
 978-1-4673-7676-1/16/$31.00 ©2016 IEEE (Copyright not yet transferred. © California Institute of Technology. Government sponsorship acknowledged.
 1

Multidisciplinary Model Transformation through
Simplified Intermediate Representations

Bjorn Cole
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

Bjorn.Cole@jpl.nasa.gov

Kevin Dinkel
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

Kevin.Dinkel@jpl.nasa.gov

Abstract— There has long been a challenge of making
engineering tools from multiple disciplines interoperate. This
problem extends to system modeling practices. This challenge
has been confronted with a wide variety of techniques. These
techniques include attempting to interface tools together into
combined suites, attempting to find underlying commonalities
in mathematics, supporting connections through semantic
encoding, various graph mappings and transformations, and
code wrappers. All of these approaches have strengths and
weaknesses. These are measured in multiple areas: relative
freedom of action of individual domain engineers in developing
their own tools, speed of execution, ease of creation, traceability,
fidelity of information transfer, and degree of alignment
between the concepts of different domains.

This paper presents an approach to this interoperation problem
currently being used in the World-Wide Web. The approach is
to develop easy-to-parse formats that allow flexibility to both the
file author and file interpreter. Many of the formats that are
currently deployed sacrifice runtime performance for the ability
of third parties to easily understand what to do with the data.
XML became popular earlier as a de-facto standard format for
many web applications, but is now being replaced by JSON to
enhance human readability and provide a simpler data model.
This is the basis for work in this paper.

Our approach, which provides the key to interoperation, is a
simplified “shrapnel” intermediate collection of objects and
relationships that is the result of a breakdown of the system
model into minimal pieces. It is then reassembled on the
destination side, forming a two-step transformation. Previous
efforts with single-step transformations have proven too
difficult to create efficiently. In contrast, the use of this
approach leads to an almost automatic procedure for
transformation development.

The Europa project is a large engineering project that must
coordinate the efforts of many different teams with different
specialties. The traditional form of exchanging engineering
information has been documentation. The vision of model-based
systems engineering is to make this information exchange much
more digital. This paper presents the application of our
simplified format to connecting two different engineering tools
to the system model, with a focus on a dynamic mission
simulation encoded in Modelica.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. KEY NEEDS ... 1
3. RELEVANT BACKGROUND 2
4. APPROACH .. 3

5. APPLICATION .. 8
6. OBSERVATIONS AND FUTURE WORK 9
7. SUMMARY .. 10
ACKNOWLEDGEMENTS .. 10
REFERENCES ... 10
BIOGRAPHY ... 11

1. INTRODUCTION

The Europa project is designing a proposed large-scale
science mission that would study one of the largest moons of
Jupiter. The mission concept involves orbiting Jupiter and
flying by Europa a large number of times in order to
investigate the moon’s potential for harboring conditions
suitable for life. Deep-space probes have been steadily
increasing in complexity, especially in the area of software
and scientific instrumentation. In addition, the environment
of Europa is in the midst of an intense radiation field
generated by Jupiter accelerating electrons trapped in its
magnetic field. Because there would be only a limited
number of Europa flybys, there would be a premium on
assuring that they go well.

Like any other large space project, there are many
engineering teams working together. Typically, they have
collaborated via documents and other communications.
However, the information exchange provided by documents
leads to a great deal of hand re-entry of information across
multiple systems, simulators, and analysis tools. The natural
rate of human error can be greatly improved upon by relying
on common data sources that are electronically translated.

The first set of tools to be integrated where those that
developed a detailed picture of the generation, storage, and
use of power as well as science data generation and downlink.
For this paper, it will be called the Europa Project System
Resources Toolchain. This toolchain is more fully described
in a companion paper [1].

