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This paper describes the modeling and simulation of trapped granular media, within
the context of the Granular Imager project. We describe the physics of trapped granular
media in space, and the methodologies used to stably confine and shape such a medium
using electromagnetic fields. The numerical models have also been validated with results
in the literature, obtaining excellent agreement. The results of the numerical tests indicate
that it is possible, with structural arrangements of rings and plates at different levels of
electrostatic potential, to stably confine one or more charged particles, when driven by
voltages that can be modulated in time and space.
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I. Introduction

Orbiting Rainbows is a Phase II NASA Innovative Advanced Concepts (NIAC) study that is looking
twenty years into the future of creating a space-based observatory from granular media. Recent accomplish-
ments of this project are documented elsewhere,15,16.17
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The goal of this research is to identify ways to optically manipulate and maintain the shape of a cloud of
dust-like matter so that it can function as an adaptive surface with useful electromagnetic characteristics in
the optical or microwave bands. We call this concept the Granular Imager. The investigators are performing
fundamental research and developing the technology roadmap to construct an optical system in space using
nonlinear optical properties of a cloud of micron-sized particles, shaped into a specific surface by light
pressure, to form a very large and lightweight aperture of an optical system. This cloud optic will be
relatively simple to package, transport, and deploy. It is reconfigurable and can be re-targeted; the focal
length is variable and it will be self-healing and ultimately disposable. With near-term plans to build 30
meter ground-based telescopes for astronomy, the demand for higher resolution optics in space continues to
grow not only for exo-planet detection, but also for earth-based science, including hyper-spectral imaging
and for monitoring of the oceans and land masses (e.g. seismic monitoring).

The Orbiting Rainbows paradigm is unique because of: a) The avoidance of any physical structure and
sensing/actuation hardware on the primary, so sensing and actuation are done ”at-a-distance” on an amor-
phous cloud, and all operational complexity is done outside the primary. b) The reliance on optical trapping
and manipulation to enable that action ”at-a-distance” (although, other mechanisms such as electrodynamic
trapping and confinement are also being investigated), and c) The relaxation of the requirements on the fine
cloud control by doing the best possible job in software via robust computational imaging algorithms. A
typical orbital scenario would follow these steps: (1) the cloud is first released; 2) it is electromagnetically
trapped to avoid dissipation and disruption by gravitational forces and shaped into a two-dimensional object
(coarse figure control); and 3) the grains could be aligned to the incoming wavefront by means of rastering
laser beams (fine figure control) leading to a surface with acceptable imaging characteristics, i.e. the pri-
mary aperture. By modulating the spatial and temporal distribution of the confining fields, the cloud can
be retargeted as desired. The secondary would be in formation flight with the primary aperture.

The aim of this research was to investigate the modeling and simulation of trapped granular media by
considering a few concepts of electrodynamic trap that could be capable to confine and shape a cloud made
of charged particles. Each possible design was then tested in order to compare the desirable behavior to the
obtained results. Using specific parameters it was possible to define interesting particle arrangements that
could be useful for the main mission purposes. We focused our attention on two different configurations that
provided us three different remarkable results. One of those two designs in fact could obtain two different
cloud patterns depending on the values and parameters we set. The first contribution of this thesis was finding
two main concepts, which could be useful for the mission purpose. One of them used two plates electrodes
and a ring electrode, the second used two rings. The latter had the capability not to obstruct the light
path, and the first, using specific parameters, could arrange the particles in an annulus shape as the mission
concept required. The second important contribution of this research was providing a new mathematical
model that has more degrees of freedom and that is more complete than the mathematical model frequently
used for describing the behavior of ion traps (based on Mathieu equations). This mathematical model in
fact provided the same results obtained by Mathieu model just as a specific case. We have considered
multiple charge particles, with different charge to mass ratios, and studied their response when confined by a
mechanism of ion trapping. The system geometries that have been considered include a system of concentric
charged rings, and a system with rings and electrode plates so that a spatial distribution of electric field
can be generated and modulated. Both two-dimensional and three-dimensional configurations have been
analyzed numerically by propagating the equations of motion of the charged particles in the time domain.
The numerical model has also been validated with results in the literature, obtaining excellent agreement.
The results of the numerical tests indicate that it is possible, with these structural arrangements of rings
and plates, to stably confine one or more charged particles, when driven by voltages that can be modulated
in time and space.

The paper is organized as follows. Section II describes the state-of-the-art in mechanisms for particle
trapping and confinement. Section III describes the system configuration of the Granular Imager. Section IV
summarizes the development of the equations of motion of this system, using the Chrono::Engine formalism.
Section V describes the results of several numerical experiments, and Section VI concludes the paper.

II. Mechanisms for Particle Trapping and Confinement

We have been exploring options for trapping and confinement based on techniques being used to con-
tain and levitate atmospheric aerosols (clouds of ice crystals) in ground laboratories. Some of these include
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aerodynamic levitation, acoustic levitation, optical levitation, electric levitation, magnetic levitation, radio-
frequency levitation and superconducting levitation. The most promising techniques are based on electro-
dynamic trapping using electrodynamic balances. There are different possibilities that are relevant to the
Orbiting Rainbows task (i.e., levitation in vacuum). Some of these options are shown in Figure 1. These
are:

• Electrodynamics levitation: Small particles can be confined by electrodes in an electrostatic trap
(Penning trap). A Paul trap includes a lateral magnetic confinement field, which adds stability. A
major issue in levitation is particle stability, and stability requires that the suspended object have forces
exerted on it, which return it to its initial position when it is slightly displaced from that position.

• Parallel plate capacitor. Since the parallel plate Millikan condenser cannot exert a restoring force on
a charged droplet in either vertical or horizontal directions, the particle drifts.

• Electrostatic balances. Although the electrostatic balance of Millikan does not provide stable suspen-
sion, the use of electro-optic feedback control allows for a weak restoring force in virtue of the electrode
shape.

• Electrodynamic balances. By inserting a ring electrode at the center plane between the plates of a
Millikan condenser and by applying an AC potential to the ring electrode, the charged particle can be
focused at the center of the balance.

• Lorentz coupling with the planetary magnetic field, assuming that the grain is electrically charged.

• Optical levitation. In a three-dimensional gradient-force optical trap for microscopic dielectric particles
was demonstrated in 1986. They showed that low-absorbing, dielectric spherical particles with an
index of refraction higher than that of a surrounding liquid could be trapped in three dimensions by
use of a strongly focused Gaussian laser beam. This phenomenon was suggested earlier for moving
atoms and more recently has led to biomedical and related applications involving micromanipulation
of living cells, chromosomes, and motor proteins. However, the conventional gradient-force trap based
on the design of Ashkin has some limitations. Trapped particles are susceptible to optical damage
by absorptive heating because the center of the trap is located in the high-intensity focal region of
the beam. Another limitation is that multiple particles may be attracted into the same trap; thus
isolating a single particle requires dilute samples. Furthermore, the trapping of low-index particles
such as bubbles and droplets or of absorbing particles such as metallic fragments requires a rotating
beam when a conventional gradient-force trap is used. There are probably other options, involving
multi-physics coupling at different levels.

