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Abstract— There has long been a challenge of making 
engineering tools from multiple disciplines interoperate. This 
problem extends to system modeling practices. This challenge 
has been confronted with a wide variety of techniques. These 
techniques include attempting to interface tools together into 
combined suites, attempting to find underlying commonalities 
in mathematics, supporting connections through semantic 
encoding, various graph mappings and transformations, and 
code wrappers. All of these approaches have strengths and 
weaknesses. These are measured in multiple areas: relative 
freedom of action of individual domain engineers in developing 
their own tools, speed of execution, ease of creation, traceability, 
fidelity of information transfer, and degree of alignment 
between the concepts of different domains. 

This paper presents an approach to this interoperation problem 
currently being used in the World-Wide Web. The approach is 
to develop easy-to-parse formats that allow flexibility to both the 
file author and file interpreter. Many of the formats that are 
currently deployed sacrifice runtime performance for the ability 
of third parties to easily understand what to do with the data. 
XML became popular earlier as a de-facto standard format for 
many web applications, but is now being replaced by JSON to 
enhance human readability and provide a simpler data model. 
This is the basis for work in this paper. 

Our approach, which provides the key to interoperation, is a 
simplified “shrapnel” intermediate collection of objects and 
relationships that is the result of a breakdown of the system 
model into minimal pieces. It is then reassembled on the 
destination side, forming a two-step transformation. Previous 
efforts with single-step transformations have proven too 
difficult to create efficiently. In contrast, the use of this 
approach leads to an almost automatic procedure for 
transformation development.  

The Europa project is a large engineering project that must 
coordinate the efforts of many different teams with different 
specialties. The traditional form of exchanging engineering 
information has been documentation. The vision of model-based 
systems engineering is to make this information exchange much 
more digital. This paper presents the application of our 
simplified format to connecting two different engineering tools 
to the system model, with a focus on a dynamic mission 
simulation encoded in Modelica. 
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1. INTRODUCTION 

The Europa project is designing a proposed large-scale 
science mission that would study one of the largest moons of 
Jupiter. The mission concept involves orbiting Jupiter and 
flying by Europa a large number of times in order to 
investigate the moon’s potential for harboring conditions 
suitable for life. Deep-space probes have been steadily 
increasing in complexity, especially in the area of software 
and scientific instrumentation. In addition, the environment 
of Europa is in the midst of an intense radiation field 
generated by Jupiter accelerating electrons trapped in its 
magnetic field. Because there would be only a limited 
number of Europa flybys, there would be a premium on 
assuring that they go well. 

Like any other large space project, there are many 
engineering teams working together. Typically, they have 
collaborated via documents and other communications. 
However, the information exchange provided by documents 
leads to a great deal of hand re-entry of information across 
multiple systems, simulators, and analysis tools. The natural 
rate of human error can be greatly improved upon by relying 
on common data sources that are electronically translated. 

The first set of tools to be integrated where those that 
developed a detailed picture of the generation, storage, and 
use of power as well as science data generation and downlink. 
For this paper, it will be called the Europa Project System 
Resources Toolchain. This toolchain is more fully described 
in a companion paper [1]. 

2. KEY NEEDS 
The motivating problem for this work is that engineering 
analysis is still a very fragmented enterprise from an 
interoperability standpoint. In running a system-level 
analysis, it is often necessary to take the output of one 
analysis tool and use it as the input to another analysis tool. 
This is because tools are typically developed and used by 
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subsystem experts. The system perspective is gained by 
chaining together domain specific tools, gathering a system 
analysis perspective. But there are a large array of 
engineering software tools built upon many different 
mathematical and logical structures and theories, tailored to 
their domain of interest. There are islands of integration that 
have been built up between tools used by frequently 
collaborating engineers, such as between mechanical design 
tools and stress analysis tools. Many connections in large 
engineering organizations such as JPL are implemented as ad 
hoc software developed for specific projects or efficiency 
improvement tasks. When a series of point-to-point 
integrations is attempted in scripts and codes, the result is a 
nest of hard-to-maintain connections. 