2. KEY NEEDS
The motivating problem for this work is that engineering
analysis is still a very fragmented enterprise from an
interoperability standpoint. In running a system-level
analysis, it is often necessary to take the output of one
analysis tool and use it as the input to another analysis tool.
This is because tools are typically developed and used by

 2

subsystem experts. The system perspective is gained by
chaining together domain specific tools, gathering a system
analysis perspective. But there are a large array of
engineering software tools built upon many different
mathematical and logical structures and theories, tailored to
their domain of interest. There are islands of integration that
have been built up between tools used by frequently
collaborating engineers, such as between mechanical design
tools and stress analysis tools. Many connections in large
engineering organizations such as JPL are implemented as ad
hoc software developed for specific projects or efficiency
improvement tasks. When a series of point-to-point
integrations is attempted in scripts and codes, the result is a
nest of hard-to-maintain connections.

There are frameworks that work to tame the chaos. Examples
include Dassault’s iSIGHT, Glenn Research Center’s
OpenMDAO, and Phoenix Integration’s ModelCenter. These
tools abstract the details of specific tool Application
Programming Interfaces (API’s) into a general series of
software components with inputs and outputs. This seems
like a small abstraction at first, but it does encapsulate a fair
amount of execution detail into individual components. The
weakness in these frameworks is that they were designed to
expose collections of parameters rather than structural model
information. In many tools, model structure can be just as
important as parameter values. Thus, parts of the structure of
model A may need to be transformed into the form for model
B in order to truly transfer all of the information. There are
emerging frameworks that get deeper into this problem such
as Vanderbuilt University’s CyPhyML, Comet Solutions’
CoMET tooling, and InterCAX’s Syndeia tool. However,
these tools do not provide full user control of the model
transformation, which may be needed to connect together
tools that were built in-house. This paper describes how to
make these transformations much easier to develop.

During the early development of the Europa Project System
Resources Toolchain, it was realized that different
engineering organizations wanted to retain ownership of their
pieces of analysis software. This means that each software
owner wants some degree of control and ability to refactor
approaches to deal with problems. A transformation that

requires either side to negotiate every detail of an input
specification adds friction to the interchange.

A previously suggested solution to the engineering
integration problem has been to utilize the techniques of
Model-Driven Architecture vision promoted by the Object
Modeling Group [2], [3], [4]. The issues that have arisen in
this approach is that a fully declarative, two-way
transformation in real engineering models can be difficult to
formulate. The languages and tools for the transformations
are effective, but finding patterns for using them more
efficiently is needed. That is described in the Approach part
of this paper.

The objective for this work can be stately thusly: Develop a
style of interchange between engineering tool file formats
that allows the owners of each tool to retain control of their
own format, is straightforward to develop, and does not
require complete knowledge of both formats before starting.
This interchange approach does not in principle preclude or
prescribe the use of any particular tool for implementation.

3. RELEVANT BACKGROUND
The need to transform data objects is not new to the object-
oriented world, in either the programming or modeling sides
of it. On the modeling side, the Open Modeling Group is one
of the advocates of “model-driven engineering,” which is
oriented toward creating useful source code from Unified
Modeling Language (UML) models. There is a parallel
collection of tools and languages that aims to create models
in one domain from models in another. On the programming
side, there are working tools such as Object-Relational
Mappers that transform class specifications into relational
table schemas.

The complexity and compromises inherent in an ORM
provides a reason to have caution about a general method for
object-to-object transformation. However, there are a number
of sources to this complexity. For one, the ORM must support
a transformation from a class description to a database
schema, meaning that many actual objects will have to be
supported at runtime. For another, the ORM will have to

Figure 1. Triple-Graph Grammar notation for a one in, two out switch from structural version to Petri net notation.

 3

result in a high-performance database that can handle
multiple updates as programs run. Finally, the database
and/or object model may have to worry about concurrent
edits to the resultant database. Many of these complexities are
reduced for the Europa Project System Resources Toolchain:
the objects are already populated on one side of the
transformation, the transformation only has to be executed at
one given time, and there are no edits along the way.