Two or more atoms stripped of their outer electrons, trapped by electric fields array themselves in
structures that behave like both liquids and solids. The possibility of achieving a regular structure of a
plasma and the ability of this plasma to be controlled remotely by the direct control of electric and magnetic
fields lead us to the concrete realization of an adaptive and re-configurable lens.

Employing the control over the temperature and position of ions (atoms stripped of one or more of their
electrons) it is possible to obtain a particular state of matter called microplasma by extension from the
large groups of ions and electrons known as plasmas. A microplasma is made by applying electric fields
in order to confine a certain amount of ions in a specified region of space. Consequently a cooling process
called laser cooling cools the ions near to zero kelvin. The final temperature is related to the behavior
of the ions as a whole entity. As it is explained below, the lower is the temperature, the more solid-like
the behavior of the plasma will be. Microplasmas can serve as models for the dense plasmas in stellar
objects. Like the atoms in liquids, the ions in some cold microplasmas can diffuse through a somewhat
ordered state. In other cases, the ions can resemble the atoms in solids, diffusing very slowly through a
crystal lattice. The nature of microplasmas is quite different from that of conventional liquids and solids.
Whereas common liquids and solids have densities of about 1023 atoms per cubic centimeter, microplasmas
have concentrations of about 108 ions per cubic centimeter. Furthermore, whereas internal attractive forces
between the atoms hold conventional liquids or solids together, external electric fields hold the trapped ion
microplasmas together. Indeed, the ions, which all have the same charge, actually repel each other and tend
to disperse the microplasma.

The specific heat, melting point and other thermodynamic properties of a one-component plasma depend
greatly on the density and the temperature of the mobile particles; This explains why the electromagnetic
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Figure 1. Various types of electrodynamics traps, from2

confinement is essential in order to obtain and manipulate the physical properties of a one-component plasma.
The dimensionless parameter which express the structural behavior of the plasma is called the coupling. It
can be derived from the temperature and the particle density, and it provides a measure of how strongly
the neighboring ions interact. The coupling is defined as the Coulomb potential energy between nearest
neighboring ions divided by the kinetic energy of the ions:

Coupling =
VCi

EKi

(1)

The Coulomb potential energy VC depends on both the average distance between the ions (a function of
density) and the charge of the ion species

VCij =
1

4πε0

qiqj
|rij |

(2)

in which qi and qj are multiple of the elementary charge (the smallest conventional charge) e = 1.602 ×
10−19C. The kinetic energy EK is simply the temperature (T ) multiplied by a physical constant known as
the Boltzmann constant KB = 1.3806× 10−23m2kg s−2K−1

EK = T KB (3)

Hence the value of the coupling parameter describes the global behavior of this particular plasma (Tab.1).
When the Coulomb potential energy is less than the kinetic energy (Coupling < 1) the one-component
plasma should have no obvious structure and should behave like a gas. But a one-component plasma whose
coupling is greater than one (Coupling > 1) should show some spatial order. In such strongly coupled
one-component plasmas, the ions should stay away from each other because the repulsive Coulomb forces
are greater than the thermal forces. At couplings of two or more, a plasma should exhibit liquid behavior.
At Coupling ' 180, a one-component plasma should change from a liquid to a solid phase, in which the ions
are arranged in a body-centered cubic crystal.

The predictions are valid as long as the ions in the plasma behave classically and the number of ions
is sufficiently high (for one-component plasmas the theory pertain “infinite” systems), that is, as long as
the effects of quantum mechanics can be neglected. Under conditions of high density and low temperature,
quantum mechanics can be important.

Let us consider a one-component plasma made of dissipative particles in a controlled outer space en-
vironment. These particles behave like ions once they are hit by space radiations. The hypothesis are:

4 of 27

American Institute of Aeronautics and Astronautics



Coupling value Physical characteristics

C < 1 Gas

C > 1 Gas-Liquid transition

C > 2 Liquid

C > 180 Solid lattice

Table 1. Different behaviors of one-component plasma depending on the coupling value.

Teq = 300K, Q = 10−14C, hence we obtain

EK = T KB = 4.14× 10−21J (4)

VCij =
1

4πε0

qiqj
|rij |

=
1

r
8.9877× 10−19J (5)

Coupling =
VCi

EKi

=
1

r
2.1709× 102 (6)

which r could be considered an evaluation variable in order to obtain all the possible plasma structures.

Coupling value Value of r Physical characteristics

C < 1 r > 2.1709× 102m Gas

C > 1 r < 2.1709× 102m Gas-Liquid transition

C > 2 r < 1.0854× 102m Liquid

C > 180 r < 1.2061m Solid lattice

Table 2. Values of the distance within the ions in order to obtain the given structural behavior.

Hence we can achieve a different global behavior simply by varying the average distance that separates
ions (Tab.2). One method is the electrode active-control that acts on the VC parameter by varying the
electromagnetic field intensity, otherwise the other parameter we can change is the temperature (EK) by
heating or cooling the one-component plasma.

Because the thermodynamic properties of a one-component plasma depend only on the coupling, a one-
component plasma that is cool and diffuse can have the same properties as a one-component plasma that is
hot and dense.

The configuration of the Paul trap and the Penning trap are the same; they both consist of a cylindrical
symmetrical structure composed by three electrodes. one is ring electrode and the other two are end-cap
electrodes. The difference between the two type of trap regards the nature of the inside fields.

In the Paul trap there is a combination of DC and radio-frequency voltages applied to the electrodes.
The equations of motion of an ion inside the this type of trap are Mathieu differential equations,24 which
lead to both stable and unstable solutions depending on the operating parameters. By controlling these
parameter, ions of a desired m/e range can be confined, other ions which are intrinsically unstable or have
large amplitudes collide with the trap or are lost. All the traps here described are used to confine any charged
particle, so we refer to these charges calling them ions.

The Penning trap uses an axial magnetic field and in addition an electric field with both the end-cap
electrodes at positive potential (for positive ions/charges) with respect to the ring electrode. The associated
radial electric field is repulsive and tends to push ions out of the trap. It is the axial magnetic field which
forces the ions into stable epicyclic trajectories resulting in their confinement.

