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Self-consistent expressions are derived for the impact of ion acoustic turbulence (IAT) on
the fluid properties of electrons and ions in the plume of a hollow cathode. This instability
is believed to have a dominant role in the plasmadynamics in this region. The random
phase approximation is applied to the perturbed Boltzmann equation to determine the
effective drag and heating of the plasma species induced by the IAT. These driving terms
are then incorporated into momentum and energy fluid equations for the ions and electrons.
A fluid-like relation governing the evolution of the total IAT wave energy density is also
presented. The physical significance of the IAT-based terms is discussed in the context of
energy and momentum conservation, and a path forward is outlined for implementing the
effects of IAT in the fluid-based model in Part II.

Nomenclature

C Collision operator
cs Ion sound speed
~E Electric field
Ek Energy density of the electrostatic field of the kth mode
~FAN(s) Rate change in momentum density for species (s) due to electrostatic waves
ε0 Permittivity of free space

ε(ω,~k) Dielectric tensor of electrostatic mode at frequency ω and wave vector ~k
f(s) Distribution function for the species (s)
~k Wave vector of electrostatic mode
κs Thermal conductivity of species (s)
λd(s) Debye length for species (s)
ms Mass of species (s)
ns Density of species (s)
Nk Wave action of kth component of electrostatic mode
νs Species collision frequency
νei Total electron-ion collision frequency
νie Total ion-electron collision frequency
νcei Electron-ion Coulomb collision frequency
νcie Ion-electron Coulomb collision frequency
νa Anomalous collision frequency of electrons due to IAT
νa(i) Anomalous collision frequency of ions due to IAT
νin Ion-neutral collision frequency
νen Electron-neutral collision frequency
φk Plasma potential amplitude of kth component of electrostatic mode
qs Fundamental charge of the (s) species
QAN(s) Rate change in energy density for species (s) due to electrostatic waves
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Ts Temperature of (s) species in units of energy
~Vs Average fluid velocity for species (s)
~VD Relative drift velocity between electrons and ions
Wk Wave energy density of kth component of electrostatic mode
ω Angular frequency of electrostatic mode
ω0 Lower cut-off frequency for IAT
ωps Plasma frequency for species (s)
Z0 Plasma dispersion function

I. Introduction

Predictive modeling is an important tool for qualifying electric propulsion systems for the next generation
of deep space missions. Validated models can help overcome concerns associated with qualification through
ground testing such as the problem of facility effects and high costs incurred by long duration tests. The path
to qualification through modeling most recently has been identified as a tool for assessing the ion propulsion
system for the proposed Asteroid Robotic Redirect Mission (ARRM) with its high power level—12.5 kW per
thruster—and multiyear design life—50,000 hours.1 For these unprecedented powers and run times, models
will be necessary to help evaluate the life of each element in the electric propulsion system—including the
hollow cathode. Indeed, while hollow cathodes are essential components to nearly all of the forms of electric
propulsion currently flown, they also can exhibit a number of critical failure modes over time such as emitter
evaporation2–4 and keeper erosion.5–8

Concerns about cathode life have led to an on-going effort to develop first-principles models for these
devices. At the Jet Propulsion Laboratory (JPL), the investigation largely has centered on the 2D Orificed
Cathode (OrCa2D) numerical code. This in-house, fluid-based model was originally developed in the mid-
2000s to provide insight into internal processes in hollow cathodes that could not be accessed easily with
probes.2,8–10 The classically-dominated, dense plasma inside these devices lends itself to a fluid description,
and as a result, OrCa2D has proven successful to date in yielding high fidelity results that agree with internal
measurements on a number of cathodes. Non-classical processes that occur in the cathode plume, however,
have proven more difficult to capture accurately. Previous efforts to model the plume with OrCa2D have
revealed that electron resistivity due to classical processes such as electron-neutral and Coulomb collisions
are orders of magnitude too low to explain the trends in experimentally-measured plasma parameters.9 It is
only after an anomalous resistivity is added to the model that the correct plasma parameters are captured.

Mikellides et al first postulated that the anomalous resistivity in the cathode plume might be attributed
to the onset of ion acoustic turbulence (IAT).2,8, 9 The existence of this electrostatic instability and its large
contribution to resistivity was later confirmed experimentally by Jorns et al.11 In an effort to incorporate
the IAT-driven resistivity into OrCa2D, Mikellides et al adopted an effective electron collision frequency
based on the Sagdeev scaling.12 By assuming that the IAT saturates through non-linear wave-particle
interactions, this scaling reduces the collision frequency to a simple algebraic function of the background,
macroscopic plasma parameters. The use of the Sagdeev formulation in OrCa2D led to the correct modeling
of experimentally-measured plasma parameters along the centerlines of the NSTAR9 and NEXIS cathodes,8

operating at maximum discharge currents of 13.3 A and 27.5 A respectively, as well as a 100-A LaB6

laboratory cathode.10 Despite this success, however, our most recent work indicates that OrCa2D with
the Sagdeev scaling fails to capture the correct plasma trends when modeling higher-current cathodes.13

The implication of this result is that the simplified saturation model for the IAT that leads to the Sagdeev
scaling is not correct in these devices. Instead, it is necessary to develop a more sophisticated model that self-
consistently captures the evolution of the IAT in the cathode plume and the associated anomalous collision
frequency driven by it.

Recent experimental and analytical work14–16 has provided new insight about IAT in hollow cathode
plumes and suggests a path forward for how its impact may be modeled self-consistently in a fluid-based
code. The purpose of this two part investigation is to leverage the results from these previous studies to
implement a first-principles description of the IAT in OrCa2D. The first part of the study, presented here,
provides a self-consistent series of governing equations for how the IAT evolves in the unmagnetized plume of
a hollow cathode and how it acts as both a drag and heating source for the plasma species. The second part,
presented in our companion paper, Ref. 13, implements the governing relations into OrCa2D and validates
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the output of the improved model against experimental measurements of a LaB6 hollow cathode operating
at 140 A.