In the meanwhile, model-driven engineering has faced its
own series of challenges. Key among these is the complexity
of defining transformations among complicated models. A
way to see this complexity is to look at “simple” examples in
the Triple-Graph Grammar literature [5] between Petri nets
and network routing, as shown in Figure 1. The graphical
depictions quickly get cluttered and it can be hard to follow
the implications of declared links. Also, many of the
transformation tools in work focus on capability, and do not
provide suggested approaches to designing or understanding
a given transformation. The world of data transformation has
certainly not yet been oriented to non-software engineers.

Another issue with one-step transformation is that it requires
the transformation author to simultaneously gain familiarity
with the transformation language as well as details of use and
semantics for both the source and target models. In a real
enterprise, there will be experts within one domain that can
talk to the details of one type of modeling language or another
but rarely both. In addition, the mastery of a dedicated
transformation language is still another skill that is even
harder to find in someone that understands the two domains.
Thus, correspondences between two modeling languages
should be kept as simple as possible, hopefully with just the
meaning or correspondence of major fields or classes only.

4. APPROACH
As suggested in the title, the crux of the approach is to break
up the transformation problem into smaller pieces. One of
these pieces is a standard for a simplified interchange format
that removes complex corner cases through careful
constraints. This data format is based on one that is already
very simple, the JavaScript Object Notation. JSON has just
two data structures: a generic collection (list of values or
key/value pairs) or a key-value pairing that stands in for a
given object’s state. This simple file format also helped to
conceive of object-oriented models in simple ways.

The native JSON format allows for arbitrarily deep trees of
objects by having the value in a key-value pair be another list
of key-value pairs. Object-oriented models can be a general
graph of references. For example, a SysML model can have
two Blocks, with one them owning a Property that is typed
by the other. This is handled in the XML Model Interchange
(XMI) format by having cross references to unique identifiers
as the value to a key-value pair. This can be seen in an
example below [6]:

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"

xmlns:uml="http://www.eclipse.org/uml2/1.0.
0/UML"
xmi:id="_UwyEFBV_Edqs_vsvaW3hqA"
name=“CarOwner" >
 <ownedMember xmi:type="uml:Class"
xmi:id="_UwyEHxV_Edqs_vsvaW3hqA"
name="Car">
 <ownedAttribute
xmi:id="_UwyEIBV_Edqs_vsvaW3hqA"
name="owner" visibility="private"
 type="_UwyEIhV_Edqs_vsvaW3hqA"
association="_UwyEJxV_Edqs_vsvaW3hqA"/>
 <ownedAttribute
xmi:id="_UwyEIRV_Edqs_vsvaW3hqA"
name="manufacturer" visibility="private">
 <type xmi:type="uml:PrimitiveType"
 href="pathmap://UML2_LIBRARIES/UML
2PrimitiveTypes.library.uml2#_IXlH8a86Ediea
YgxtVWN8Q"/>
 </ownedAttribute>
 </ownedMember>
 <ownedMember xmi:type="uml:Class"
xmi:id="_UwyEIhV_Edqs_vsvaW3hqA"
name="Owner">
 <ownedAttribute
xmi:id="_UwyEIxV_Edqs_vsvaW3hqA"
name="ownedCars"
 visibility="private"
type="_UwyEHxV_Edqs_vsvaW3hqA"
association="_UwyEJxV_Edqs_vsvaW3hqA">
 <upperValue
xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="_UwyEJBV_Edqs_vsvaW3hqA"
value="-1"/>
 <lowerValue xmi:type="uml:LiteralInteger"
xmi:id="_UwyEJRV_Edqs_vsvaW3hqA"/>
 </ownedAttribute>
 <ownedAttribute
xmi:id="_UwyEJhV_Edqs_vsvaW3hqA"
name="name" visibility="private">
 <type xmi:type="uml:PrimitiveType"
 href="pathmap://UML2_LIBRARIES/UML
2PrimitiveTypes.library.uml2#_IXlH8a86Ediea
YgxtVWN8Q"/>
 </ownedAttribute>
 </ownedMember>
 <ownedMember xmi:type="uml:Association"
 xmi:id="_UwyEJxV_Edqs_vsvaW3hqA"
memberEnd="_UwyEIBV_Edqs_vsvaW3hqA
_UwyEIxV_Edqs_vsvaW3hqA"/>

 </uml:Model>

A similar strategy can be used in JSON. Unfortunately, this
technique means that a given object may require an
indeterminate number of “hops” across ID references in order
to fully resolve the full graph. What can also be seen in the

 4

file above is that it is very challenging with all of the opaque
ID references to understand what the references actually
mean.