A. Paul Trap

We will now provide a conceptual explanation of how and why the Paul trap works.
In order to understand the operation of Paul trap we firstly start considering the ion motion in a two-

dimensional quadrupole device and then extend the concept to a three-dimensional quadrupole field which
is the basic form of Paul trap concept. It is also useful to consider firstly the form of the electromagnetic
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potential of the quadrupole field and then move to the single ion motion in the two-dimensional and three-
dimensional field.

In three-dimensional space the quadrupole field potential is given by

φ =
φ0
2r20

(λx2 + σy2 + γz2) (7)

where φ0 is an externally applied electric potential, λ, σ, γ are constants that depend on the nature of the
field, and r20 depends on the physical structure of the field. To satisfy the Laplace equation we write

∇2φ =
φ0
2r20

(2λ+ 2σ + 2γ) = 0 (8)

so this is verified if
(λ+ σ + γ) = 0 (9)

in the trivial case of φ0 = 0.

Figure 2. Electrode structure of a two-dimensional quadrupole field

Figure 3. Stability diagram for Mathieu equations.

In the two-dimensional quadrupole field (Fig.2) the coordinate z = 0. In the specific case in which
λ = −σ = 1 the potential equation is a function of x and y assumes the following form:

φ(x, y) = φ0
(x2 − y2)

r20
(10)
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This is possible if the potentials on the surfaces of the four rods that constitute the device are ±φ0/2 in which
φ0/2 = (U − V cos Ωt)/2 and U is the DC voltage and V cos Ωt is the radio-frequency voltage of angular
velocity Ω.

φ(x, y, t) = (U − V cos Ωt)
(x2 − y2)

2r20
(11)

The result is that the equations of motion of a charged particle characterized by a given m/e are

ẍ+
e

mr20
(U − V cos Ωt)x = 0 (12)

ÿ +
e

mr20
(U − V cos Ωt)y = 0 (13)

z̈ = 0 (14)

In this case the particle will move along z-axis with constant velocity due to 2D simplifications. Introducing
the following substitutions

4Ue

mr20Ω2
= a (15)

2V e

mr20Ω2
= q (16)

Ωt = 2ζ (17)

the equations along x-axis and y-axis become

d2x

dζ2
+ (a− 2q cos 2ζ)x = 0 (18)

d2y

dζ2
− (a− 2q cos 2ζ)y = 0 (19)

that are the so called Mathieu differential equations for x and y.
Depending on the parameters a and q the Mathieu equation has stable or unstable solutions. The

symmetry properties along a-axis (Fig.3) means that if a stable solution is found for a couple of a, q then
the same stable solution must be found for the couple a,−q. In order to achieve a stable motion of the ion
both solutions of the two Mathieu equations must be stable, so if we compute the results we can define the
stability values for the parameters a and q, and then x and y. In three-dimensional space the quadrupole
field potential is given by

φ =
φ0
2r20

(λx2 + σy2 + γz2) (20)

We assign the values to the three constants as λ = 1, σ = 1, γ = −2, in this case the geometry of the
structure allows us to write r20 = 2z20 . Hence the potential has the form

φ = φ0(
x2 + y2 − 2z2

2r20
) (21)

and leads to the following equation of motion:

d2r

dt2
+

e

mr20
(U − V cos Ωt)r = 0 (22)

d2z

dt2
+

e

mr20
(U − V cos Ωt)z = 0 (23)
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Introducing the following substitutions

8Ue

mr20Ω2
= az = −2ar (24)

4V e

mr20Ω2
= qz = −2qr (25)

Ωt = 2ζ (26)

the Mathieu equations 22 and 23 become

d2r

dζ2
+ (ar − 2qr cos (2ζ))r(ζ) = 0 (27)

d2z

dζ2
− (az − 2qz cos (2ζ))z(ζ) = 0 (28)

Some typical Paul trap trajectories are given in the figure 4. One can notice an high-frequency micro-
motion and a secular low-frequency motion.

Figure 4. (left) Trajectory of a charged positive ion in a Paul trap. az = −3.5 × 10−6, qz = 0.095 in x− z plane.
(right) Trajectory of a charged positive ion in a Paul trap. az = −0.6, qz = 1.2 in x− z plane. (Pradip K. Ghosh,
Ion Traps, Clarendon Press, Oxford 1995, p.17).

B. Penning Trap

The structure of this trap is identical to the previous one: three electrodes, two end-caps and one ring
electrode. What that makes this trap different from the Paul trap is that this doesn’t use the radio-frequency
field, but it uses a uniform magnetic field along z-axis. The end-caps electrodes have positive charge if the
ions confined are positive. The main effect of the electric field is the shift of the ions toward the center of the
trap; the force that acts toward the ion is proportional to the displacement of the ion in respect of the origin.
This interaction results in harmonic oscillations of the ion along the axial direction. Due to the repulsive
electric field along x- and y-direction the ion tends to be pushed out from the trap in the radial direction.
As soon as the motion of the ion takes a the radial direction, due to the presence of the magnetic field, it is
turned back along a cyclotron-type orbit. Studying the overall motion of the particle we can assume that the
main motion is given by the harmonic component along the z-axis and the other two components of motion
given by the cyclotron and magnetron drift motion (caused by the crossing of electric and magnetic field
E ×B) again along z-axis. The result is a precessional motion in the equatorial plane around the z-axis.

The motion of an ion in a Penning trap is induced by the combination of the magnetic and electric field.
For a constant electromagnetic field the vector potential A and the scalar potential φ can be chosen for a
constant electric field as

A = 0 (29)

φ = φ (30)
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and for a constant magnetic field

A =
1

2
B × r (31)

φ = 0

For a mass m of the particle and for the potential as (φ, 1
2B × r) we obtain the Lagrangian

L = m
2 ṙ

2 + e
2c [r,

˙r,B]− eφ+
∫
dV L0

= m
2

(
ẋ2 + ẏ2 + ż2

)
+ eB

2c (xẏ − yẋ)− eφ+
∫
dV L0

(32)

where

φ =
U

2z20 + r20
(−x2 − y2 + 2z2) (33)

and B points toward the positive direction of z-axis. The
∫
dV L0 term is the field-free Lagrangian and can

be neglected. Applying the Euler-Lagrange equation

ẍ = ωcẏ +
1

2
ω2
0zx (34)

ÿ = −ωcẋ+
1

2
ω2
0zy (35)

z̈ = −ω2
0zz (36)

where we can define the axial frequency as

ω0z =

√
4eU

m (2z20 + r20)
(37)

and the cyclotron frequency as

ωc =
eB

mc
(38)

At this point by using the equation (34) and the equation (35) and defining a new variable u = x + iy
the equation for the radial motion is obtained:

ü = −iωcu̇+
1

2
ω2
0zu (39)

As said above the motion of each ion for this type of trap is the result of three different motions: axial,
cyclotron motion and magnetron motion. These three motions are uncoupled and completely independent.
Some examples of these complex motion are given in the figures 5 to ??.