This paper is organized in the following way. In the first section, we present a hierarchy to describe
how the fluctuations associated with electrostatic modes exchange momentum and energy with the plasma
species. In the second section, we summarize the properties of the ion acoustic modes in the cathode plume.
In the third second, we use the properties of the IAT to evaluate the driving terms as functions of the total
wave energy in the spectrum. In the fourth section, we derive a governing equation for how the total wave
energy evolves in the cathode plume. In the fifth section, we use the results from the previous parts to find
modified fluid equations for the electrons and ions that incorporate the effects of the IAT. In the sixth and
final sections, we summarize the key assumptions for our model and the physical significance of the governing
equations we have derived.

II. Impact of electrostatic turbulence on macroscopic parameters

We estimate the impact of electrostatic oscillations on the macroscopic properties of the ions and electrons
by taking moments of a kinetic description of the plasma. This technique follow the treatment of Dum17

and Davidson and Krall18 in finding fluid models for anomalous transport in high-temperature plasmas.
For our approach, we assume an unmagnetized plasma—as is consistent with our previous experimental
and numerical work on high-current cathodes10,11,15,16— and use the Boltzmann hierarchy to describe each
species:

∂f(s)

∂t
+ ~v ·

∂f(s)

∂~r
+

qs
ms

~E ·
∂f(s)

∂~v
= C [fs] . (1)

Here f(s) denotes the distribution function in velocity space for species (s), ~E is the electric field, qs is
the species charge, ms is the species mass, and C[] denotes a collision operator. We treat the electrostatic
fluctuations as perturbations to the background electric field and equilibrium distribution function:

f(s) = f0(s) +
∑
k

f1k(s)e
i(~k·~r−ωt)

~E = ~E0 +
∑
k

~E1ke
i(~k·~r−ωt), (2)

where we have invoked an eikonal approximation to represent the perturbations as a sum over modes with
frequency ω and wavevector ~k. The zeroth order component f0(s) describes the macroscopic properties in
the plasma which evolve on a fluid-time scale. The perturbations, represented by f1k(s), vary more rapidly.

As we are interested in the evolution of the more slowly-evolving macroscopic parameters, we substitute
the relations from Eq. 2 into Eq. 1 and average over the shorter length scales of the oscillations. This is
the equivalent of invoking the random phase approximation such that only the amplitudes of the oscillating
terms survive the averaging:

∂f0(s)

∂t
+ ~v ·

∂f0(s)

∂~r
+

qs
ms

~E0 ·
∂f0(s)

∂~v
= C

[
fs(0)

]
− qs
ms

∂

∂~v
·

[∑
k

~E1kf1k(s)

]
. (3)

In the absence of fluctuations, the zeroth, first, and second moments of Eq. 3 lead to the standard fluid equa-
tions for continuity, momentum, and energy where the collision operator, C, is modeled with the Brangiskii
formulation.19 When fluctuations are present, on the other hand, we can see that the first and second mo-
ments of the second term on the right hand side act as IAT-driven source or sink terms for the macroscopic
fluid properties:

~FAN(s) = −qs
∫
~v
∂

∂~v
·

[∑
k

~E1kf1k(s)

]
d~v

QAN(s) = −qs
2

∫
v2

∂

∂~v
·

[∑
k

~E1kf1k(s)

]
d~v. (4)
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The first term in Eq. 4, ~FAN(s), represents the rate at which momentum is added or subtracted to species
(s) by the interaction with the electrostatic modes, and the second term, QAN(s) is the rate at which energy
is added or subtracted. We simplify these terms by using the electrostatic approximation to express the
kth component of the perturbing electric field in terms of a scalar potential: ~E1k = −i~kφk exp[i(~k · ~r − ωt)].
Integrating Eq. 4 by parts thus allows us to write the driving terms as

~FAN(s) = −qs
∑
k

~kφkIm
[
n1k(s)

]
QAN(s) = −qs

∑
k

φkIm
[
ωn1k(s)

]
. (5)

Here we have defined the zeroth moment of the first-order distribution as the perturbed plasma density,
n1k(s) =

∫
f1k(s)d~v, and we have simplified the second line by using the zeroth moment (continuity) of the

perturbed form of Eq. 1,
∫
~k · ~vf1k(s)d~v = ω

∫
f1k(s)d~v.

We can gain insight into how these driving terms for each species in Eq. 5 relate to one another by taking
the real and imaginary components of Poisson’s equation for the kth mode:

Im
[
n1k(i)

]
= Im

[
n1k(e)

]
Re
[
n1k(i)

]
= Re

[
n1k(e)

]
+
ε0φkk

2

q
. (6)

From Eqs. 5 and 6, we thus find

~FAN(e) = −~FAN(i) = q
∑
k

~kφkIm
[
n1k(e)

]
. (7)

This is a general statement of the conservation of momentum for the wave-driven process. Ion acoustic
modes are characterized by oscillations in both particle species as well as electrostatic fields (c.f. Ref. 20).
Since electrostatic fields have no momentum and the electrons are light, however, the wave momentum is
primarily carried by the oscillations in the species with the most inertia, the ions. An increase in wave
momentum thus results in an average increase in momentum of the ions, ~FAN(i). By conservation law, this

wave growth must be balanced by a loss of of the bulk electron momentum, i.e. ~FAN(i) + ~FAN(e) = 0. As
we will see in Sec. III, the wave growth and subsequent loss in electron momentum stems from the kinetic
process of inverse electron Landau damping.