Another quality of attribute references in object-oriented
languages is that there can be collections of references. In the
SysML example, a Block’s Property can have one or more
Properties that are redefined from more general Blocks in the
inheritance hierarchy. This redefinition attribute is captured
in XMI as a collection of unique identifiers, each of which
must be followed in order to understand the full extent of
references.

Tools that work with XMI are often required to load large
portions of a model into memory to begin querying it. This is
especially true if the query goes “upstream” in the opposite
direction of the opaque ID pointers. This directedness of
reference also makes transformations more time-consuming
to write. The model in Figure 3 is a good example. If the
query wants to find what piece of hardware a state is attached
to, the query will have to proceed down all of the different
pieces of hardware to find which one is connected. In
contrast, if the relationships were stored separately, the query
could proceed in either direction.

Consulting the SysML approach to modeling provides a
useful solution: explicitly modeled Associations are first-
order objects in the metamodel. An Association has two Ends
that are mapped to properties. When a Block owns a Property,
that Property is mapped to the End opposite that Block. The
Association Ends do require additional attributes to mark
ownership and navigability of properties, but these are
straightforward to set. These pieces are illustrated in Figure
2. It is important to note that the Association End of “wheel”
is logically equivalent to the collection named “wheel.”

The key to understanding Association Ends versus Properties
is to see that it is really just perspective. Associations and
their Ends emphasize the graph, and expose the edges of the
graph. Properties emphasize ownership and encapsulation
from an object-oriented standpoint. Since the interest is in
transformation, the greater visibility of the graph edge is
preferred to layers of encapsulation.

The introduction of the Association allows for a way to make
the relationships between objects much more uniform. Rather
than having key-value pairs where the value is an identifier
or simply includes more keys and values, all references are
made into explicit graph edges. This leads to some key
restrictions on the format:

Figure 2. The Association from UML is a complicated but very useful object when examining a model graph.

Figure 3. Once objects are transformed, “moving” the relationship quickly establishes how properties move from
one metamodel to another.

 5

There must be a key called “components” that holds only
collections of key-value pairs with primitive values. These
key-value pairs should be collected into a key called
“properties.” Also, it is required for each component to have
a name, id, and type (although it can be empty).

There must be a key called “source_ordered_relationships”
that holds a collection of identical objects where each
member has at least the keys “source_id”, “source_name”,
“target_id”, “target_name” with unique identifiers on the “id”
keys. Any additional key-value pairs must have only
primitive values. The “relationships” key will have each
object twice – the first in a collection sorted by source_id
value and the second in a collection sorted by target_id with
the key “target_ordered_relationships.” These rules move all
references into a common “relationship” object.

A key benefit to the Association-based approach is to allow
for hierarchies to be remapped. As an example, consider a
model that is organized by assembly order. There is another
model organized as an analysis model with just a list of
logical operations. Each deals with how much power is
consumed in different circumstances. The situation is
illustrated in Figure 3. The question is: how do the references
to power modes like “On” from the assembly model map to
those in the functionally-oriented model? This can be
determined by examining the relationships between objects
in both models and the power mode as well as between each
other to determine a good query approach. The short answer
in this case would likely be to just take each instance of a
relationship between all “Power Mode Rule” types found and
another state and make a new instance of the “Add Power”
command under the Simulated System since the actual
hierarchy appears to be unimportant.