Figure 5. (left) Ion trajectory in Penning trap @ B = 1T , U = 1V , r0 = 5mm. (right) Ion trajectory in Penning
trap @ B = 5T , U = 1V , r0 = 1mm.(Pradip K. Ghosh, Ion Traps, Clarendon Press, Oxford 1995)
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III. System Configuration

Figure 6 shows the geometry under consideration for a 10 meter aperture in formation: the set of two
rings in the lower part of the figure represents a double-ring electromagnetic confinement system, and the
cylinder above represents the adaptive optics stage, with science camera. The top inflatable ring is empty
inside, while the bottom inflatable ring is a torus which keeps the membrane with the electrode patches taut.
The granular aperture is trapped in the space between the two electrode systems. The model in Figure 6 is
obtained via finite elements, in which 168 triangle elements and 121 nodes form the membrane, 72 nodes in
the bottom ring, 63 elements and nodes in the top ring. In the following, we analyze the two-dimensional
and three-dimensional electrostatic stability of the cloud of granular matter, floated between the electrode
rings.

Figure 6. Prototype configuration for 10 meter Granular Imager with Electromagnetic confinement rings.

The two-dimensional geometry is a simplified trap model that is not sensitive to the stability problems
due to the fact that it ignores the Earnshaw’s theorem. Despite it doesn’t have a strong correspondence to
the real behavior of the charges/ions, it is still useful to understand how and why the charge moves along a
given trajectory and what we can do to influence it.

The geometry (Fig.(7)) consists on two electrodes, one ring and one plate, positioned along the symmetry
axis (x-axis) and other two electrodes positioned symmetrically with respect to the x-axis. The ring and the
plate provide the constant electric field (DC) and the two others provide the radio frequency (RF).

Due to the two-dimensional analysis the ring is substituted by two dimensionless charges of the same
value, so they generate a radial electric field named E21 and E22. The plate is positioned in the origin (O) of
the reference system and it generates an uniform electric field E1 acting only along the in x-axis. The other
two electrodes generate also an uniform and constant electric field (Variable EF) along the y-axis. In each
couple of coordinate x-y it is possible to define the local electric field direction and magnitude by summing
all the local contributes from each electrode. The model assumptions are that the ring is substituted by
two dimensionless charges of the same value, that the plate generates an uniform and constant electric field
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Figure 7. Two-dimensional geometry

along the x-axis, and that all the edge effects are neglected.
The three-dimensional geometry is a result of several improving steps that has been carried on during

the trap design. The first tested trap was the two-dimensional one in which a z-axis was added. Working
in a three-dimensional volume we decided to decouple the equations of motion organizing them in order to
describe the resultant accelerations along each axis separately. The fixed points found in this configuration
result to be unstable, so we decided to change it using firstly just two rings and than the classic paul trap
configuration with two flat electrodes and one ring in the middle. It is possible to summarize all the design
changes that has been made during the development:

The first geometry correspond to a three-dimensional version of the two-dimensional design: it has a
single fixed point located between the two electrodes. The fixed point coordinate depend on the charge
value of both the ring and the plate; in this case we have it at x ∼= 0.25 (see Fig. (8)) where the sum of
each electric field sources is zero. This fixed point is characterized by an unstable equilibrium: in fact while
the x-components are null in this particular coordinate, the y- and z-components are not zero and tend to
repulse the charge toward radial direction.

Figure 8. (left) First three-dimensional geometry configuration. (right) x-z plane view

The second design is represented by two concentric ring electrodes positioned along the x-axis (Fig.(9)).
Initially the tests were conduced using two rings with the same size but the only things that follows the size
change is the electric field pattern and not the nature of the fixed point(s) stability. Having two identical
electrodes both of them positively and equally charged the fixed point is located between them along the
x-axis.

Focusing on the electric field magnitude close to the center of the rings is well understood why the fixed
point in the middle of the trap is unstable: the mutual influence between the two electrodes creates an y-z
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Figure 9. (left) Second three-dimensional geometry configuration. (right) x-z plane view.

plane at a certain x-coordinate (x = 0.25) in which all the forces and accelerations are null. Even though
the charged particle in this particular x-coordinate lacks motion in the x-component, it has acceleration
components that make the particle leave the trap along a trajectory that lies on the y-z plane (Fig.9).

By using an additional RF to overcome the Earnshaw’s theorem it is possible to establish a dynamic
stability similar to the one expressed by Mathieu equation, so this opportunity opens to new point of view
regarding ion trapping. Focusing on the main purpose of this examination this design allows the development
and control of optic devices due to the lack of plates in the light trajectory.

The third design is more similar to a regular electromagnetic trap. The introduction of a third electrode
solves the stability problem recreating the same dynamics of a Paul trap. This trap is made by two end-caps
electrodes or plates which can be shaped in order to obtain a particular electric field distribution, and a
ring similar to what we used for the previous designs (Fig.(10)). This design is sensitive to the instability
described by Earnshaw’s theorem and it’s electric fields are controlled in the same way a regular trap is
driven.

Figure 10. (left) Third three-dimensional geometry configuration. (right) x-z plane view.

The fixed point(s) is in this case kept successfully stable by a driven radio frequency (RF) and the position
of this fixed point(s) can be changed by varying the electrodes parameters (gains, voltages, shape...). In the
figure (10) the stable or unstable location of the fixed point(s) lies on the y-z plane.This marked customization
lead us to the achievement of multiple cloud shapes in order to fit different purposes.
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IV. Equations of Motion of Orbiting Granular Systems with Contact

Modeling of granular media in space is more challenging than modeling of conventional space-borne vehi-
cles because we are faced with a probabilistic vehicle composed of a large number of physically disconnected
grains. First, different scales of motion occur simultaneously in a cloud: translations and rotations of the
cloud as a whole (macro-dynamics), relative rotation and translation of one cloud member with respect to
another (meso-dynamics), and individual cloud member dynamics (micro-dynamics). A major challenge is
to incorporate these modes of motion into a reduced order model. Related work in modeling and simulation
of granular media is covered elsewhere,5,7,14,? and in.18 By means of micro-continuum field theory,? we
can unify the deformation and dynamics modalities of a cloud. We use continuum mechanic constructs for
this analysis. Each individual grain is endowed with a position vector, a rotation tensor, and a deformation
gradient tensor, in the spirit of micromorphic kinematics. This means that each individual grain is capable
of changing its configuration in response to stimuli originated either from the exterior of the cloud or within
the cloud itself. The cloud is therefore treated as a continuum at the macroscopic level, with added extra
structure at the micro-continuum, or particle, level. In space, the cloud behavior depends on the dynamic
balance of different force fields: Laser light pressure, as light can induce motion; Solar illumination radiation
pressure, which carries momentum; Gravitational forces and gradients, resulting in orbital and tidal effects;
Electrostatic Coulomb or dielectrophoretic forces, since the grains are charged; Electromagnetic Lorentz
forces resulting from the interaction with local magnetic field; Cloud self-gravity caused by the cloud being
an extended body; Poynting-Robertson drag, in which grains tends to spiral down towards the Sun; and
Yarkovstky (YORP) effect, caused by the anisotropic emission of thermal photons, which carry momentum.
A small particle in the presence of light will experience both a scattering force in the direction of the beam
axis, which is proportional to the irradiance, and a gradient force that may be expressed as Fgrad = − 1