For the heating terms in Eq. 5, we prescribe that the wavector ~k is real but the frequency of each kth

mode has an imaginary component ω = ωr + iωi where ωi � ωr. The relations in Eq. 6 combined with the
second line of Eq. 5 thus yield

QAN(e) = q
∑
k

φk
(
ωrIm

[
n1k(e)

]
+ ωiRe

[
n1k(e)

])
QAN(i) = −

∑
k

[
qφk

(
ωrIm

[
n1k(e)

]
+ ωiRe

[
n1k(e)

])
+ 2ωiEk

]
, (8)

where we have defined the total energy density of the electrostatic field,

Ek =
1

2
n0ε0

∣∣∣ ~Ek∣∣∣2 =
1

2
n0ε0k

2φ2k (9)

and used quasineutrality to write ne(0) = ni(0) = n0. The terms in Eq. 8 represent the change in kinetic
energy of the electrons and ions associated with the growth, damping, and propagation of the electrostatic
waves. Unlike in the case of momentum, however, not only do the ion oscillations have nonnegligible kinetic
energy but so too do the electron oscillations and the electric field associated with the waves, Ek. Therefore,
energy is only conserved by taking into account both the particle kinetic energy and field energy contributions:
QAN(e) +QAN(i) + dEk/dt = 0 where we have defined the rate in increase of the electric field energy density

of the kth mode as dEk/dt = 2ωiEk.
In summary, Eqs. 7 and 8 express the driving terms for the change in momentum and energy induced

by the electrostatic oscillations. In order to evaluate these explicitly for the case of ion acoustic waves, it is
necessary to find expressions for the perturbed electron density n1k(e), the real and imaginary components

of the mode frequency ωr, ωi, the wave vector ~k, and the potential amplitude φk. We consider the explicit
forms of these parameters for ion acoustic waves in the next section.
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III. Ion acoustic modes

A. Perturbed density

Expanding Eq. 1 to first order, we find the following equation governing the component of the distribution
function oscillating at wavevector ~k:

f1k(s)

(
ω + iνs − ~k · v

)
= −qsφk

ms

~k ·
∂f0(s)

∂~v
+ iνs

n1k(s)

n0
f0(s), (10)

where νs denotes the species collision frequency, and we have invoked the BGK operator (c.f. Refs. 11 and
21) to approximate the impact of the collision operator on the fluctuations, C

[
f1k(s)

]
. In keeping with a

fluid description of the plasma, we assume each species is thermalized and therefore can be described by
isotropic drifting Maxwellian distributions:

fs(0) (~v) = n0(s)

(
ms

2πTs

)
e−

ms
2Ts

(~v−~Vs)
2

, (11)

where Ts denotes the temperature in energy units. Here we only consider a distribution in two-dimensions
as hollow cathodes are axisymmetric. Subject to the Maxwellian assumption, we solve Eq. 10 for f1k(s) and
take the zeroth moment to find the perturbed density:

n1k(s) =
qsn0φk
Ts

1 + ζsZ0 (ζs)

1 + i (νs/kvs)Z0 (ζs)
, (12)

where vs =
√

2Ts/ms is the species thermal speed and we have introduced the plasma dispersion function

Z0 (ζs) = i
√
πe−(ζs)2 [1 + erf (iζs)] ζs =

ω − ~k · ~Vs
vsk

. (13)

We can simplify Eq. 12 by considering the typical ordering of parameters appropriate for hollow cathode
plasmas: vi � cs � Ve � ve, where cs =

√
Te/mi is the ion sound speed. In this limit, the plasma dispersion

functions in Eq. 12 satisfy |ζe| � 1 and
∣∣ζi∣∣� 1 such that we can expand asymptotically20 to find

n1k(e) =
qφkn0
Te

(
1 + i

(π
2

)1/2 [ω − ~k · ~Ve
kve

])
(14)

n1k(i) =
qφkn0
mi

( k

(ω − ~k · ~Vi)

)2

+ i

((
νi

ω − ~k · ~Vi

)(
k

ω − ~k · ~Vi

)2

+
(π

2

)1/2(mi

Ti

)3/2
ω − ~k · ~Vi

k
e
− mi

2Ti

(
ω−~k·~Vi

k

)2) ,
where per Refs. 11 and 21 we have invoked the assumption that νe/ (kve)� 1 to neglect contributions from
the electron collisions.

B. Dispersion Relation

Writing Poisson’s equation for the kth plasma mode yields the dielectric response, ε(ω,~k), of the plasma

0 = k2ε
(
ω,~k

)
= k2 − 1

ε0φk

∑
s

qsn1k(s). (15)

Assuming the growth is small ωi � ωr, we prescribe the wavevector ~k to be real and solve for the real and
imaginary components of the frequency by performing a Taylor expansion of the dielectric around ω = ωr:

0 = ε
(
ω,~k

)
= εr

(
ωr,~k

)
+ i

εi (ωr,~k)+ ωi
∂εr

(
ωr,~k

)
∂ω

 , (16)
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where εr and εi denote the real and imaginary components of the dielectric tensor respectively. Setting the
real component of Eq. 16 to zero and using the expressions for perturbed density from Eq. 14, we find the
dispersion relation for the acoustic modes:

(
ωr − ~k · ~Vi

)2
= k2c2s

(
1(

λd(e)k
)2

+ 1

)
, (17)

where λd(e) denotes the electron Debye length. For this investigation, and as has been experimentally
observed in high-current hollow cathode plumes,11 the wave frequencies where the waves propagate are
lower than the ion plasma frequency, ωr � ωpi. We therefore consider the limit λd(e)k � 1 such that the
simplified dispersion relation is

ωr = kcs + ~k · ~Vi, (18)

where cs =
√
Te/mi denotes the ion sound speed. This expression shows that in the ion frame of reference

the propagating modes are acoustic in nature scaling linearly with the ion sound speed. Setting the imaginary
component of Eq. 16 to zero and using the simplified dispersion relation from Eq. 18, we similarly can find
the growth rate:

ωi =
(π

8

)1/2
csk

~k ·
(
~Ve − ~Vi

)
− cs

kve

− (Te
Ti

)3/2

e−Te/2Ti

− 1

2
νi. (19)

This result for the imaginary component of the frequency provides insight into the terms that damp or
grow the acoustic modes. The first term on the right hand side of Eq. 19 represents the growth of the wave
from inverse Landau damping on the electron species. This is a collisionless process whereby the acoustic
waves can gain energy at the expense of electron drift ~Ve provided that a resonant condition is satisfied:
the electron drift in the direction of the phase velocity must exceed the wave speed in the ion frame of
reference, cs. This is inherently a kinetic effect and depends on an interaction of the waves with a small
subset of the electron distribution of particles. We note that the criterion for electron growth is typically
satisfied for hollow cathode plasmas as they exhibit high electron drift in the plume. The second term in
Eq. 19 represents collisionless damping of the waves from ion Landau damping. In a process that directly
mirrors that of the electrons, the bulk ion population can remove energy from the acoustic turbulence due to
the resonant interaction of a small subset of the ions in the distribution function moving at the wave phase
velocity. The last term in Eq. 19 represents damping of the wave due to ion collisions.

C. Potential Amplitude

Since the perturbed density scales with potential amplitude (Eq. 14), the summations over ~k in the expres-
sions for momentum and energy rates, Eqs. 7 and 8, are weighted by the square of the potential amplitude,
φ2k. Without a fully self-consistent description of the dominant processes governing the interaction of the
ion acoustic modes—including nonlinear effects such as wave-wave coupling (c.f. Ref. 22) — it is not pos-
sible to know a priori how φ2k depends on the wavevector. We circumvent this limitation by assuming a
functional form of the potential amplitude that is informed by experimental measurements and is consistent
with theories for saturated acoustic turbulent spectra:

φ2k =


0 ωr > βωpi

δ
(
k̂ − V̂D

)
C0 (ωr)

−p
βωpi > ωr > ω0,

0 ωr < ω0

(20)

where C0 and β are constants, p = 1, δ denotes the Dirac delta function, and ~VD =
(
~Ve − ~Vi

)
/
∣∣∣~Ve − ~Vi

∣∣∣ is

the direction of relative drift between the species.
The inverse power law for the magnitude of the energy spectrum is consistent with a number of theoretical

and experimental results of saturated IAT. It is the result of a redistribution of energy in the spectra to
longer length scales by nonlinear processes.22,23 The value p = 1 is in keeping with the nonlinear ion Landau
damping saturation mechanism originally proposed by Sagdeev and Galeev.12 The need for a lower cutoff
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frequency ω0 for the spectrum is based on previous measurements of the IAT spectra in a 100-A LaB6 cathode
(Fig. 3 in Ref. 11 and Fig. 5 in Ref. 16) and is physically attributed to damping of acoustic modes at long
lengthscales by processes such as geometric cutoffs or ion collisions.16 The choice to place an upper bound
on the spectrum at ωr = βωpi represents the theoretical cutoff of ion acoustic waves above this frequency,
and the scaling factor β < 1 captures the experimental observations from Ref. 16 that the acoustic modes
actually dissipate at some fraction of this theoretical limit. The multiplication by the Dirac delta only selects
wave vectors in the direction of relative drift. This choice is motivated by Eq. 19 which shows that the growth
rate is maximized when ~k is collinear with ~Ve − ~Vi. We therefore assume that the wave direction is confined
to a very narrow cone in this dominant direction.

D. Energy Density

Applying the definition for wave energy density of electrostatic modes20 to the dielectric response (Eq. 15),
we find for the kth mode of the ion acoustic waves

Wk = ε0
k2φ2k

2
ωr
∂εr
ωr

=
ωr
kcs

(
n0q

2φ2k
Te

)
. (21)

As we will find in the next section, it will be necessary to determine moments of the summation,
∑
k (ωr)

γ
Wk,

where γ is an integer. To approximate this quantity, we convert the summation over k to an integral by
multiplying by a differential ∆k such that

∑
k

(ωr)
γ
Wk =

1

∆k

∫ kmax

kmin

Wk (ωr)
γ
dk. (22)

Because we have assumed a distribution where ~k||~VD (Eq. 20), the frequency and wavenumber are linearly

related by ωr = kcs[1 + V̂D · ~Vi/cs]. Therefore, without loss of generality, we can make the transformation of
Eq. 22 to an integral over frequency space

∑
k

(ωr)
γ
Wk =

1

∆k
(

1 + V̂D · ~Vi/cs
) ∫ βωpi

ω0

Wk (ωr)
γ
dω. (23)

Evaluating this integral with the specified form of φ2k from Eq. 20 under the assumption that βωpi � ω0

(the upper bound for the frequency cutoff is much higher than the lower bound), we find the result

∑
k

(ωr)
γ
Wk =


WT

βωpi

ln[βωpi/ω0]
γ = 1

WT γ = 0

WT
1

ω0 ln[βωpi/ω0]
γ = −1

(24)

where WT denotes the total wave energy density summed over all k modes of the spectrum.

IV. Driving terms for the case of ion acoustic waves

Armed with the simplified expressions for the density perturbations, dispersion, wave growth, and po-
tential amplitude distributions from the previous section, we now can evaluate the driving terms in Eqs. 7
and 8. It should be noted here that the density perturbations are explicit functions of both the real and
imaginary components of the wave frequency n1k(s)(ω). When estimating the driving terms then, we make
the substitution ω = ωr + iωi and only retain the contributions from ωi to first order.