This restricted format can be derived from more free-form
formats through realizing some useful logical equivalences
between the graph-oriented approach and more traditional
data structures. The first example is the equivalence between
a dictionary (key with multiple values) and the Association-
based relationships. As can be seen in Figure 4, there is a
logical equivalence between a collection of Associations that
share the same source and a dictionary key that has the many

targets of those Associations. This can be called the
Dictionary-Association translation.

Another key observation is that in doing engineering data
exchanges, we are interested in models as they are meant to
be used at analysis time. This means that the models are
required to be complete enough to be compiled or interpreted
in their native format and be fully grounded. An example to
consider here is the difference between a SysML model that
depicts multiple possible designs and one that depicts a single
one. The first model can have value properties unspecified
and is only guaranteed to have information one layer into a
structural hierarchy defined by Associations. The second
would have specified values as well as an explicit hierarchy
(for example, a model with a Car, a Wheel, and an association
to show multiplicity 4 on the property typed by wheel would
be expanded to a Car with Wheel 1, Wheel 2, Wheel 3, and
Wheel 4 that specialize the original Wheel). The explicit
hierarchy means that Associations can be traced down a full
structural path and thus eliminate ambiguity when properties
need to be moved in going from one model type to another.

What this discussion leads to is a new topology for
transformations. Rather than what is depicted in Model-
Driven Architecture literature, which is single-layer
transformation from source to target, this approach leads to
three smaller transformations, all indicated as arrows or
pointed boxes in Figure 5. The first transformation is from
native source model form to simplified form for the source
model using the restrictions given above, the second is from
simplified model form for the target model to the native target
model, and the third is to go between the simplified forms.
While this seems like more work as three transformations is
more than one, the complexities of implementing a full
transformation on real models is what drove the work for
these simplifications. More steps are needed but each is more
mechanical and understandable than the single-step
approach. In addition, these additional steps provide more
flexibility. It also appears that having more steps improves
modularity, and perhaps also reuse when one particular
model is transformed often into other. This has not yet been
seen, however, due to the small number of times this
approach has been used.

Figure 4. The Dictionary-Association translation provides a logical equivalent that makes it easier to rebuild
collections of properties

 6

There is also an intermediate form for one-directional
transformations, where the transition from restricted JSON
on one side to the target model is done in one step. This seems
to be the first approach that is attempted when working with
a new domain. This is a perfectly reasonable start and is
illustrated as the middle tier in Figure 5.

At this point, it is useful to provide a summary of the key
JSON constraints. An example of a JSON file embodying
these constraints is given at the end of this section. The
rationale for these restrictions is summarized as a flowchart
from initial needs to restrictions in Figure 6.

• All attributes of a component must be atomic and
collected under a ‘properties’ key
• All components must have a name, id, and type
• Components must be related by relationships
• Relationships must have a “type” key
• Relationships must be sorted into two keys,
“source_ordered_relationships” and
“target_ordered_relationships”, each of which are collections
of relationships defined by “source_id”, “source_name”,
“target_id”, “target_name” and atomic properties under a
“properties” key

There are also a set of heuristics for moving from a structured
model to a restricted JSON file. These are not mandatory but
have been found to be useful.

• Expand collections of references to objects into
Associations that reference the collection owner and each
member

• Expand all multiples (for example, the multiplicity “4”
on a set of wheels under a car) into individual Associations
• Make copies of objects according to their multiplicity in
a recursive manner; this expansion makes all roles and
connections explicit

This is a set of heuristics for taking the restricted JSON and
generating a specific input file for a target model:

• Follow relationships to generate dictionaries that create
collections of non-atomic values for keys that can be iterated
over to generate target model objects
• Build from the expected “bottom” of a given graph of
objects upward, filling in new dictionaries or references along
the way
• Once the right collections and objects are built, translate
into the syntax of the given tool

Restricted JSON Format

An example of data exported in this restricted format is given
below:

{ “components” : [
 { “name” : “Widget-1”,
 “type” : “Hardware”,
 “id” : “some unique id4”,
 “properties” : [
 { “mass” : “15 kg”,
 “cost” : “$150k”
 }
 },

Figure 5. Three approaches to model-to-model transformation are shown above. The first is the OMG standard
approach; the second a partial implementation of this paper’s approach; and third the full two-way version.