2α∇E2,
where α is the polarizability of the particle.1 The gradient force is the direction of the beam axis is negligible
unless the beam is tightly focus. Beam shaping of a cloud of particles is possible by molding the cloud in with
the gradient force, say in the x-y plane, and by further molding the cloud in the z-direction by the combined
optical scattering force and gravitational forces arising from the orbital dynamics (tidal forces). Relevant
work is presented in,22,21,16 and in.12 Cloud reorientation is discussed in.13 Applications to telescopes are
discussed in,10,8.9 Relevant control techniques can be examined in20 and in.19

The equations of motion of the entire system will be derived in this section. An inertial reference frame
FI is defined by the X-axis along the vernal equinox, the Z-axis along the direction of the system’s angular
momentum, and the Y-axis completes the right-handed triad. The origin of FI is placed at the center of the
Earth’s geocentric frame. The position and velocity of the center of mass of bodies i and j (also representing
nodes i and j of an extended finite element body) is given by vectors ri and rj , and ṙi and ṙj respectively
measured from the origin of FI . Similarly, the attitude of the reference frames Fi and Fj of bodies i and
j with respect to the inertial frame FI is described by tensors Ai and Aj , and their angular velocity by
vectors ωi and ωj , respectively. We parameterize the translation of body i by the components of vectors ri
and ṙi in FI , and its rotation with respect to FI by the quaternion parameters qi and the angular velocity
ωi. We introduce the orbiting reference frame FORF , which we use to describe the near field dynamics of
the spacecraft relative to its orbit. This reference frame is attached to a point that follows a Keplerian
orbit around the primary body. FORF is defined by the direction of the orbital velocity vector (x-axis), the
local vertical (z-axis), and the orbit normal (y-axis). The orbit of the origin of FORF is defined by the six
orbital elements a (semimajor axis), e (eccentricity), i (inclination), Ωl (longitude of ascending node), $
(argument of perigee), ν (true anomaly), and time of passage through perigee. The orbital radius is R0, and
the orbital angular velocity vector is denoted by Ω. The transformation between FORF and FI is given by
FORF = RFI , where Ri (·) denotes a rotation matrix of (·) around the direction specified by the subscript.
R depends on $, ν, i, and Ωl. It is useful to refer the translational dynamics of body i to the origin of
FORF .

In Chrono::Engine,3 DVI (Differential Variational Inequality) formulations are used for non-smooth dy-
namics, and explicit or implicit integrators are used for ODE and DAE. In the field of classical smooth
dynamics, there are Ordinary Differential Equations (ODE) and Differential Algebraic Equations (DAE).
In the non-smooth dynamics instead, unilateral rigid contacts between parts are considered and therefore
Differential Variational Inequalities (DVI) come out. They are also called Measure Differential Inclusions
(MDI). In any case, DVI provide a generalization to ODE and DAE. In classical ODE and DAE, smooth
accelerations, speeds and positions are assumed. If hard contacts are considered, they lead to non-smooth
trajectories, creating jumps in speeds. This can be avoided by introducing non-smooth dynamics. Impact
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events can be considered as impulsive phenomena, and therefore acceleration contains a certain number of
spikes and it has to be considered using the theory of measures. In the theory, accelerations ν(t) are intro-
duced using distributions, speeds υ(t) are functions of Bounded Variation, and positions q(t) are absolutely
continuous functions. We now consider an element of a granular medium as a rigid body subject to contact
and collisions. The state of a mechanical system with nb rigid bodies in three dimensional space can be
represented by the generalized positions q = [r1

T , ε1
T , . . . , rnb

T , εnb
T ]T ∈ R7nb and their time derivatives q̇,

where ri is the absolute position of the center of mass of the i− th body and the quaternion εi expresses its
rotation. One can also introduce the generalized velocities v = [r1

T , ω1
T , . . . , rnb

T , ωnb
T ]T ∈ R7nb , directly

related to q̇ by means of the linear mapping q̇ = L(q)v that transforms each angular velocity (expressed
in the local coordinates of the body) into the corresponding quaternion derivative ε̇i by means of the linear
algebra formula ε̇i = 1

2G(εi)ωi, where G(εi is a nonlinear operator function of the quaternion parameters.
Mechanical constraints translate into algebraic equations that constrain the relative position of pairs of bod-
ies. Assuming a set of constraints is present in the system, for all i ∈ B they lead to the scalar equations
Ψi(q, t) = 0. To ensure that constraints are not violated in terms of velocities, one must also satisfy the first
derivative of the constraint equations, that is ∇Ψi