A. Momentum

For the change in momentum of the electrons, Eq. 7 yields

~FAN(e) = −men0νa

(
~Ve − ~Vi

)
, (25)
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where we have applied the assumed distribution of φk (Eq. 20) in setting ~k||(~Ve − ~Vi) and we have defined
an effective collision frequency

νa =
∑
k

kq2φ2k
meTe

(π
2

)1/2(me

Te

)1/2

. (26)

The physical implication of this result is that the relative drift between species leads to the growth of
the acoustic modes through inverse Landau damping on the electrons. The transfer of momentum to the
turbulence from the electrons is represented in a macroscopic, fluid way as an enhanced drag on this species
with anomalous collision frequency, νa.

We use the definition of wave energy density from Eq. 21 and the moments for Wk from Eq. 24 to express
the anomalous collision frequency as

νa =

 β

ln [βωpi/ω0]

(π
2

)1/2 1(
1 + V̂D · ~Vi/cs

)2
ωpe WT

Ten0
. (27)

The parameter β < 1 is assumed to be constant, and we know empirically for the IAT in the cathode plasma
(c.f. Fig. 3 in Ref. 11), the logarithm of the ratio of the upperbound to lowerbound cutoff frequencies is
∼ O [1]. Similarly, typical ion velocities in cathode plumes have been measured to be 2 − 5 km/s24,25 with

electron temperatures of Te = 2− 5 eV.11,26,27 We therefore have
(

1 + V̂D·~Vi

cs

)
∼ O [1]. With these order of

magnitude estimates, we can reduce the term in brackets to a single parameter α < 1 such that

νa = αωpe
WT

Ten0
. (28)

This is the same Sagdeev and Galeev12 scaling that has been shown to be valid for a number of experiments
with empirically-determined constant α ≈ 10−2. Turning now to the ions, we have from Eq. 7 that

~FAN(i) = min0νa(i)

(
~Vi − ~Ve

)
, (29)

where νa(i) = (me/mi) νa. Just as with classical electron-ion collisions, we thus see that the effective collision
frequency driven by the ion acoustic turbulence is elastic.

B. Energy

Using the relations from Secs. II and III, the heating terms for the electrons and ions are given by Eq. 8:

QAN(e) =
1(

1 + V̂D · ~Vi/cs
)∑

k

[
1

2

dWk

dt
− 2ωi(e)Wk

]

QAN(i) =
1(

1 + V̂D · ~Vi/cs
)∑

k

[
1

2

dWk

dt
− 2ωi(i)Wk

]
− dEk

dt
, (30)

where we have written the total change in wave energy density as dWk/dt = 2ωiWk and isolated the
contributions to the wave growth from Eq. 19:

ωi(e) =
(π

8

)1/2
csk

~k ·
(
~Ve − ~Vi

)
− cs

kve


ωi(i) = −

(π
8

)1/2
csk

((
Te
Ti

)3/2

e−Te/2Ti − νi

)
. (31)

Considering that the multiplying term is of order unity, the expressions in Eq. 30 lend themselves to a physical
interpretation of the kinetic energy of each species associated with the wave dynamics. In particular, the first
term in both QAN(e) and QAN(i) represents the sloshing motion of the particles necessary to carry the waves.
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For the ions, this oscillatory motion gives rise to the wave momentum, whereas for the electrons the sloshing
results from the need to preserve quasineutrality. In both cases, the magnitude of the particle kinetic energy
for the wave motion is directly tied to the wave energy: with larger amplitude waves, the higher the energy
from oscillations of both species. The rate change in the kinetic energy from this motion therefore scales
with the rate change of the wave energy, dWk/dt, leading to an effective heating—termed non-resonant or
reversible (c.f. Ref. 28)— of the bulk populations. The second terms in both lines of Eq. 30 captures the
resonant, irreversible heating processes associated with each species. For the electrons, this takes the form in
Eq. 30 of inverse Landau damping on this species. This is a kinetic process where a population of electrons in
the distribution that are resonant with the phase velocity lose energy to the wave growth, thereby causing an
effective cooling of the electrons. For the ions, the contribution of irreversible heating is due to ion Landau
damping and ion collisions. The former is a kinetic process where a small population of ions in the tail of
distribution that are resonant with the phase velocity experience an irreversible gain in energy. This removes
energy from the waves and adds it to the ions. The latter effect is due to frictional heating of the ions on
the other species. The statement of energy conservation we showed in Sec. II now can be interpreted in the
context of the irreversible and reversible heating processes outlined here. Namely, the change in wave energy
as carried by particle motion is balanced by the growth driven by the electrons and damping resulting from
the ions.

By the same arguments from the previous section we employed to simplify the anomalous collision
frequency (Eq. 28), we can approximate Eq. 30 as

QAN(e) = −α
2
ωpiWT


∣∣∣~Ve − ~Vi

∣∣∣− cs
ve

+

(
Te
Ti

)3/2

e−Te/2Ti

 (32)

QAN(i) =
α

2
ωpiWT


∣∣∣~Ve − ~Vi

∣∣∣− cs
ve

+

(
Te
Ti

)3/2

e−Te/2Ti

 , (33)

where we have make the physically reasonable assumption that ion collision frequency is lower than the ion
plasma frequency νi/ωpi � 1 and we have dropped the contributions of the electrostatic terms in QAN(i)

under the assumption that the growth rate ωi � ωpi is lower than the ion plasma frequency. In these
simplified forms, we can see that the ion heating approximately balances the electron heating. Moreover,
since the hollow cathode is typically characterized by large electron drift where |~Ve − ~Vi| � cs, Eq. 32 is
negative definite for most locations in the cathode plume. The electrons therefore always lose energy to the
growth of the waves—serving as their free source of energy. The ion population conversely always will be
heated.

This section has yielded expressions for the effective drag and heating due to the acoustic modes as
functions of typical fluid plasma parameters such as species temperature, average drift velocity, and density.
We also have introduced a new variable, the total wave energy, that both the drag and heating terms scale
with. In order to develop a self-consistent model for the role of the acoustic turbulence, it is necessary to
introduce a governing equation for this total wave energy. We turn to this in the next section.