 7

 { “name” : “Widget-2”,
 “type” : “Hardware”,
 “id” : “some unique id2”,
 “properties” : [
 { “mass” : “15 kg”,
 “cost” : “$150k”
 }
 }
 { “name” : “Hardware On”,
 “type” : “Power Mode”,
 “id” : “some unique id3”,
 “properties” : [
 { “power” : “12 W”}
 },
 { “name” : “Hardware Off”,
 “type” : “Power Mode”,
 “id” : “some unique id”,
 “properties” : [
 { “power” : “0 W”}
 }
]
},
{“source_ordered_relationships” : [
 {“source_id” : “some unique id2”,
 “source_name” : “Widget-2”,
 “target_id” : “some unique id3”,
 “target_name”: “Hardware On”
 },
 {“source_id” : “some unique id4”,
 “source_name” : “Widget-1”,

 “target_id” : “some unique id”,
 “target_name”: “Hardware On”
 }
]
},
{“target_ordered_relationships” : [
 {“source_id” : “some unique id4”,
 “source_name” : “Widget-1”,
 “target_id” : “some unique id”,
 “target_name”: “Hardware On”
 },
 {“source_id” : “some unique id2”,
 “source_name” : “Widget-2”,
 “target_id” : “some unique id3”,
 “target_name”: “Hardware On”
 }
]
}

Figure 6. Flowchart from high-level needs to formatting decisions

 8

5. APPLICATION
The application example is in the work to connect the Europa
Project System Resources Toolchain. There are currently two
tools that have been connected via this approach. The first is
between SysML and an in-house mission planning tool, and
the second is between SysML and a resources simulation
developed in Modelica. The planning tool connection is
currently configured to skip the simplified-target-to-target
transformation since there is no interest in transforming back
to SysML models at this time. The Modelica connection at
first developed in the same way but then revised with the
intermediate transformation to understand potential pitfalls.

The engineering need for these transformations to get
hardware resource requirements and operating modes out of
a common system model into the relevant analysis tools.
These tools were responsible for estimating battery size and
also to develop and mature concepts of operations for the
science phase of the proposed Europa mission. This
information included power draw estimates, operating
modes, thermal generation, and related attributes.

The transformations from the SysML model to its restricted
JSON form are being done through a generalized tool that
performs the operations described in the approach. This tool
was derived from an earlier version that was used to render
system model patterns into requirements [7]. For a quick
summary, the tool works by examining an exemplar of a
given modeling patterns built within the model and relating
elements of that exemplar to data fields of the restricted
JSON format. That exemplar is then compared to the full
model to extract uses of the pattern using the Quick Subgraph
Isomorphism algorithm [8]. Once the matches are made, the
values and names of key model items are mapped into the
JSON format. Properties are referred only through their
Association relationships, and only select value properties are
appearing as keys with primitive values, typically the amount
of power consumed in a given operating mode. Doing this
also has the benefit of filtering away a great deal of model
content and reducing it to only that needed to interchange
with a given analysis tool.

The transformation from the simplified form to the end tools
is so far being done through scripts or calls to those tools’
APIs. For the planner, a Python script has been written to
parse the JSON file and build up dictionaries of the simplified
form. Then these dictionaries are used to populate new data
structures that are more natural for the planning tools’
conceptual model. Finally, the input file for the planning tool
is autocoded from these data files. The Modelica simulation
is connected in a similar way using Mathematica’s WSMLink
(which drives its Modelica-based tool SystemModeler) to
generate new components from dictionaries.

The target Modelica model aims to collect representatives of
hardware into Work Package groups. The simulation logic is
to take in a state index (the orange incoming arrow) and
translate that into a required power number. Those needs are
then summed so they can be reported by Work Package. An
example snippet of the target model is shown below. The left-
hand boxes inherit from a library component called
StateToPowerValues.