Tv+ ∂Ψi

∂t = 0 with the Jacobian matrix ∇qΦi = [∂Ψi/∂q]T

and ∂Φi
T = ∇qΨi

TL(q). If contacts between rigid bodies must be taken into consideration, colliding shapes
must be defined for each body, and a collision detection algorithm must be used to provide a set of pairs of
contact points for bodies whose shapes are near enough, so that a set A of inequalities can be used to con-
cisely express the non-penetration condition between the volumes of the shapes, i.e. for all i ∈ A, Φ(q) ≥ 0.
Given two bodies in contact A,B, let ni be the normal at the contact pointing toward the exterior of body
A, and let ui and wi be two vectors in the contact plane such that ni,ui,wi ∈ R3 are mutually orthogonal
vectors: when a contact i is active, that is for Φ(q) = 0, the frictional contact force act on the system by
means of multipliers γ̂i,n ≥ 0, γ̂i,u, and γ̂i,w, that is the normal component of the contact force acting on body
B is Fi,N = γ̂i,nni and the tangential component is Fi,T = γ̂i,uui + γ̂i,wwi (for body B these forces have the
opposite sign). Also, according to the Coulomb friction model, in case of nonzero relative tangential speed
vi,T the direction of the tangential contact force is aligned with vi,T and it is proportional to the normal
force as ‖ Fi,T ‖= µi,d ‖ Fi,N ‖ by means of the dynamic friction coefficient µi,d ∈ R+. However, in case of
null tangential speed, the strength of the tangential force is limited by the inequality ‖ Fi,T ‖≤ µi,s ‖ Fi,N ‖
using a static friction coefficient µi,s ∈ R+., and its direction is one of the infinite tangents to the sur-
face. In our model we assume that µi,s and µi,dhave the same value that we will write µi for simplicity,
so the above mentioned Coulomb model can be stated succinctly as γ̂i,n ≥ 0, Φi(q) ≥ 0, Φi(q)γ̂i,n = 0.
This implies three conditions. The first condition states that the friction force is always within the friction
cone. The second condition states that the friction force and the velocity between two contacting bodies
are collinear and of opposite direction. The third condition captures the stick-slip transition. Note that
the condition γ̂i,n ≥ 0, Φi(q) ≥ 0, Φi(q)γ̂i,n = 0 can be also written as a complementarity constraint:
γ̂i,n ≥ 0, Φi(q) ≥ 0. This model can also be interpreted as the Karush-Kuhn-Tucker first order conditions
of an equivalent maximum dissipation principle. Finally, we must also consider the effect of external forces
with the vector of generalized forces f(t,q,v) ∈ R6nb , that might contain gyroscopic terms, gravitational
effects, forces exerted by springs or dampers, torques applied by motors, and so on. Considering the effects
of both the set A of frictional contacts and the set B of bilateral constraints, the system cannot be reduced
neither to an ordinary differential equation (ODE) of the type v̇ = f(t,q,v) nor to a differential-algebraic
equation (DAE), because of the inequalities and because of the complementarity constraints, that rather turn
the system into a differential inclusion of the type v̇ ∈ F(t,q,v) , where F is a set-valued multifunction. In
fact, the time evolution of the dynamical system is governed by the following equations, i.e., the kinematic
geometry conditions:

q̇ = L(q)v (40)

the kinematic constraint equations:

i ∈ B : Ψi(q, t) = 0 (41)

and the complementarity conditions:

i ∈ A : γ̂i,n ≥ 0,⊥Φi(q) ≥ 0, , (γ̂i,u, γ̂i,w) argmin
µiγ̂i,n≥

√
γ̂2
i,u+γ̂

2
i,w

vT(γ̂i,uDi,u + γ̂i,wDi,w)) (42)
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Measuring translational quantities with respect to FORF , the translation kinematics and dynamics equa-
tions of a point mass of mass m in a general orbit are:

ρ̈i = −R̈0 −Ω×Ω× ρi − 2Ω× ρ̇i + Rr̈i(nearfield) (43)

with

r̈i = −µE
ri
r3i

+
fa + fS + fe

mi
(farfield) (44)

and

R̈0 = −µE
R0

R3
0

+
fpert + fS + fe

mi
(farfield) (45)

where: ρ = relative position vector of mass with respect to ORF, R0 = orbital radius vector to origin
of ORF, Ω = orbital rate, µE = gravitational parameter, fa = thruster actuation force vector, fS = solar
pressure force vector, f3 = third-body forces vector, m = grain mass , and fpert= resultants of higher order
gravitational terms from the primary acting on the entire system as an extended body.

With the kinematics and kinetics above, the system momentum balance becomes:

Mv̇ = f(t,q,v) +
∑
i∈B

γ̂i,n∇Ψi +
∑
i∈A

(γ̂i,nDi,n + γ̂i,uDi,u + γ̂i,wDi,w)) (46)

As an example, the set of equations of motion for one unconstrained grain subject to boundary electric
fields are as follows:

d2x
dt = Fx0

m +

+ C dx
dt+

+ Q
m

[
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V. Numerical experiments

A. Model Validation

The correctness of trajectory integration process can be checked by monitoring the RF amplitude and its
frequency at which the particle sitting close to the center of the trap becomes unstable. In the case where pure
RF excitation is applied to the ring electrode, stability limit is marked by the Mathieu parameter value q =
0.908. This is a theoretical result for an ideal Paul trap. For the practical Paul traps, ions might get ejected
at slightly lower or higher value. The phenomenon is referred as early and delayed ejection respectively.
The consistence of the new implemented model is confirmed by comparing the simulation results to the ones
which are already demonstrated. Three examples are reported: the figure 11 represent the comparison of
two ion trajectories, one is obtained from the new mathematical model and the second comes from a Master
degree thesis of the Indian Institute of Science.23 The trajectories are similar even though the magnitude of
the motion is different. The parameters set for this simulation are shown in the table (3).
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Figure 11. Trajectory of a charge simulated on MATLAB using the new mathematical model (left), ion
trajectory from23” (right)

Parameter Value

Q 1e-13

m 1e-13

U 5e-5

V 0.1

OMEGA 1.1

Table 3. Parameters set for the figure (11)

The figures (12) and (13) show the comparison of two pictures from6 and the trajectory of a charged
particle simulated trough the new mathematical model. The figure (13) is the result of the simulation
parameters set reported in the table (4).

Parameter Value

Q 1e-13

m 1e-13

U 5e-5

V 0.1

OMEGA 1

Table 4. Parameters set for the figure (13)

From the results we have seen it is possible to conclude that the final shape of the charged cloud of
particles depends strictly on the imposed border conditions (U ,V ,OMEGA, qn...). The most interesting
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Figure 12. Trajectory of a charge simulated on MATLAB using the new mathematical model (left), trajectory
taken from6”
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Figure 13. Trajectory of a charge simulated on MATLAB using the new mathematical model (left), trajectory
taken from “Pradip K. Ghosh, Ion Traps6”. All the dimensions are expressed in meters [m].
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configuration are the ones described in the section (2) and section (3): the first one doesn’t have plates and
this means the light can pass trough the two rings or can be reflected without obstacles making the concept
easy to realize and control. The second configuration is the classic Paul trap design so its behavior is well
known. The kay factor is the possibility to reproduce an annulus made of charged particles that can be
used as a reflecting medium despite the presence of the electrode. There is also the possibility to use a grid
plate electrode: this can be a great solution in order to solve the main problem of having an opaque plate
electrode. Having a grid in fact the light is allowed to pass trough the plate without any change or deviation
while the electric field produced can be exact the same depending on the grid density.

An alternative solution may be the realization of an alternative charged structure which can be used as
electrode that produces the same potential pattern of the charged plate. There will be a most convenient
grid density (optimization point) that will balance the grid density and the light intensity that hits the cloud.

B. Experiments with rings and plates

1. Configuration with two electrodes: one ring and one plate

Multiple tests confirm that the configuration with a plate and a ring tends to be unstable and the ions escape
the trap.

All the electric forces are in the same direction because there is no null force spot along the x-axis.
The maximum electric field that comes from the ring is still lower than the one that comes from the plate,
therefore there is no stability.