V. Wave energy equation

The plasma wave kinetic equation (c.f. Ref. 20) for the evolution of the kth electrostatic mode in the
plasma is given by

∂Nk
∂t

+
∂

∂~r
·
(
Nk

∂ωr

∂~k

)
− ∂

∂~k
·
(
Nk

∂ωr
∂~r

)
= 2ωiNk, (34)

where Nk = Wk/ωr denotes the wave action. This expression can be interpreted as a conservation equation

for the density of quasi-particles, phonons, at each wavevector ~k. In direct analog to the Vlasov equation
(Eq. 1 in the collisionless limit), ~k replaces the velocity vector ~v and Nk is a distribution function of phonons
rather than a distribution function of particles, f(s). The first two terms on the left hand side of Eq. 34
represent the flux of phonons in physical space where they are convected out of the volume at the mode
group velocity, ∂ω/∂~k. The third term is an effective acceleration that results as varying background plasma

parameters change the dispersion of the modes propagating at ~k. This parallels the way the electric field term
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in the Vlasov equation changes the velocity of particles in a given distribution function through acceleration.
The terms on the right side of Eq. 34 represent sources and sinks due to interactions with the plasma species.
These include linear effects such as Landau damping and weak collisions (c.f. Eq. 19), and higher-order,
nonlinear terms due to wave-wave and wave-particle coupling effects12,28 that we have neglected. As an
aside, we note that Eq. 34 shows that the phonon, or wave packet, with maximum growth is the one in the
direction where ωi is maximized. This is further justification of the form for the potential amplitude we
outlined in Sec. III.C.

Using the assumed distribution of wave amplitude and the explicit forms for frequency and growth rate
from Sec. III.B, we integrate Eq. 34 over all values of ~k to find

∂NT
∂t

+
∂

∂~r
·
(
NT

[
csV̂D + ~Vi

])
= cs

(∫
kNkdk

)(π
2

)1/2 
∣∣∣~Ve − ~Vi

∣∣∣− cs
ve

−
(
Te
Ti

)3/2

e−Te/2Ti

− νiNT ,
(35)

where we have defined the total wave action NT =
∫
Nkdk. Employing Eq. 24 for the moments of the energy

distribution, we can re-write this expression as a function of total wave energy density:

∂WT

∂t
+

∂

∂~r
·
(
WT

[
csV̂D + ~Vi

])
= WT

ω0 ln [βωpi/ω0]

1 + V̂D · ~Vi/cs

(π
2

)1/2 
∣∣∣~Ve − ~Vi

∣∣∣− cs
ve

−
(
Te
Ti

)3/2

e−Te/2Ti


−νi − ω0 ln [βωpi/ω0]

(
∂

∂t

[
1

ω0 ln [βωpi/ω0]

]
+

∂

∂~r
·

[
csV̂D + ~Vi

ω0 ln [βωpi/ω0]

)])
. (36)

Since the acoustic modes propagate in the laboratory frame with group velocity ∂ω/∂~k = csV̂D + ~Vi, the last
term in Eq. 36 represents the characteristic timescale in the wave frame of reference over which the parameter
ω0 ln [βωpi/ω0] varies. For this investigation, we assume that the cutoff frequency ω0 is approximately
constant and that the logarithmic contribution, ln [βωpi/ω0], is only a weakly varying parameter in the
plume. We therefore can neglect this last term compared to the collisional damping and the growth. This
allows us to write Eq. 36 in the simplified form

∂WT

∂t
+∇ ·

(
WT

[
csV̂D + ~Vi

])
= ω0WT

(π
2

)1/2 
∣∣∣~Ve − ~Vi

∣∣∣− cs
ve

−
(
Te
Ti

)3/2

e−Te/2Ti − νin
ω0

 , (37)

where per our discussion in Sec. IV.A, we have used an order of magnitude analysis to fold the coefficients
of O [1] into the parameter ω0. The interpretation of this equation is that the wave energy propagates along

characteristics parallel to the average group velocity, ∂ω/∂~k. This energy changes as it convects through the
plasma depending on the interchange between growth from the electron drift and damping from resonant
heating of ions and collisions.

VI. Fluid equations for incorporation into OrCa2D

We now use the results from the previous sections to find governing equations for the evolution of the
macroscopic fluid properties of the ions and electrons. The formalism for these equations has been reported
in previous OrCa2D publications (c.f. Ref. 2,8,10), and we adopt the same conventions here to illustrate how
the equations are augmented by the anomalous terms. For the ion continuity, we take the zeroth moment of
Eq. 3, the phase-averaged Boltzmann. This yields

∂n

∂t
+∇ ·

[
n~Vi

]
= ṅ, (38)

where we have dropped the subscript 0 and denoted the ionization frequency due to electron impact collisions
with neutrals as ṅ. For the ion momentum, the first moment of Eq. 3 multiplied by ion mass yields

∂
(
min~Vi

)
∂t

+∇ ·
[
min~Vi~Vi

]
= nq ~E −∇pi +miṅ~Vn − nmi

[
νie

(
~Vi − ~Ve

)
+ νin

(
~Vi − ~Vn

)]
, (39)
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where pi = nTi is the ion pressure; we have incorporated the effect of newly created ions adding to the
fluid momentum through ṅ~Vn; and we have represented the impact of charge-exchange collisions with the
neutrals through νin(~Vi − ~Vn). Similarly, we have defined νie = me

mi
(νcei + νa) where νa is the anomalous

collision frequency given by Eq. 28 and νcei is the Coulomb collision frequency found from the standard form
of the collision operator (c.f. Ref. 19). We note here that while we do not provide an explicit expression for

the neutral dynamics, (nn, ~Vn), this equation is given in our companion paper, Ref. 13. For the electron
momentum equation, we take the first moment of Eq. 3 and follow the standard treatment of neglecting the
inertial contributions to arrive at an Ohm’s Law:

0 = −nq ~E −∇pe − nme

[
νei

(
~Ve − ~Vi

)
+ νen~Ve

]
, (40)

where pe = nTe is the electron pressure, νen is the electron-neutral collision frequency, and we have defined
νei = (νcei + νa).

