic software architec-
ture, underwater autonomy, and using
aluminum as a fuel source.

Dr. Johannes Gross received his
Diploma from the University of Stuttgart.
In his PhD at the same institution
he worked out methods and tools to
automate spacecraft design by inte-
grating design knowledge. Currently
he works as Research Technologist at
the Jet Propulsion Laboratory on vari-
ous Model Based Engineering research
tasks.

Dr. Rudranarayan Mukherjee is a Re-
search Technologist and Group Leader
in the Robotics Modeling and Simulation
group at the Robotics and Mobility Sys-
tems section at JPL. His primary role at
JPL is to develop new technologies and
find opportunities to apply them in flight
missions.

11

