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Abstract—Deep space optical communications promises orders
of magnitude growth in communication capacity, supporting
high data rate applications such as video streaming and high-
bandwidth science instruments. Pulse position modulation is the
modulation format of choice for deep space applications, and
by inserting inter-symbol guard times between the symbols, the
signal carries the timing information needed by the demodu-
lator. Accurately extracting this timing information is crucial
to demodulating and decoding this signal. In this paper we
propose a low complexity maximum likelihood timing estimator
for pulse position modulation with inter-symbol guard times
which significantly outperforms the prior art in this domain. We
show that this estimator can achieve the same performance as
prior estimators with an order of magnitude less signal flux,
or multiple orders of magnitude less flux-accumulation time.
Further we show that this estimator achieves the Cramér-Rao
bound, making it asymptotically efficient. This method does not
require an explicit synchronization sequence, freeing up channel
resources for data transmission.

I. INTRODUCTION

Deep space optical communications promises orders of
magnitude higher capacities than radio frequency communi-
cations while reducing the mass and power requirements on
spacecraft [1]. One method of representing digital information
in this regime is pulse position modulation (PPM), where
information is encoded in one of M time slots to denote
a binary sequence of length log2M . Clearly, being able to
resolve the correct time slot in which a pulse was transmitted
is crucial to the operation of a PPM system, and in order to
do so, an estimate of the timing offset at the receiver must be
made.

The method of timing estimation described in this paper
exploits the use of inter-symbol guard times (ISGTs) to infer
this relative timing offset. Inter-symbol guard times are likely
to be used in optical PPM communication systems since doing
so reduces hardware constraints by eliminating the possibility
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of back-to-back laser pulses [2]. Because there are no signal
pulses transmitted during these ISGTs, the identification of
the timing offset may be made by determining the time slots
during which no signal pulses are present.

The primary contribution of this paper is a low-complexity
maximum-likelihood timing estimator for PPM+ISGT opti-
cal links. Existing timing estimators of PPM+ISGT photon
counting detectors exploit first moment properties of the
arrival process, but do not make claims of optimality [2].
Maximum likelihood results for multipulse PPM (MPPM) and
overlapping PPM (OPPM) are known, but they report high
complexity and the OPPM method relies on the existence of
a primary synchronization which occurs before slot synchro-
nization [3], [4]. General maximum likelihood estimators of
optical pulse arrival times are also known [5], but they are not
directly useful for communication synchronization due to their
complexity. A novel coding-theoretic based method has also
been presented [6], but it relies on an explicit sequence for
synchronization. The maximum likelihood scheme presented
in this report is of O(M) complexity, yet achieves the Cramer-
Rao bound even in relatively low flux scenarios. Further, the
approach outlined in this paper can be utilized with an explicit
synchronization sequence as well as using just the data itself
(data-driven synchronization). This is particularly important
in low flux scenarios, in which transmitting a sufficiently
long synchronization sequence may severely impact the data
throughput.

II. MODEL

The synchronization schemes outlined in this paper assume
the use of pulse position modulation with an inter-symbol
guard time. In conventional PPM, information is encoded
in the timing position of an optical pulse. For a symbol of
length Tsym, the symbol is divided into M slots of length
Tslot = Tsym/M , and messages of length log2M are encoded
by sending an optical pulse in one of the M slots. With the
addition of an ISGT, the symbol is divided into M + P slots
of length Tslot = Tsym/(M + P ), and messages of length



log2M are encoded by sending an optical pulse in one of
the first M slots, while the remaining P slots do not contain
signal pulses. Note that the selection of the parameter P
depends upon a combination of synchronization requirements,
hardware constraints and data rates, and is outside the scope
of this paper.

We assume the use of an optical detector assembly which
provides the number of photo-electon counts per given time
interval. The output process of such a detector is well-modeled
as a Poisson point process whose mean number of counts
is proportional to the incident light on the detector [7]. This
mean number of counts may be non-linearly proportional to
the incident light due to phenomena such as blocking [8]. We
observe the detector process x[n] over N symbols, and assume
a single sample per slot is measured. For Poisson distributed
counts, the sum of the counts per slot provides a sufficient
statistic for the timing offset, justifying the use of a single
sample per slot. In practice, samples are summed over the
slot duration to generate the single slot statistic. Thus the
indices of x[n] range in n ∈ {0, . . . , (M + P )N − 1}. The
time over which we collect counts, or the integration time,
is given by Tint = N(M + P )Tslot. The variable N may
be increased to collect signal flux for a sufficient amount of
time in order to be able to distinguish signal slots from ISGT
slots. The observations are binned into a vector y such that
ym =

∑N−1
i=0 x[m+i(M+P )] with m ∈ {0, . . . ,M+P−1}.