Finally, we consider equations for the evolution of the species temperatures. These are found by taking
the variance moment of Eq. 3, i.e. multiplying through by (1/2)ms|~v − ~V(s)|2 and integrating over velocity
space. Using the definition for pressure of the electrons this yields

3

2

∂pe
∂t

+∇ ·
(

5

2
pe~Ve − κe∇Te

)
− ~Ve · ∇pe = QTe +QAN(e) +menνei~Ve ·

(
~Ve − ~Vi

)
− ṅqεip, (41)

where εip is the ionization energy for xenon, κe denotes the thermal conductivity, and QTe is heat exchange
due to thermal non-equilibrium of electrons with ions and neutrals. The left hand side of Eq. 41 represents
the flux and conduction of thermal energy of the electrons. The right hand side includes source terms for the
electron energy where the first term was already described, the second term is the anomalous cooling due to
the growth of acoustic modes, the third term is from frictional heating of the electrons due to collisions with
the ions (both classical and anomalous), and the last term is the inelastic loss of energy due to ionization.

We can simplify Eq. 41 by doing a relative comparison of the anomalous contributions. In particular,
assuming that |~Ve| � |~Vi|, we see from Eqs. 28 and 32 that∣∣∣∣∣∣ QAN(e)

menνa~Ve ·
(
~Ve − ~Vi

)
∣∣∣∣∣∣ =

1

2

(
me

mi

)1/2

√Te/me∣∣∣~Ve∣∣∣ +
Te/me∣∣∣~Ve∣∣∣2

(
Te
Ti

)3/2

e
− Te

2Ti

 . (42)

For cathode plasmas we have investigated in previous work,15 we have measured the electron Mach number
to be |~Ve|/

√
Te/me ∼ 0.14, and since the square root of the mass ratios is ∼ 480 and the maximum value

of the exponential contribution is (Te/Ti)
3/2

exp [−Te/2Ti] ≈ 1.16, the anomalous heating, QAN(e), is only
12% of the frictional contribution. We therefore neglect the anomalous heating compared to the frictional
heating by the anomalous collision frequency, which allows us to write the simplified form for the electron
temperature equation:

3

2

∂pe
∂t

+∇ ·
(

5

2
pe~Ve − κe∇Te

)
− ~Ve · ∇pe = QTe +menνei~Ve ·

(
~Ve − ~Vi

)
− ṅqεip. (43)

We note here briefly that this energy equation indicates that the effect of the waves (through the anomalous
friction term) is to cause an increase in temperature. This is an apparent contradiction to our discussion
from previous sections where we showed that the electrons should lose energy to the wave growth. This
discrepancy is resolved by noting that even though the internal energy, temperature, increases because
of the “rubbing” against the ions, the total energy (including kinetic energy) of the electrons decreases,

dET /dt = d/dt[(1/2)me|~Ve|2 + (3/2)Te] = QAN(e) < 0.
Finally, we apply the same treatment as above to derive the ion heating equation. However, this time we

find that since
∣∣∣~Ve∣∣∣� ∣∣∣~Vi∣∣∣, we can neglect the resistive heating term in favor of the anomalous ion heating:

3

2

∂pi
∂t

+∇ ·
(

5

2
pi~Vi − κi∇Ti

)
− ~Vi · ∇pi = QTi +QAN(i). (44)

We can simplify this expression further by making a number of assumptions informed by experimental
measurements in the cathode plume. In particular, a recent campaign to measure ion velocities along the
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centerline of a 100-A LaB6 hollow cathode25 has shown that the magnitude of the ion flow velocity varies
slowly in the plume. We therefore make the assumption that ∇Pi/Pi � ∇ · ~Vi/|~Vi| Similarly, if we assume
that the electron drift is sufficiently high that the growth from electrons dominates over the ion Landau
damping (a valid approximation in most regions near the cathode), we can use Eq. 37 to write Eq. 44 as

3

2

∂pi
∂t

+∇ ·
(

3

2
pi~Vi

)
=
α

2

ωpi
ω0

(
2

π

)1/2 [
∂WT

∂t
+∇ ·

(
WT

[
csV̂D + ~Vi

])]
. (45)

At steady-state, which ultimately is the condition where the cathode equilibrates, and subject to the previ-

ously discussed assumption that cs ≈
∣∣∣~Vi∣∣∣ we further can reduce this expression to

∇ [nTi] ≈
α

e

ωpi
ω0

(
2

π

)1/2

∇WT . (46)

For the slowly varying plasma parameters in the cathode plume, we make the weak assumption that
ωpi

ω0
is

constant. In which case, we find the relation:

Ti ≈ Γ
WT

n
, (47)

where Γ ∼ O[1− 100] is a constant depending on the ratio of the plasma frequency to the cutoff frequency.
This expression is in keeping with a physical description of the wave dynamics. Oscillations in the plasma
density and ion velocity that correspond to the propagation of the acoustic modes lead to a time-averaged
broadening in the standard deviation of the velocity, i.e. the temperature. With higher wave energy density,
there thus is a correspondingly larger ion temperature. This effective broadening is the direct consequence
of the so-called reversible heating discussed in Sec. IV.B. The scaling indicated by Eq. 47 has been experi-
mentally validated in the only three studies to date that have examined the relationship between IAT and
ion energy in the cathode plume.15,16,25

VII. Summary of Key Assumptions

Before we conclude with a discussion, we summarize briefly here the major empirically-informed and
literature-based assumptions we have employed to arrive at our above formulation.