While developing these transformation scripts, it was found
that the Dictionary-Association translation could be encoded
in a helper function. Once this was done, it was very
straightforward to start building up objects. Another
transformation step that was very useful was transforming
Associations from the SysML-exported JSON file into
equivalent Associations in restricted JSON that represented
Modelica. This is shown schematically below.

The first version of the JSON-to-Modelica transformation
attempted to use just the Dictionary-Association translation.
This worked well when there was only one level of depth to
transform. When more complicated collections had to be
built, they began to bog down. Complicated bookkeeping and
collections had to be built up to perform the transformation.

The concrete example of this was in the Modelica library
component called StateToPowerValues. The component has
a vector called “map” that orders the power values for modes
and a vector called “map_labels” that names the power
modes. An example would be “Flight Computer” with map
value of {10.0, 5.0, 2.0} and map_label value of {“On”,

Figure 7. An excerpt from the Modelica model generated by the transformation.

 9

“Standby”, “Sleep”}. In order to build those vectors, each
component had to have all of its Power Mode objects from
the system model linked to their hardware and collected via
the Dictionary-Association transform. However, the
components were themselves grouped into Modelica
components by Work Package so that those numbers could
be reported. Now multiple levels of reference had to be traced
and organized carefully, which involved code with multiple
loops. This was an approach focused on transforming objects
and collections together, which is complex in general.

When Associations were transformed from SysML-derived
JSON to a Modelica intermediate JSON version, the problem
became much simpler. Temporary objects for “map” and
“map_label” were created and linked with Associations. The
Association-Dictionary translation then collapsed those into
new objects. This simplification demonstrated the value of
creating and fully respecting a restricted JSON that represents
a transformation target.

Once a series of dictionaries had been built up, they were
used as data sources for the WSMLink commands to build a
series of components and progressively add structure and
properties until the desired model had been built.

6. OBSERVATIONS AND FUTURE WORK
The way that this approach evolved was an interesting one. It
started with a desire to export a data file from the system
model that could be used in another engineering tool. The
owners of that tool used the directly-produced data file at

first, but then expressed a desire to not have to wait on or
interact with the system modeling team each time they made
a change in the modeling approach of their own tool. Thus,
the simplified JSON export was developed with a focus on
relationships. This decoupled the transformation, allowing
the system modeling experts to work with transforming from
the system model and the discipline engineer to work with
transforming to his discipline model. This increased the
efficiency in each model exchange and created flexibility for
each team to make changes to the structure of their model
without impacting the other. After some time had passed, it
became clear that the two-way transformation would be
enabled by both sides having a simplified JSON interchange
format.

One of the authors has previous experience with building
multiple types of transformations to and from SysML from
different design tools. Working in basic programming
languages (Java, Python) was a highly productive way to
build transformations at first, but was fragile to change in the
modeling approach on either side of the interchange. The next
level of improvement was in working with dedicated
transformation languages: QVTo, Xtend, and Acceleo. These
had syntax that was more query-like and so had a great deal
of streamlining in tasks performed over collections. They also
had nicely streamlined ways of determining when a given
transformation should be executed or not.

This new approach streamlines the problem further still. Even
with the syntactical help, the transformation languages could

Figure 8. The system model representation on the left-hand side with components and states is mapped to the right-
hand side with a simulation component and its capture of power modes.

 10

not help with complicated transformation tasks like
compiling or especially splitting or remapping collections.
Having an emphasis on the relationships in graphs rather than
properties has significantly reduced development time and
headache once key helper functions were in place.
Transformation languages were not used in the particular
examples for this paper due to unfamiliarity on the pattern of
our collaborators on the planning side. However, it appears
that the focus on relationships and simple properties should
also make it much easier to encode transformations in these
languages if they are available to a given team.

Finally, an emphasis on patterns and the shapes of data as
well as individual classes and fields has paid many dividends
on the system modeling side. Changes in modeling approach
can now be taken in stride as the transformation chain can be
quickly updated. In addition, new patterns and new data can
quickly be added.