2. Configuration with two electrodes: two rings

This configuration gives a good stability margin when the RF is appropriately applied. Having two rings
guarantees the location of the fixed point in the center of the trap if they have the same electrostatic charge.
In fig. 14 we have two ring positioned respectively at x = −1m and x = 1m, so the the fixed point where
the two potentials match and erase each other is on the center of the trap in x = 0m.
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Figure 14. Electrostatic potential [V] along the x-axis [m]. The position of the two rings are x = −1m and
x = 1m

In order to maintain the charge in the center of the trap it is necessary to set the right parameters. If
the conditions are not respected all the ions will leave the trap after a certain period (Fig.(15)) dependent
on the potential value and the charge magnitude of the particle. The evolution of the x-, y-, z-components
is reported in the figure (15) and shows how rapidly two of the three charges leave the trap increasing their
velocity.

A second simulation reports the trapping of three ions using the two-ring configuration. The resultant
trajectories, as we will see, are similar to the ones obtained with the Mathieu model and they can be easily
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Figure 15. (left) Two ring configuration test, low RF. (right) Evolution of the motion in x-, y- and z-component,
static EF and RF are applied.

controlled by change the ring parameters and the RF. The parameters used in the following simulation are
described in the table (16).

The result is shown in the figure (17) where all the particles tend slowly (C = 0.1) to reach the fixed
point in the center of the trap. The phase planes are shown in figure (17) and are again comparable with
the Mathieu mathematical model. We can recognize two main frequencies: an high-frequency micro-motion
and a secular low-frequency motion as the trapping theory predict. Sometimes the evolution in time is not
perfectly regular due to the interference with the motion of the oter particles.

The Phase diagrams for the two given particles demonstrate the capability of the trap to maintain low
average velocities and bounded x-, y-, z-positions.

3. Configuration with three electrodes: one ring, two plates (first parameter set)

The following configuration is similar to a classic Paul trap. The electrodes are set as hemispherical (see
table (16)) and for certain conditions and parameters we can achieve different shapes of the final arrangement
of the particles. Using specific conditions it is possible to achieve different particle distributions: two tests
have been carried out using the settings reported in table (16).

These settings lead to a final stabile annulus pattern where the single particles keep moving just along
the y- and z-axis in a limit cycle while their x-coordinate is constantly x = 0. For a better explanation can
be useful to observe the phase figures (18), where one can notice the quick response of the x-component that
reach the equilibrium position with few oscillations, while a limit cycle is established along the other two
axes. A better view is given by the figure (18) which shows in particular the frequency of the two cycles.

More simulation have been done getting the same results; when the number of particle rises it is more
clear the final annulus shape as the figure (19) shows.

4. Configuration with three electrodes: one ring, two plates (second parameter set)

Changing some key parameters (see Tab.(16)) it is possible to achieve the classic Paul trap ions trajectories,
an example is shown in the figure (19). The final position of the ions in this case form a cusp-like shape that
can be modified by varying parameters such RF or electrodes charge values.

All the ions are trapped and tend to reach the fixed point at the center of the trap (C 6= 0) if there was
no damping all the particles would move close to the fixed point achieving a dynamic equilibrium. Studying
one of these trapped particles it is possible to notice again two frequency components on the trajectory
(Fig.(19)), the high frequency micro-motion and the low-frequency motion. Looking at the phase diagrams
the motion is well bounded and both velocity and position tend slowly to reach the designed position.
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Figure 16. Simulation parameters for case with two-rings, and case with one ring and two plates (models 1
and 2).
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Figure 17. (left) Trapped particle trajectory. (right) Two-ring trap phase diagrams.
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Figure 18. (left) 3 particles Paul-trap simulation. (right) Motion evolution in x-, y-, z-component.
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Figure 19. (left) 15 particles simulation. (right) Phase plane diagrams.
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C. Example of cloud containment by equivalent fans

The next example is related to a first attempt to trap particles in an environment without gravity subjected
to an initial random velocity. In order to do that six fans have been used, two per every direction and the
particle whose behavior is under investigation is a sphere.

Figure 20. (left) Trapping system. (right) L2-norm of particles position

In this case, even if the goal of the present work is to trap particles throughout electromagnetic force
fields, they have been used fans since as a first attempt ”rough” wind forces has been considered. One
of those is present in one of the tutorial on? and explain well how to manage rotations and force field in
Chrono::Engine. The force applied to each body is function of their velocity vi and of two constants, the
speed of the wind vw and the density of the mean ρ:

F = (vw − vi) ρ (47)

In the Chrono simulator, these forces can be treated as functions acting on the bodies, depending on their
states. The most interesting things to notice in previous figures are that the particle reaches a steady-state
condition, and in particular, the particle is stopped and fixed in the space by the force field. In one simulation
set with 20 particles, with the same module for initial velocities and angular velocities, but different origin
in the space, the same behavior is shown in Fig. 20. Considering almost the same starting point for every
simulation, it is interesting to analyze the distance covered by the particle before it is stopped by the force
field. The most important parameter is ∆position, and it indicates how much space is needed to the force
field generated by the fans to stop the particle movement. If one looks at the ”Time Vs velocity vector” in
Fig. 20 sees that the system can be modeled as a first order dynamical system. They are characterized
by 48, a first order differential equation. In this case, x is equal to the velocity, the variable that actually
is going to zero because of the force applied (as a consequence, position is going to asymptotically stabilize
and acceleration is going to zero).

ẋ +
1

τ
x = 0 (48)

where τ is the time constant of the system. T = 5τ is the time needed for the state to reach the 67%
of its initial condition, in this case defined by v = 1. In conclusion, it has been shown how force fields can
be treated in Chrono::Engine and how increasing the number of fans permits to obtain better performances
in stopping the particles, acting in all the three principal directions. A ”rough” expression of the force has
been considered in this example, but it wants to show the potential of Chrono::Engine in treating these kind
of problems. This can be the base simulation to develop a more complex one, adding optical properties that
can be managed by electromagnetic force fields and involving a greater number of particles with interactions
between them.
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D. Magnetic Levitation Model

It is possible to imagine the fan as the surface of the electromagnet, with a sphere suspended in the air very
close to it due to an electromagnetic force. For the purpose of the present simulation, just consider the force
acted on the sphere simply depending on the position of the sphere with respect to the electromagnet xs and
on the current applied Ic. Even if it is know that the dynamics of the system depends on other parameters,
all those are considered known and constant in time. Therefore, the electrical part alone was neglected for
the simulation.