• The following ordering for velocities is valid for the hollow cathode plume: vi � cs � Ve � ve.

• With the exception of assuming a shape for the wave energy spectrum, nonlinear effects such as wave-
wave and wave-wave-particle coupling are neglected.

• The acoustic modes at each location propagate in the direction of maximum growth, i.e. ~k||
(
~Ve − ~Vi

)
.

• The propagating modes in the plasma are cutoff below ωr < ωpi such that we can assume the dispersion

relation is linear for the entire spectrum of excited modes: ωr = kcs + ~k · ~Vi.

• The random phase approximation (RPA) can be employed to eliminate the fast time-dependence of
the oscillations when deriving governing equations for the bulk flow properties. The RPA is typically
valid for turbulent like spectra as exhibited by the IAT.

• The spectrum of the oscillations has an inverse power law dependence on frequency with lower and
upper bound cutoffs in frequency. The upper bound cutoff occurs at some fraction of the ion plasma
frequency and the lower cutoff is approximately constant in the plume.

• The logarithm of the ratio of the plasma frequency to the cutoff frequency varies slowly in the wave
frame of reference compared to the growth terms driving or damping the waves.

• The electron growth dominates over ion Landau damping in most areas of the plume, and the plasma
parameters vary sufficiently slowly with respect to the wave energy such that the relation Ti ≈WT /n
holds.
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VIII. Discussion

The relations we have derived in Secs. V and VI provide a self-consistent and first-principles formalism
through which the impact of ion acoustic turbulence can be evaluated with a fluid-based code. Physically,
our results quantify how the inverse Landau-driven growth of the waves occurs at the expense of the energy
and momentum in the drifting electrons. In turn, because the wave momentum is carried primarily by
fluctuations in the ion density, the loss in electron momentum is balanced by an increase in average ion
momentum and energy. This occurs irreversibly through ion Landau damping on the resonant species as
well as through the increased sloshing of non-resonant ions that carry the waves.

Previous modeling efforts with OrCa2D have attempted to capture one of the anomalous terms we have
examined in this investigation, the enhanced collision frequency on the electrons.9,10 Our work here expands
on these previous attempts in two major ways. First, we have derived self-consistent relations that include
not only the electron drag but also the impact of the IAT on both electron heating and ion dynamics.
Second, while it was necessary in previous modeling efforts to assume phenomenological scaling laws for the
total wave energy, we have presented here—through the formalism of the plasma wave kinetic equation—an
explicit 2D partial differential equation for how the wave energy evolves in the plasma.

With this in mind, one of the concerns that stems from the model for the wave energy that we have
presented in Eq. 37 is that this expression has the potential to diverge if the driving terms on the right
side are sufficiently large. This is not a problem encountered in previous modeling efforts as the waves were
always assumed to be saturated. Fortunately, the self-consistent nature of our formulation presented here
allows for a regulating process to prevent this type divergence. Indeed, as the wave energy increases, so too
does the ion temperature (Eq. 47). This in turn leads to an enhanced ion Landau damping (dependent on
Te/Ti in Eq. 37) which ultimately quenches the growth of the wave energy. Convergent solutions thus in
principle can be found through the feedback represented by the ion Landau damping, and as we show in our
companion paper, this self-regulation does in fact lead to a stable result.

Although the ion heating primarily serves to help stabilize the wave growth in our simulations, the fact
that this process can be modeled with the above formalism offers some potential insight into the formation
of energetic ions in the cathode plume. Indeed, previous investigations have leveraged simple 1-D kinetic
models to show how the growth of the IAT that occurs at high cathode discharge currents is correlated with
the formation of an energetic ion tail.15,16 This tail in turn is believed to be linked to anomalous keeper
erosion by ion bombardment. The fluid-based formalism we have presented in the above study cannot
capture tail formation explicitly, but it does approximate the effect of the waves on the bulk distribution of
ions. Estimates for ion temperature that stem from this formulation therefore may serve as an approximate
metric for determining high-erosion states for the hollow cathode keeper. Indeed, the simulations presented
in our companion paper predict ion temperatures that only underestimate experimental measurements of
ion temperature (which are skewed by tail formation) by a factor of two.13,25

IX. Conclusion

In this investigation, we have presented a self-consistent formulation for determining how the growth of
ion acoustic turbulence in a hollow cathode plasma impacts the average fluid parameters of the ions and
electrons. We have used plasma kinetic theory in conjunction with the random phase approximation to
show how the waves lead to an effective drag and heating of the separate species. In both cases, the driving
terms for the fluid parameters depend explicitly on the total wave energy in the spectrum. We thus have
introduced an additional equation for how this new unknown evolves in the cathode. This governing relation
for the wave energy stems from the plasma wave kinetic equation and takes the form of a two-dimensional
partial differential equation.

The physical interpretation for the interaction of the waves with the plasma is that the turbulence is
driven unstable at the expense of the energy and momentum in the electron drift. This process leads to an
effective drag and a resistive, frictional heating of this species. Since the waves are carried by ion oscillatory
motion and are damped by resonant interactions with the ions, the turbulent growth in turn increases the
ion temperature. This heating occurs until the ion Landau damping is sufficiently high to quench the IAT.
The growth of the waves therefore can reach a self-consistent and convergent steady-state without the need
to invoke artificial saturation mechanisms.

In the companion paper (Ref. 13) the relations we have found in this investigation are evaluated explicitly
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with OrCa2D, JPL’s in house fluid-based code, and applied to a simulation of a 140 A LaB6 hollow cathode.
The promising agreement with experimental measurements helps validate the relations derived here and
ultimately represents a promising step forward for improving the physics and accuracy of ab initio fluid
simulations..
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