There are frameworks that work to tame the chaos. Examples 
include Dassault’s iSIGHT, Glenn Research Center’s 
OpenMDAO, and Phoenix Integration’s ModelCenter. These 
tools abstract the details of specific tool Application 
Programming Interfaces (API’s) into a general series of 
software components with inputs and outputs. This seems 
like a small abstraction at first, but it does encapsulate a fair 
amount of execution detail into individual components. The 
weakness in these frameworks is that they were designed to 
expose collections of parameters rather than structural model 
information. In many tools, model structure can be just as 
important as parameter values. Thus, parts of the structure of 
model A may need to be transformed into the form for model 
B in order to truly transfer all of the information. There are 
emerging frameworks that get deeper into this problem such 
as Vanderbuilt University’s CyPhyML, Comet Solutions’ 
CoMET tooling, and InterCAX’s Syndeia tool. However, 
these tools do not provide full user control of the model 
transformation, which may be needed to connect together 
tools that were built in-house. This paper describes how to 
make these transformations much easier to develop. 

During the early development of the Europa Project System 
Resources Toolchain, it was realized that different 
engineering organizations wanted to retain ownership of their 
pieces of analysis software. This means that each software 
owner wants some degree of control and ability to refactor 
approaches to deal with problems. A transformation that 

requires either side to negotiate every detail of an input 
specification adds friction to the interchange. 

A previously suggested solution to the engineering 
integration problem has been to utilize the techniques of 
Model-Driven Architecture vision promoted by the Object 
Modeling Group [2], [3], [4]. The issues that have arisen in 
this approach is that a fully declarative, two-way 
transformation in real engineering models can be difficult to 
formulate. The languages and tools for the transformations 
are effective, but finding patterns for using them more 
efficiently is needed. That is described in the Approach part 
of this paper. 

The objective for this work can be stately thusly: Develop a 
style of interchange between engineering tool file formats 
that allows the owners of each tool to retain control of their 
own format, is straightforward to develop, and does not 
require complete knowledge of both formats before starting. 
This interchange approach does not in principle preclude or 
prescribe the use of any particular tool for implementation. 

3. RELEVANT BACKGROUND 
The need to transform data objects is not new to the object-
oriented world, in either the programming or modeling sides 
of it. On the modeling side, the Open Modeling Group is one 
of the advocates of “model-driven engineering,” which is 
oriented toward creating useful source code from Unified 
Modeling Language (UML) models. There is a parallel 
collection of tools and languages that aims to create models 
in one domain from models in another. On the programming 
side, there are working tools such as Object-Relational 
Mappers that transform class specifications into relational 
table schemas. 

The complexity and compromises inherent in an ORM 
provides a reason to have caution about a general method for 
object-to-object transformation. However, there are a number 
of sources to this complexity. For one, the ORM must support 
a transformation from a class description to a database 
schema, meaning that many actual objects will have to be 
supported at runtime. For another, the ORM will have to 

 
 
Figure 1. Triple-Graph Grammar notation for a one in, two out switch from structural version to Petri net notation. 
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result in a high-performance database that can handle 
multiple updates as programs run. Finally, the database 
and/or object model may have to worry about concurrent 
edits to the resultant database. Many of these complexities are 
reduced for the Europa Project System Resources Toolchain: 
the objects are already populated on one side of the 
transformation, the transformation only has to be executed at 
one given time, and there are no edits along the way. 

In the meanwhile, model-driven engineering has faced its 
own series of challenges. Key among these is the complexity 
of defining transformations among complicated models. A 
way to see this complexity is to look at “simple” examples in 
the Triple-Graph Grammar literature [5] between Petri nets 
and network routing, as shown in Figure 1. The graphical 
depictions quickly get cluttered and it can be hard to follow 
the implications of declared links. Also, many of the 
transformation tools in work focus on capability, and do not 
provide suggested approaches to designing or understanding 
a given transformation. The world of data transformation has 
certainly not yet been oriented to non-software engineers. 

Another issue with one-step transformation is that it requires 
the transformation author to simultaneously gain familiarity 
with the transformation language as well as details of use and 
semantics for both the source and target models. In a real 
enterprise, there will be experts within one domain that can 
talk to the details of one type of modeling language or another 
but rarely both. In addition, the mastery of a dedicated 
transformation language is still another skill that is even 
harder to find in someone that understands the two domains. 
Thus, correspondences between two modeling languages 
should be kept as simple as possible, hopefully with just the 
meaning or correspondence of major fields or classes only. 