In the following analysis we assume that there is no frequency
offset (or equivalently that the frequency offset is known).
However, in concordance with other works [2], this algorithm
can still operate in the presence of unknown frequency offsets
by adjusting the integration time N .

With no timing offset and conditioned on there not being a
signal pulse in slot n, the distribution of the observation x[n] is
Poisson with parameter Kb, the mean number of background
photon counts per slot. With no timing offset and conditioning
on there being a signal pulse in slot n, the distribution of the
observation x[n] is Poisson with parameter Ks + Kb, where
Ks is the mean number of signal photon counts per symbol.
The condition of knowing whether the slot contains or does
not contain a signal pulse is akin to knowing the transmitted
pulse sequence (e.g. observing a known training sequence). In
this case, because the elements of y are deterministic sums of
Poisson random variables, they are also Poisson distributed.
In the case where the symbols are unknown, the elements
of y are no longer Poisson distributed since the number of
summed signal slots is now random, as will be discussed in
Section V. Assuming that the signal slots are deterministically
uniform (i.e. that the same number of pulses appear in each
signal slot over the duration of the integration time), then there
are N

M aggregated pulses in y[m] for m ∈ {0, . . . ,M − 1}.
Note that this is also true if the particular pulse sequence
is unknown, but the number of pulses in each position is
deterministically uniform. The aggregate observation vector
is then Poisson distributed with parameter N

MKs + NKb for
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Fig. 1. Arrival rate function for the first aggregate slot, y0 as a function of
the timing offset τ .

m ∈ {0, . . . ,M − 1} and Poisson distributed with parameter
NKb for m ∈ {M, . . . ,M + P − 1}.

In the presence of a timing offset τ the distribution of the
observation vector changes. Let X ∼ Poi(r) denote that X is
a Poisson random variable with mean r. If τ is integer-valued,
then the distributions of the elements of y are cyclically shifted
by τ (e.g., if τ = 1, then ym ∼ Poi(NMKs + NKb) for
m ∈ {1, . . . ,M} and ym ∼ Poi(NKb) for m ∈ {M +
1, . . . ,M + P − 1, 0}. If τ contains a fractional component
then the means of the two slots adjacent to the ISGT are scaled
between the count and background parameters. Decomposing
the timing offset into integer and fractional components k and
ε, respectively, we observe that

ym ∼



Poi((1− ε)NMKs +NKb) m = k mod (M + P )

m ∈ {k + 1, . . . ,

Poi(NMKs +NKb) k +M − 1}
mod(M + P )

Poi(εNMKs +NKb) m = (k +M)

mod(M + P )

m ∈ {k +M + 1, . . . ,

Poi(NKb) k +M + P − 1}
mod(M + P ).

(1)
Alternatively, we can write the probability mass function of
each slot given a timing offset using an intensity function
λm(τ) which varies with τ :

PYm|τ (ym|τ) =
λm(τ)yme−λm(τ)

ym!
. (2)

The intensity function can be written as

λm(τ) =
N

M
Ks,m(τ) +NKb (3)

where Ks,m(τ) is the mean signal count in the mth slot in
the presence of a timing offset τ . The effective signal count
of the first aggregate slot y0 is shown in Figure 1. Subsequent



effective count functions can be written as cyclic shifts of this
function, such that λm(τ) = λ0((τ −m) mod (M + P )).

III. PILOT-AIDED MAXIMUM LIKELIHOOD
SYNCHRONIZATION

Given the probability mass function of the aggregate ob-
servation vector y given τ , we can form the log likelihood
function:

`(τ ;y) = log

M+P−1∏
m=0

PYm|τ (ym|τ) (4)

=

M+P−1∑
m=0

logPYm|τ (ym|τ) (5)

=

M+P−1∑
m=0

ym log λ0((τ −m) mod (M + P ))

− λ0((τ −m) mod (M + P ))− log(ym!)
(6)

=

M+P−1∑
m=0

ym log λ0((τ −m) mod (M + P )) + C

(7)

where C is a constant. We wish to maximize this likelihood
function with respect to τ , yet we observe that it is not
differentiable at integer values due to the piecewise definition
of λm(τ). However, on each open integer interval (j, j+1), the
likelihood function is both differentiable and concave (since it
forms a sum of concave functions of affine functions [9]).