Vc(t) = Lcİc(t) + (Rc +Rs)Ic(t) (49)

The differential equation which govern the motion of the sphere is the following

Msẍs = −Fc(t) + Fg(t) (50)

where

Fc(t) =
KmI

2
c (t)

2x2s(t)
(51)

Fg(t) = Msg (52)

These lead to

ẍs = − KmI
2
c (t)

2Msx2s(t)
+ g (53)

In equation (53), Km is the magnetic force constant for the electromagnet/sphere pair and Ms is the mass
of the sphere. Therefore, the only part that needs to be implemented in Chrono::Engine if the electromagnetic
force Fc(t). Since the aim of the present simulation is to show that given a current Ic(t), the result of the
simulation is a stable oscillation near an equilibrium position, a control has not been introduced yet, and the
current has been considered constant. Therefore Ic(t) = Ic. Defining an error e as the difference between
the actual position of the particle and the desired one, and the same for their derivatives as follows

e(t) = xs(t)− xd (54)

ė(t) = ẋs(t)− ẋd (55)

where xd and ẋd are the desired position and velocities of the particle. The control is introduced in such
a way that the current is proportional to the error and to its derivative

I(t) = kpe(t) + kdė(t) (56)

It is possible to change kp and kd parameters in order to have different behaviors of the transient of the
particle, in order to reduce oscillations or the settling time. One thing that can be improved of the previous
model, is that there is a discontinuity on the force at the beginning because of the immediate distance
between the particle and the magnet (0.040 m). This can be avoided imposing a ramp as starting behavior
of the force. It is also possible to impose some constraints on the value of the current if someone wants to
stay under a certain limit. In the case of 100 spheres controlled by different fans, with independent control
low, the result is shown if Fig. 21. It can be seen that with the same particle and control parameters,
as expected, the same final position is reached by every particle having independent control law one with
respect to the other even if the initial conditions are different.

E. Inverse determination of electric and magnetic fields for cloud re-shaping

A molecular dynamics simulation effort was also conducted. The problem is treated as a coupled set of
semi-discrete differential equations for each grain. Given the position and velocity of each particle at one
time step, the algorithm estimates these values at the next time step. To compute the next position of each
particle requires the evaluation of the right hand side of its corresponding differential equation. Since each of
these calculations is independent, there is a potential speedup if the program can take advantage of parallel
computing. A Gaussian random process generator generates an initial distribution of grains. The cloud
is placed in an orbit identified by the six classical orbital elements. The cloud is subject to gravitational
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Figure 21. (left) y-position Vs y-velocity in the case of 100 spheres. (right) Time Vs current I(t) in the case
of 100 spheres

harmonics from the Earth (JGM3 Earth gravity model, with 20 harmonic components). Currently, we are
adding third-body disturbances from the Sun and the Moon, solar radiation pressure, and atmospheric drag.
Figure 22 shows a system with 1000 spherical grains in the form of a paraboloid surface, with all the grain
normals aligned towards the focus of the paraboloid. Since there is no control, the cloud evaporates within a
fraction of the orbital period. The simulation results shown in Figure 22 were obtained by commanding the
grains to conform to a prescribed optical surface. The cloud is first shaped into a disk, then into a paraboloid
of specified focal length and diameter. The numerical results indicate that the force required to shape 1
meter diameter disk into parabola is of the order of 10-8 N. Assuming a grain shape which is asymmetric to
incoming light, the torque required to align 1 micron grain is of the order of 10-15 Nm.

We can derive an control law to track a desired surface as follows. Define the tracking error

eZ = q(x, y)− qd(x, y) (57)

where qd(x, y) describes the desired surface, and q(x, y) the current position of the grain with respect to
the origin of the orbiting reference frame. By imposing an exponentially stable error dynamics in the form:

ëZ + 2ξωėZ + ω2eZ = 0 (58)

where ω is the natural frequency, and ξ the damping ratio, we can make sure the error eZ is driven to
zero. Therefore, using the equations of mo:on expressed in the moving frame (the orbiting reference frame -
ORF), the control law with components in ORF becomes:

u = −fpert + fgyro +mq̈des −KdėZ −KpeZ (59)

where fpert is the resultant of perturbation forces on the grain (gravity, solar pressure, etc),fgyro are the
Coriolis and centrifugal forces acting on the grain, Kd is a derivative gain, and Kp is a proportional gain.

Once the control force to shape the cloud has been computed, the electric and magnetic field to produce
that re-shaping can be computed as follows.

A grain, of mass m and charge q, moving with inertial velocity v, and subject to an electric field E and
to a magnetic field B, is subject to a Lorentz force given by:

fL = q(E + v ×B) (60)

In components in ORF, we obtain:

u = fL = q(I33E + v×B) = q
(
I33 v×

)(
E

B

)
(61)

where I33 is the 3×3 identity matrix, and the operator (v)× denotes the skew-symmetric matric operator
associated with the vector product. Using the matrix pseudo-inverse operation (v)† , we obtain:
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(
E

B

)
= q
(
I33 v×

)†
u (62)

Figures 23, and Figures 24 show the components of the electric and magnetic field, as a function of
Julian date, involved in the trapping mechanism required to rigidly retarget the parabolic shaped cloud of
60 degrees about the x-axis (in cloud body frame).

Figure 22. (left) N=1000 grains aligned to wavefront. (right) Projections.

VI. Conclusions

This paper has described the modeling and simulation of trapped granular media, within the context of the
Granular Imager project. After describing the physics of trapped granular media in space, we discussed the
methodologies used to stably confine and shape such a medium using electromagnetic fields. The numerical
models have also been validated with results in the literature, obtaining excellent agreement. The results of
the numerical tests indicate that it is possible, with structural arrangements of rings and plates at different
levels of electrostatic potential, to stably confine one or more charged particles, when driven by voltages that
can be modulated in time and space.

Near-term proof-of-concept space demonstrations of the Granular Imager might be possible within a
decade, but laboratory-scale tests on Earth are possible much sooner. This concept is technically feasible
given that it is drawn from real-world examples of dust/droplet systems like rainbows. Our solution would
completely rewrite our approach to ultra-large space-based telescopes for potential military applications. All
the foundations of the concept are solidly based on established physical laws. The challenge is extending
what has been proven in small lenses in an Earth environment to a space environment under various forces
and the means to predict and control those forces for a long time to get the full benefit of the concept. There
is no guarantee that this breakthrough innovative system will meet the configuration or design of a large
aperture system at various parts of the electromagnetic spectrum, but even if a few of those areas are or can
be identified, the benefit for NASA will be immense.
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Figure 23. X-, Y-, and Z-component of Electric field needed to rigidly retarget the parabolic shaped cloud of
60 degrees about the x-axis (in cloud body frame).

Figure 24. X-, Y-, and Z-component of Magnetic field needed to rigidly retarget the parabolic shaped cloud
of 60 degrees about the x-axis (in cloud body frame).
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