4. APPROACH 
As suggested in the title, the crux of the approach is to break 
up the transformation problem into smaller pieces. One of 
these pieces is a standard for a simplified interchange format 
that removes complex corner cases through careful 
constraints. This data format is based on one that is already 
very simple, the JavaScript Object Notation. JSON has just 
two data structures: a generic collection (list of values or 
key/value pairs) or a key-value pairing that stands in for a 
given object’s state. This simple file format also helped to 
conceive of object-oriented models in simple ways. 

The native JSON format allows for arbitrarily deep trees of 
objects by having the value in a key-value pair be another list 
of key-value pairs. Object-oriented models can be a general 
graph of references. For example, a SysML model can have 
two Blocks, with one them owning a Property that is typed 
by the other. This is handled in the XML Model Interchange 
(XMI) format by having cross references to unique identifiers 
as the value to a key-value pair. This can be seen in an 
example below [6]: 

 
 

 
 
<?xml version="1.0" encoding="UTF-8"?> 
<uml:Model xmi:version="2.0" 
xmlns:xmi="http://www.omg.org/XMI"  
  
xmlns:uml="http://www.eclipse.org/uml2/1.0.
0/UML" 
xmi:id="_UwyEFBV_Edqs_vsvaW3hqA" 
name=“CarOwner" > 
  <ownedMember xmi:type="uml:Class" 
xmi:id="_UwyEHxV_Edqs_vsvaW3hqA" 
name="Car"> 
    <ownedAttribute 
xmi:id="_UwyEIBV_Edqs_vsvaW3hqA" 
name="owner" visibility="private"  
 type="_UwyEIhV_Edqs_vsvaW3hqA" 
association="_UwyEJxV_Edqs_vsvaW3hqA"/> 
    <ownedAttribute 
xmi:id="_UwyEIRV_Edqs_vsvaW3hqA" 
name="manufacturer" visibility="private"> 
      <type xmi:type="uml:PrimitiveType"  
 href="pathmap://UML2_LIBRARIES/UML
2PrimitiveTypes.library.uml2#_IXlH8a86Ediea
YgxtVWN8Q"/> 
    </ownedAttribute> 
  </ownedMember> 
  <ownedMember xmi:type="uml:Class" 
xmi:id="_UwyEIhV_Edqs_vsvaW3hqA" 
name="Owner"> 
    <ownedAttribute 
xmi:id="_UwyEIxV_Edqs_vsvaW3hqA" 
name="ownedCars"  
 visibility="private" 
type="_UwyEHxV_Edqs_vsvaW3hqA" 
association="_UwyEJxV_Edqs_vsvaW3hqA"> 
      <upperValue 
xmi:type="uml:LiteralUnlimitedNatural" 
xmi:id="_UwyEJBV_Edqs_vsvaW3hqA" 
value="-1"/> 
      <lowerValue xmi:type="uml:LiteralInteger" 
xmi:id="_UwyEJRV_Edqs_vsvaW3hqA"/> 
    </ownedAttribute> 
    <ownedAttribute 
xmi:id="_UwyEJhV_Edqs_vsvaW3hqA" 
name="name" visibility="private"> 
      <type xmi:type="uml:PrimitiveType"  
 href="pathmap://UML2_LIBRARIES/UML
2PrimitiveTypes.library.uml2#_IXlH8a86Ediea
YgxtVWN8Q"/> 
    </ownedAttribute> 
  </ownedMember> 
  <ownedMember xmi:type="uml:Association"  
 xmi:id="_UwyEJxV_Edqs_vsvaW3hqA" 
memberEnd="_UwyEIBV_Edqs_vsvaW3hqA 
_UwyEIxV_Edqs_vsvaW3hqA"/> 

 </uml:Model> 
 
A similar strategy can be used in JSON. Unfortunately, this 
technique means that a given object may require an 
indeterminate number of “hops” across ID references in order 
to fully resolve the full graph. What can also be seen in the 
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file above is that it is very challenging with all of the opaque 
ID references to understand what the references actually 
mean. 

Another quality of attribute references in object-oriented 
languages is that there can be collections of references. In the 
SysML example, a Block’s Property can have one or more 
Properties that are redefined from more general Blocks in the 
inheritance hierarchy. This redefinition attribute is captured 
in XMI as a collection of unique identifiers, each of which 
must be followed in order to understand the full extent of 
references. 