Taking the partial derivative with respect to τ over the
interval (j, j + 1), we derive

∂

∂τ
`(τ ;y) =

yj+M
N
MKs

(τ − j)NMKs +NKb

(8)

−
yj

N
MKs

(j + 1− τ)NMKs +NKb

= 0 (9)

where the indices of the elements of y are taken modulo M+
P . Solving for τ results in the estimate

τ̂ML,j =
N
MKs((j + 1)yj+M + jyj) +NKb(yj+M − yj)

N
MKs(yj+M + yj)

.

(10)
If the estimate τ̂ML,j is less than j, then we let τ̂ML,j = j, and
if τ̂ML,j is greater than j+1, then we let τ̂ML,j = j+1. As such,
the maximum likelihood estimate can be found by evaluating
the M +P quantities τ̂ML,j for j ∈ {0, . . . ,M +P − 1}, then
choosing the overall estimate as

τ̂ML = argmax
τ̂ML,j

`(τ̂ML,j ;y). (11)

Thus the timing estimate can be formed by calculating 2(M+
P ) simple algebraic equations and evaluating a maximum over
M + P quantities. An example of the log likelihood function
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Fig. 2. The log likelihood function for an example with modulation order
M = 16 and intersymbol guard length P = 4 slots. The actual timing offset
is τ = 14.4545 slots. Each red circle identifies the maximum on that integer
interval.

can be seen in Figure 2, in which M = 16 and P = 4, and
where the timing offset is τ = 14.4545. The circles denote
the maxima on each integer interval, and the maximum of the
overall function can be seen to lie approximately at 14.4545.

To provide a basis for performance evaluation, we compare
the root mean square error of the ML estimator to that of a
correlation-based method [2]. The correlation method utilizes
the same slot count measurements as the ML method. It
assumes a single slot is used for the ISGT, so the smallest
slot count corresponds to the integer estimate of the timing
offset:

k̂corr = argmin
j

yj . (12)

The fractional timing offset estimate is then formed from the
two adjacent count statistics:

ε̂corr =
yk̂−1 − yk̂+1

N
MKs

. (13)

Since the ML method works for an arbitrary size ISGT, a
slight modification to the correlation method is necessary to
perform a fair comparison between the methods. For P > 1
and assuming that M + P mod P = 0, we accumulate the
slot counts of the P adjacent bins to form a “superslot”
count vector z of length M+P

P , i.e. zj =
∑P−1
i=0 yjP+i.

The correlation-superslot method then forms the integer and
fractional estimates of the timing offset as:

k̂corr-ss = P argmin
j

zj . (14)

and

ε̂corr-ss = P
zk̂−1 − zk̂+1

N
M PKs

. (15)

Finally, we also consider a hybrid scheme which forms the
integer estimate from the correlation-superslot method, and the



TABLE I
THE EXAMPLE SCENARIOS FOR WHICH THE TIMING ESTIMATION

PERFORMANCE IS SIMULATED

Scenario 1 Scenario 2
M 16 128
P 4 32
N 105 1.25× 105

Tslot 0.5 ns 5 ns
Ks 0.25 0.09
Kb 0.00005 0.001
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Fig. 3. Root mean square error performance of the three estimation schemes
for Scenario 1 in the presence of Poisson distributed data as in (1). For this
scenario, the Hybrid scheme can be seen matching the ML.

overall estimate using the ML estimate for that particular bin:

k̂hybrid = P argmin
j

zj . (16)

and
τ̂hybrid = τ̂ML,k̂. (17)

We will observe the performance of these schemes for two
scenarios, the parameters of which are described in Table I.
The first scenario utilizes a low order PPM with moderate
signal flux, while the second scenario utilizes higher order
PPM with low signal flux and comparatively high background
flux. These scenarios simulate high-rate near-Earth, and low-
rate deep-space channels, respectively.