Future work on this approach is to attempt to use it with the
Model-Driven Architecture tools like those of QVT or triple-
graph grammars to see if they improve productivity of the
transformations further. In addition, more experience with
deployment and maintenance of these transformations will be
gained as they see greater amounts of use and more diverse
application.

7. SUMMARY
An approach has been developed to simplify the translation
of data from one engineering tool to another. This approach
is built around a restricted JSON format that attempts to make
data relationships as explicit as possible. This also suggests a
three-step transformation process rather than the single step
that is often portrayed in the Model-Driven Architecture
literature.

Both the symmetric three-step transformation and a more
direct two-step approach were applied to real data
transformation problems. When comparing the two encodes
on the Modelica-based problem, it was seen that the full
approach continued to provide a helpful organizing principle
for developing the transformation.

The approach presented here is expected to aid in developing
more transformations between engineering tools more
rapidly and improve efforts in making tools interoperate on
the Europa project and throughout JPL.

ACKNOWLEDGEMENTS
The authors wish to acknowledge the support and efforts of
other members in the Europa project for supporting the first
examples of this integration. In particular, Eric Ferguson,
Erich Lee, David Wagner, and Hongman Kim were all
instrumental in collaboration in communicating
interoperations needs. The research was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

REFERENCES
[1] Post, E., et al, "Cloud-Based Orchestration of a

Model-Based Power and Data Analysis Toolchain."
IEEE Aerospace Conference, 2016.

[2] Cole, B. "Analyses made to order: Using
transformation to rapidly configure a
multidisciplinary environment." IEEE Aerospace
Conference, 2013.

[3] Cole, B, Chung, S. " Getting a cohesive answer from
a common start: Scalable multidisciplinary analysis
through transformation of a systems model." IEEE
Aerospace Conference, 2013.

[4] Paredis, C., “Model Transformations in Model-Based
Systems Engineering,” Multimedia presentation.
Accessed at
[http://www.nomagic.com/mbse/images/whitepapers
/Model_Transformations_in_Model-
Based_Systems_Engineering.pdf], Oct. 23, 2015.

[5] Kindler, E., Wagner, R., “Triple Graph Grammars:
Concepts, Extensions, Implementations, and
Application Scenarios.” Technical Report, tr-ri-07-
284, University of Paderborn, 2007.

[6] “Introduction to XML Metadata Interchange (XMI),”
Multimedia presentation, Department for
Cooperative and Trusted Systems Information and
Communication Technology.

[7] Cole, B. F., & Jenkins, J. S., “Connecting
Requirements to Architecture and Analysis via
Model-Based Systems Engineering.”
AIAA@Infotech, 2015.

[8] Shang, H., Zhang, Y., Lin, X., “Taming Verification
Hardness: An Efficient Algorithm for Testing
Subgraph Isomorphism.” PVLDB '08, August 23-28,
2008.

 11

BIOGRAPHY
Bjorn Cole is a systems engineer at the
Jet Propulsion Laboratory in the
Systems Modeling, Analysis, and
Architectures group. He is currently
the lead of the Project Systems
Engineering Analysis team on the
Europa project, which is charged with
deploying MBSE analysis capability.

He has previously supported a series of MBSE research
efforts and was a member of both the A-Team and Team X
formulation groups at JPL. He has a Ph.D. and M.S. in
aerospace engineering from the Georgia Institute of
Technology, and a B.S. in aeronautics and astronautics
from the University of Washington.

Kevin Dinkel is a flight software
engineer at the Jet Propulsion
Laboratory, focusing on small-scale
flight systems. Prior to JPL, he worked
at the Southwest Research Institute
(SwRI) as a cognizant software
engineer for 3 high-altitude balloon
payloads and for the Laboratory for

Atmospheric and Space Physics (LASP) as a mission
planning software engineer. Kevin graduated with a
Masters in Aerospace Engineering from the University of
Colorado at Boulder in 2014.

 12