Tools that work with XMI are often required to load large 
portions of a model into memory to begin querying it. This is 
especially true if the query goes “upstream” in the opposite 
direction of the opaque ID pointers. This directedness of 
reference also makes transformations more time-consuming 
to write. The model in Figure 3 is a good example. If the 
query wants to find what piece of hardware a state is attached 
to, the query will have to proceed down all of the different 
pieces of hardware to find which one is connected. In 
contrast, if the relationships were stored separately, the query 
could proceed in either direction. 

Consulting the SysML approach to modeling provides a 
useful solution: explicitly modeled Associations are first-
order objects in the metamodel. An Association has two Ends 
that are mapped to properties. When a Block owns a Property, 
that Property is mapped to the End opposite that Block. The 
Association Ends do require additional attributes to mark 
ownership and navigability of properties, but these are 
straightforward to set. These pieces are illustrated in Figure 
2. It is important to note that the Association End of “wheel” 
is logically equivalent to the collection named “wheel.” 

The key to understanding Association Ends versus Properties 
is to see that it is really just perspective. Associations and 
their Ends emphasize the graph, and expose the edges of the 
graph. Properties emphasize ownership and encapsulation 
from an object-oriented standpoint. Since the interest is in 
transformation, the greater visibility of the graph edge is 
preferred to layers of encapsulation. 

The introduction of the Association allows for a way to make 
the relationships between objects much more uniform. Rather 
than having key-value pairs where the value is an identifier 
or simply includes more keys and values, all references are 
made into explicit graph edges. This leads to some key 
restrictions on the format: 

 
Figure 2. The Association from UML is a complicated but very useful object when examining a model graph. 

 
 

Figure 3. Once objects are transformed, “moving” the relationship quickly establishes how properties move from 
one metamodel to another. 
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There must be a key called “components” that holds only 
collections of key-value pairs with primitive values. These 
key-value pairs should be collected into a key called 
“properties.” Also, it is required for each component to have 
a name, id, and type (although it can be empty). 

There must be a key called “source_ordered_relationships” 
that holds a collection of identical objects where each 
member has at least the keys “source_id”, “source_name”, 
“target_id”, “target_name” with unique identifiers on the “id” 
keys. Any additional key-value pairs must have only 
primitive values. The “relationships” key will have each 
object twice – the first in a collection sorted by source_id 
value and the second in a collection sorted by target_id with 
the key “target_ordered_relationships.” These rules move all 
references into a common “relationship” object. 

A key benefit to the Association-based approach is to allow 
for hierarchies to be remapped. As an example, consider a 
model that is organized by assembly order. There is another 
model organized as an analysis model with just a list of 
logical operations. Each deals with how much power is 
consumed in different circumstances. The situation is 
illustrated in Figure 3. The question is: how do the references 
to power modes like “On” from the assembly model map to 
those in the functionally-oriented model? This can be 
determined by examining the relationships between objects 
in both models and the power mode as well as between each 
other to determine a good query approach. The short answer 
in this case would likely be to just take each instance of a 
relationship between all “Power Mode Rule” types found and 
another state and make a new instance of the “Add Power” 
command under the Simulated System since the actual 
hierarchy appears to be unimportant. 

This restricted format can be derived from more free-form 
formats through realizing some useful logical equivalences 
between the graph-oriented approach and more traditional 
data structures. The first example is the equivalence between 
a dictionary (key with multiple values) and the Association-
based relationships. As can be seen in Figure 4, there is a 
logical equivalence between a collection of Associations that 
share the same source and a dictionary key that has the many 

targets of those Associations. This can be called the 
Dictionary-Association translation. 

Another key observation is that in doing engineering data 
exchanges, we are interested in models as they are meant to 
be used at analysis time. This means that the models are 
required to be complete enough to be compiled or interpreted 
in their native format and be fully grounded. An example to 
consider here is the difference between a SysML model that 
depicts multiple possible designs and one that depicts a single 
one. The first model can have value properties unspecified 
and is only guaranteed to have information one layer into a 
structural hierarchy defined by Associations. The second 
would have specified values as well as an explicit hierarchy 
(for example, a model with a Car, a Wheel, and an association 
to show multiplicity 4 on the property typed by wheel would 
be expanded to a Car with Wheel 1, Wheel 2, Wheel 3, and 
Wheel 4 that specialize the original Wheel). The explicit 
hierarchy means that Associations can be traced down a full 
structural path and thus eliminate ambiguity when properties 
need to be moved in going from one model type to another. 