The performance of the three schemes in terms of root mean
squared error is shown in Figure 3 for Scenario 1. Data is
generated using the Poisson model outlined in (1) for random
timing offsets τ . As can be seen, the performance of the hybrid
scheme approaches that of the ML with increasing flux.

IV. TIMING ESTIMATE CRAMER-RAO BOUND

To quantify how optimal these estimators are with respect
to mean squared error, we can derive the Cramér-Rao lower
bound (CRB) on the estimation variance. We note that strictly
speaking, the non-differentiability of the likelihood function
means the CRB does not exist at integer-valued timing offsets.

However, because it is differentiable at non-integer values and
the probability of observing an integer-valued timing offset is
zero, it may still prove useful as a performance metric. Further,
for the numeric quantities utilized in this paper (τ = 4.5), the
likelihood function (and thus the CRB) exists. We begin by
calculating the Fisher information:

I(τ) = −E
[
∂2

∂τ2
`(τ ;y)

]
(18)

= −E
[
∂2

∂τ2

M+P−1∑
m=0

log
(
PYm|τ (ym|τ)

)]
. (19)

The second derivative of the likelihood function is non-zero
for two values of m: m1 = bτc and m2 = bτc +M (where
again these indices are taken modulo M+P ). Then the Fisher
information may be written:

I(τ) = E
[

K2
sym1

(Ks(1− ε) +KbM)2
+

K2
sym2

(Ksε+KbM)2

]
(20)

=
K2
s

(
N
MKs(1− ε) +NKb

)
(Ks(1− ε) +KbM)2

+
K2
s

(
N
MKsε+NKb

)
(Ksε+KbM)2

(21)

=
K2
s

(
N
MKs + 2NKb

)
ε(1− ε)K2

s +MKsKb +M2K2
b

. (22)

Finally, the CRB is defined as:

CRB(τ) = I(τ)−1 (23)

=
ε(1− ε)K2

s +MKsKb +M2K2
b

K2
s

(
N
MKs + 2NKb

) . (24)

It is worth noting that the CRB of the timing estimator de-
creases as O(K−1s ) and O(N−1), in concordance with similar
estimates in the AWGN channel, which fall as O(SNR−1)
and O(N−1) [10]. As can be seen in Figure 4, the maximum
likelihood scheme is asymptotically efficient. Since the CRB
is dependent upon the timing offset (specifically, it is depen-
dent upon the fractional component of the timing offset), a
deterministic value (τ = 4.5) was chosen for the results in
Figure 4 to make a meaningful comparison.

V. DATA-DRIVEN PPM SYNCHRONIZATION

When the sequence of transmitted pulses is unknown or
is not deterministically uniform, the aggregated slot counts
are no longer Poisson distributed. This is the case when the
data sequence is used for synchronization without additional
pilots, as is sometimes done in RF OFDM communications
by exploiting the cyclostationarity of the cyclic prefix [11].
Assuming the pulses are uniformly randomly distributed in
the M signal-containing slots, we can calculate the aggregate
slot count pmf of the signal component explicitly. Let Km ∼
Binomial(N, 1

M ) be a random variable denoting the number
of times a signal appears in the mth slot over N symbols.
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Fig. 4. Root mean square error performance of the three estimation schemes
with Scenario 2 and the Cramer-Rao bound. In this scenario the ML scheme
achieves the CRB with significantly less integration time (with sufficiently
long integration time, the Hybrid scheme will match the ML). These simula-
tions used a timing offset τ = 4.5 slots.

Then

PYm|τ (ym|τ) = P

N−1∑
j=0

X[m+ jN ] = ym

∣∣∣∣∣∣ τ


(a)
= P

Km−1∑
j=0

X[m+ jN ]

+

N−1∑
j=Km

X[m+ jN ] = ym

∣∣∣∣∣∣ τ


(b)
=

N∑
k=0

P(Km = k)P

k−1∑
j=0

X[m+ jN ]

+

N−1∑
j=k

X[m+ jN ] = ym

∣∣∣∣∣∣ τ
 (25)

where in (a) we have utilized the fact that, without loss of
generality, we may assume the Km signal-containing slots to
be in the first Km symbols, and in (b) we have utilized the
law of total probability. By definition, the Binomial random
variable yields

P(Km = k) =

(
N

k

)(
1

M

)k (
1− 1

M

)N−k
(26)

and the Poisson yields

P

k−1∑
j=0

X[m+ jN ] +

N−1∑
j=k

X[m+ jN ] = ym

 =

(kKs,m(τ) +NKb)
ym exp(−(kKs,m(τ) +NKb))

ym!
.