What this discussion leads to is a new topology for 
transformations. Rather than what is depicted in Model-
Driven Architecture literature, which is single-layer 
transformation from source to target, this approach leads to 
three smaller transformations, all indicated as arrows or 
pointed boxes in Figure 5. The first transformation is from 
native source model form to simplified form for the source 
model using the restrictions given above, the second is from 
simplified model form for the target model to the native target 
model, and the third is to go between the simplified forms. 
While this seems like more work as three transformations is 
more than one, the complexities of implementing a full 
transformation on real models is what drove the work for 
these simplifications. More steps are needed but each is more 
mechanical and understandable than the single-step 
approach. In addition, these additional steps provide more 
flexibility. It also appears that having more steps improves 
modularity, and perhaps also reuse when one particular 
model is transformed often into other. This has not yet been 
seen, however, due to the small number of times this 
approach has been used. 

 
 

Figure 4. The Dictionary-Association translation provides a logical equivalent that makes it easier to rebuild 
collections of properties 
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There is also an intermediate form for one-directional 
transformations, where the transition from restricted JSON 
on one side to the target model is done in one step. This seems 
to be the first approach that is attempted when working with 
a new domain. This is a perfectly reasonable start and is 
illustrated as the middle tier in Figure 5. 

At this point, it is useful to provide a summary of the key 
JSON constraints. An example of a JSON file embodying 
these constraints is given at the end of this section. The 
rationale for these restrictions is summarized as a flowchart 
from initial needs to restrictions in Figure 6. 

• All attributes of a component must be atomic and 
collected under a ‘properties’ key 
• All components must have a name, id, and type 
• Components must be related by relationships 
• Relationships must have a “type” key 
• Relationships must be sorted into two keys, 
“source_ordered_relationships” and 
“target_ordered_relationships”, each of which are collections 
of relationships defined by “source_id”, “source_name”, 
“target_id”, “target_name” and atomic properties under a 
“properties” key 
 
There are also a set of heuristics for moving from a structured 
model to a restricted JSON file. These are not mandatory but 
have been found to be useful. 

• Expand collections of references to objects into 
Associations that reference the collection owner and each 
member 

• Expand all multiples (for example, the multiplicity “4” 
on a set of wheels under a car) into individual Associations 
• Make copies of objects according to their multiplicity in 
a recursive manner; this expansion makes all roles and 
connections explicit 
 
This is a set of heuristics for taking the restricted JSON and 
generating a specific input file for a target model: 

• Follow relationships to generate dictionaries that create 
collections of non-atomic values for keys that can be iterated 
over to generate target model objects 
• Build from the expected “bottom” of a given graph of 
objects upward, filling in new dictionaries or references along 
the way 
• Once the right collections and objects are built, translate 
into the syntax of the given tool 
 
Restricted JSON Format 

An example of data exported in this restricted format is given 
below: 

{ “components” : [ 
 { “name” : “Widget-1”, 
   “type” : “Hardware”, 
   “id” : “some unique id4”, 
   “properties” : [ 
  { “mass” : “15 kg”, 
    “cost” : “$150k” 
  } 
 }, 

 
 

Figure 5. Three approaches to model-to-model transformation are shown above. The first is the OMG standard 
approach; the second a partial implementation of this paper’s approach; and third the full two-way version. 
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 { “name” : “Widget-2”, 
   “type” : “Hardware”, 
   “id” : “some unique id2”, 
   “properties” : [ 
  { “mass” : “15 kg”, 
    “cost” : “$150k” 
  } 
 } 
 { “name” : “Hardware On”, 
   “type” : “Power Mode”, 
   “id” : “some unique id3”, 
   “properties” : [ 
  { “power” : “12 W”} 
 }, 
 { “name” : “Hardware Off”, 
   “type” : “Power Mode”, 
   “id” : “some unique id”, 
   “properties” : [ 
  { “power” : “0 W”} 
 } 
 ] 
}, 
{“source_ordered_relationships” : [ 
 {“source_id” : “some unique id2”, 
  “source_name” : “Widget-2”, 
  “target_id” : “some unique id3”, 
  “target_name”: “Hardware On” 
 }, 
 {“source_id” : “some unique id4”, 
  “source_name” : “Widget-1”, 

  “target_id” : “some unique id”, 
  “target_name”: “Hardware On” 
 } 
 ] 
}, 
{“target_ordered_relationships” : [ 
 {“source_id” : “some unique id4”, 
  “source_name” : “Widget-1”, 
  “target_id” : “some unique id”, 
  “target_name”: “Hardware On” 
 }, 
 {“source_id” : “some unique id2”, 
  “source_name” : “Widget-2”, 
  “target_id” : “some unique id3”, 
  “target_name”: “Hardware On” 
 } 
 ] 
} 

 

 
 

Figure 6. Flowchart from high-level needs to formatting decisions 
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5. APPLICATION 
The application example is in the work to connect the Europa 
Project System Resources Toolchain. There are currently two 
tools that have been connected via this approach. The first is 
between SysML and an in-house mission planning tool, and 
the second is between SysML and a resources simulation 
developed in Modelica. The planning tool connection is 
currently configured to skip the simplified-target-to-target 
transformation since there is no interest in transforming back 
to SysML models at this time. The Modelica connection at 
first developed in the same way but then revised with the 
intermediate transformation to understand potential pitfalls. 

The engineering need for these transformations to get 
hardware resource requirements and operating modes out of 
a common system model into the relevant analysis tools. 
These tools were responsible for estimating battery size and 
also to develop and mature concepts of operations for the 
science phase of the proposed Europa mission. This 
information included power draw estimates, operating 
modes, thermal generation, and related attributes. 

The transformations from the SysML model to its restricted 
JSON form are being done through a generalized tool that 
performs the operations described in the approach. This tool 
was derived from an earlier version that was used to render 
system model patterns into requirements [7]. For a quick 
summary, the tool works by examining an exemplar of a 
given modeling patterns built within the model and relating 
elements of that exemplar to data fields of the restricted 
JSON format. That exemplar is then compared to the full 
model to extract uses of the pattern using the Quick Subgraph 
Isomorphism algorithm [8]. Once the matches are made, the 
values and names of key model items are mapped into the 
JSON format. Properties are referred only through their 
Association relationships, and only select value properties are 
appearing as keys with primitive values, typically the amount 
of power consumed in a given operating mode. Doing this 
also has the benefit of filtering away a great deal of model 
content and reducing it to only that needed to interchange 
with a given analysis tool. 

The transformation from the simplified form to the end tools 
is so far being done through scripts or calls to those tools’ 
APIs. For the planner, a Python script has been written to 
parse the JSON file and build up dictionaries of the simplified 
form. Then these dictionaries are used to populate new data 
structures that are more natural for the planning tools’ 
conceptual model. Finally, the input file for the planning tool 
is autocoded from these data files. The Modelica simulation 
is connected in a similar way using Mathematica’s WSMLink 
(which drives its Modelica-based tool SystemModeler) to 
generate new components from dictionaries. 

The target Modelica model aims to collect representatives of 
hardware into Work Package groups. The simulation logic is 
to take in a state index (the orange incoming arrow) and 
translate that into a required power number. Those needs are 
then summed so they can be reported by Work Package. An 
example snippet of the target model is shown below. The left-
hand boxes inherit from a library component called 
StateToPowerValues. 

While developing these transformation scripts, it was found 
that the Dictionary-Association translation could be encoded 
in a helper function. Once this was done, it was very 
straightforward to start building up objects. Another 
transformation step that was very useful was transforming 
Associations from the SysML-exported JSON file into 
equivalent Associations in restricted JSON that represented 
Modelica. This is shown schematically below. 

The first version of the JSON-to-Modelica transformation 
attempted to use just the Dictionary-Association translation. 
This worked well when there was only one level of depth to 
transform. When more complicated collections had to be 
built, they began to bog down. Complicated bookkeeping and 
collections had to be built up to perform the transformation. 