(27)
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Fig. 5. Performance of the three schemes with Scenario 1 when using
the mismatched pmf corresponding to unknown, uniformly distributed PPM
pulses. The saturation of the RMSE occurs at high signal flux, but can be
combatted with longer integration times.

We note that even though the individual slot counts are Pois-
son distributed (for a given τ ), the distribution of aggregate
slot counts is not Poisson since the mean and variance are not
the same. From the law of total variance, the variance of this
distribution can be calculated explicitly:

var[Ym|τ ] = EK
[
varYm|K [Ym|K, τ ]

]
+

varK
[
EYm|K [Ym|K, τ ]

]
= EK [KKs,m(τ) +NKb] +

varK [KKs,m(τ) +NKb]

=
N

M
Ks,m(τ) +NKb +Ks,m(τ)2

N

M

(
1− 1

M

)
(28)

This distribution is much less tractable than the Poisson
distribution, and a closed-form solution of the ML scheme
is unlikely. Instead of deriving another ML scheme for the
above distribution, we will inspect the performance of the ML
scheme derived in Section III in the presence of aggregate
slot counts given by the actual distribution in (25). We note
the resulting RMSE performance of this mismatched scheme
in Figure 5. The RMSE exhibits an “error floor” behavior in
which increasing the signal flux does not decrease the MSE
of the timing estimator. This is in sharp contrast to the ideal
Poisson distributed counts, in which increasing the signal flux
results in better estimator performance.

To confirm this effect and to dispel any suspicion that this
error floor is merely an artifact of simulation, we derive a
closed form expression of the MSE of the correlation-superslot
method using the bias-variance decomposition:

MSE(τ̂) = var(τ̂) + bias(τ̂)2. (29)

In particular, we assume we are operating in a high Ks

Kb
regime,

such that correct detection of the ISGT is possible (i.e. k̂ = k).



The correlation-superslot method can be easily shown to be
unbiased:

E[ ε̂ ] = E
[
Yk−1 − Yk+1

N/MKs

]
=

N
MKs +NKb − (1− ε)NMKs −NKb

N
MKs

= ε. (30)

Thus the MSE of the estimator is equal to its variance. The
variance can be similarly found:

var( ε̂ ) = E
[
(Yk−1 − Yk+1)

2

(NMKs)2

]
− ε2

=
1

N2

M2K2
s

(
var(Yk−1) + E[Yk−1]2 + var(Yk+1)

+E[Yk+1]
2 − 2E[Yk−1]E[Yk+1]

)
− ε2. (31)

When the aggregate slot counts are Poisson distributed (as in
Section III, in which a pilot sequence is used), then

MSE(ε̂pilot) =
M(2− ε)
NKs

+
M2Kb

NK2
s

. (32)

By contrast, when the observed sequence is unknown and the
observed counts are subject to the additional variance derived
in (28), the MSE is

MSE(ε̂data) =
M(2− ε)
NKs

+
2M2Kb

NK2
s

+ (1 + (1− ε)2)M − 1

N
.

(33)
The difference between these two regimes is readily apparent;
whereas the pilot-driven MSE follows

lim
Ks→∞

MSE(ε̂pilot) = 0, (34)

the data-driven MSE tends toward

lim
Ks→∞

MSE(ε̂data) = (1− (1− ε)2)M − 1

N
. (35)

However, the MSEs in both cases are proportional to N−1,
meaning that this “error floor” can be overcome with longer
integration times. In practice, the error floor is only apparent at
high signal powers, and the low-flux scenarios in which PPM
would be utilized will not be impacted by this phenomenon.

VI. CONCLUSION

In this paper we have shown the existence of a low complex-
ity maximum likelihood estimator for optical PPM+ISGT that
outperforms previously known schemes with minor additional
computational complexity. For the scenarios presented (which
model deep space links) the estimator is show to outperform
the best known prior approach by roughly an order of mag-
nitude in RMSE. Furthermore, unlike methods which do not
have an inter-symbol guard time, the method outlined here can
be utilized without an explicit synchronization sequence.
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