The concrete example of this was in the Modelica library 
component called StateToPowerValues. The component has 
a vector called “map” that orders the power values for modes 
and a vector called “map_labels” that names the power 
modes. An example would be “Flight Computer” with map 
value of {10.0, 5.0, 2.0} and map_label value of {“On”, 

 
 

Figure 7. An excerpt from the Modelica model generated by the transformation. 
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“Standby”, “Sleep”}. In order to build those vectors, each 
component had to have all of its Power Mode objects from 
the system model linked to their hardware and collected via 
the Dictionary-Association transform. However, the 
components were themselves grouped into Modelica 
components by Work Package so that those numbers could 
be reported. Now multiple levels of reference had to be traced 
and organized carefully, which involved code with multiple 
loops. This was an approach focused on transforming objects 
and collections together, which is complex in general. 

When Associations were transformed from SysML-derived 
JSON to a Modelica intermediate JSON version, the problem 
became much simpler. Temporary objects for “map” and 
“map_label” were created and linked with Associations. The 
Association-Dictionary translation then collapsed those into 
new objects. This simplification demonstrated the value of 
creating and fully respecting a restricted JSON that represents 
a transformation target. 

Once a series of dictionaries had been built up, they were 
used as data sources for the WSMLink commands to build a 
series of components and progressively add structure and 
properties until the desired model had been built. 

6. OBSERVATIONS AND FUTURE WORK 
The way that this approach evolved was an interesting one. It 
started with a desire to export a data file from the system 
model that could be used in another engineering tool. The 
owners of that tool used the directly-produced data file at 

first, but then expressed a desire to not have to wait on or 
interact with the system modeling team each time they made 
a change in the modeling approach of their own tool. Thus, 
the simplified JSON export was developed with a focus on 
relationships.  This decoupled the transformation, allowing 
the system modeling experts to work with transforming from 
the system model and the discipline engineer to work with 
transforming to his discipline model.  This increased the 
efficiency in each model exchange and created flexibility for 
each team to make changes to the structure of their model 
without impacting the other. After some time had passed, it 
became clear that the two-way transformation would be 
enabled by both sides having a simplified JSON interchange 
format.  

One of the authors has previous experience with building 
multiple types of transformations to and from SysML from 
different design tools. Working in basic programming 
languages (Java, Python) was a highly productive way to 
build transformations at first, but was fragile to change in the 
modeling approach on either side of the interchange. The next 
level of improvement was in working with dedicated 
transformation languages: QVTo, Xtend, and Acceleo. These 
had syntax that was more query-like and so had a great deal 
of streamlining in tasks performed over collections. They also 
had nicely streamlined ways of determining when a given 
transformation should be executed or not. 

This new approach streamlines the problem further still. Even 
with the syntactical help, the transformation languages could 

 
 

Figure 8. The system model representation on the left-hand side with components and states is mapped to the right-
hand side with a simulation component and its capture of power modes. 
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not help with complicated transformation tasks like 
compiling or especially splitting or remapping collections. 
Having an emphasis on the relationships in graphs rather than 
properties has significantly reduced development time and 
headache once key helper functions were in place. 
Transformation languages were not used in the particular 
examples for this paper due to unfamiliarity on the pattern of 
our collaborators on the planning side. However, it appears 
that the focus on relationships and simple properties should 
also make it much easier to encode transformations in these 
languages if they are available to a given team. 

Finally, an emphasis on patterns and the shapes of data as 
well as individual classes and fields has paid many dividends 
on the system modeling side. Changes in modeling approach 
can now be taken in stride as the transformation chain can be 
quickly updated. In addition, new patterns and new data can 
quickly be added. 

Future work on this approach is to attempt to use it with the 
Model-Driven Architecture tools like those of QVT or triple-
graph grammars to see if they improve productivity of the 
transformations further. In addition, more experience with 
deployment and maintenance of these transformations will be 
gained as they see greater amounts of use and more diverse 
application. 

7. SUMMARY 
An approach has been developed to simplify the translation 
of data from one engineering tool to another. This approach 
is built around a restricted JSON format that attempts to make 
data relationships as explicit as possible. This also suggests a 
three-step transformation process rather than the single step 
that is often portrayed in the Model-Driven Architecture 
literature. 

Both the symmetric three-step transformation and a more 
direct two-step approach were applied to real data 
transformation problems. When comparing the two encodes 
on the Modelica-based problem, it was seen that the full 
approach continued to provide a helpful organizing principle 
for developing the transformation. 

The approach presented here is expected to aid in developing 
more transformations between engineering tools more 
rapidly and improve efforts in making tools interoperate on 
the Europa project and throughout JPL. 
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