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Introduction
• NASA Planetary Protection Office Requirement is that the upper 

stage have < 10-4 probability of impact within 50 years after 
launch.
– Applies to the total mission, not just nominal scenario
– Subject to upper stage reliability.

• Examples throughout use the next Mars lander, InSight
– “Interior Exploration using Seismic Investigations, Geodesy, and Heat 

Transport” 
– Scheduled to launch March 2016 on ULA Atlas V 401 with a Centaur 

upper stage
– 27 day launch period, compliance is demonstrated for a day if the 

open, middle, and close of the window is in compliance
• Centaur mission:

– Separate from InSight
– Perform the Contamination and Collision Avoidance Maneuver 

(“CCAM”)
– Dump or burn remaining residual propellants (“Blowdown”)
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Direct Resonance
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256 of 5000 cases returned to Mars SOI (574,000 km)
None impacted
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Assisted Returns
• 50,000 case Monte 

Carlo
• Many return to Earth 

SOI (924,000 km)
• A few thus returned 

to Mars
• A single case 

impacted Mars
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Statistical Formulation
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𝑃𝑃(𝐼𝐼) =

𝑃𝑃(𝑠̅𝑠)[𝑃𝑃(𝐼𝐼0|𝑠̅𝑠) + 𝑃𝑃(𝐼𝐼0� |𝑠̅𝑠)𝑃𝑃(𝐼𝐼50|𝐼𝐼0� , 𝑠̅𝑠)] +
𝑃𝑃(𝑠𝑠)𝑃𝑃(𝑐𝑐̅)[𝑃𝑃(𝐼𝐼0|𝑠𝑠, 𝑐𝑐̅) + 𝑃𝑃(𝐼𝐼0� |𝑠𝑠, 𝑐𝑐̅)𝑃𝑃(𝐼𝐼50|𝐼𝐼0� , 𝑠𝑠, 𝑐𝑐̅)] +

𝑃𝑃(𝑠𝑠)𝑃𝑃(𝑐𝑐)𝑃𝑃�𝑏𝑏���𝑃𝑃�𝐼𝐼0|𝑠𝑠, 𝑐𝑐, 𝑏𝑏�� + 𝑃𝑃�𝐼𝐼0� |𝑠𝑠, 𝑐𝑐, 𝑏𝑏��𝑃𝑃�𝐼𝐼50|𝐼𝐼0� , 𝑠𝑠, 𝑐𝑐, 𝑏𝑏��� +
𝑃𝑃(𝑠𝑠)𝑃𝑃(𝑐𝑐)𝑃𝑃(𝑏𝑏)[𝑃𝑃(𝐼𝐼0|𝑠𝑠, 𝑐𝑐, 𝑏𝑏) + 𝑃𝑃(𝐼𝐼0� |𝑠𝑠, 𝑐𝑐, 𝑏𝑏)𝑃𝑃(𝐼𝐼50|𝐼𝐼0� , 𝑠𝑠, 𝑐𝑐, 𝑏𝑏)]

 

Probabilities that the 
Centaur achieves each step 

in its mission 

Probabilities of impact 
on the first encounter

Probabilities of impact 
after the first encounter

𝑃𝑃(𝑒̅𝑒) = 1 − 𝑃𝑃(𝑒𝑒) Recall:
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First-Encounter Impacts
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Limits of Linear Mapping
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Confidence Intervals
• Normal Approximation 

(Wald Interval)

– If estimate is zero, interval 
is { 0 , 0 }

– If estimate is small, lower 
bound can be negative

– Requires a relatively large 
number of recorded events

– Effectively unbounded 
number of Monte Carlo 
runs required

• Wilson Interval

– Well defined behavior at 
extreme estimates

– Known to be conservative
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𝐶𝐶𝐶𝐶 = �𝑝̂𝑝 ± 𝑧𝑧�
𝑝̂𝑝(1 − 𝑝̂𝑝)
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A Brute Force Approach
• Use the Wilson interval for the 50 year 

probabilities of impact and ignore the Centaur 
reliability.
– If each term of the equation < 10-4, then the Centaur 

reliability is irrelevant

• Number of runs:
– 85,169 for scenarios likely to have direct resonances
– 66,352 otherwise

• Requires 10-computer years to complete.
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A Bayesian Approach
• The Beta distribution: β(α,β), captures the 

distribution of the estimate of probability of an event 
given prior experience
– α: number of recorded events
– α+β: number of trials
– Increment both by 0.5 if either is zero.
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Cumulative Probability of a Centaur failure 
given 43 successes in 43 attempts
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The Method
• Determine the first-encounter probabilities of impact for 

each of the four scenarios (no-separation, no-CCAM, no-
blowdown, and the nominal mission).

• Perform 50-year Monte Carlos for each of the four 
scenarios and record how many cases impact Mars during 
the integration.

• Generate one million samples of each of the seven Beta 
distributions representing the probability of each of the 
scenarios and the resulting probability of impact.

• Solve the equation one million times with each sample 
from the seven sets of Step 3 and the results from Step 1.

• Sort the resulting values and determine the 99th percentile 
value.
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Sizing the Monte Carlo

• Assume:
– Centaur reliability: 0.9
– First Pass Probability of 

Impact: 
• 10-4 for anomalous scenarios
• 0 for nominal mission

• Then, to meet 10-4

requirement:
– Anomalous scenario 

probability of impact ≈10-3

– Nominal scenario 
probability of impact ≈10-4
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An Example
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Example First-Encounter Probabilities of Impact Example Results from Monte Carlos

Scenario First-Encounter 
Impact Probability 

Failure to separate 9.0 × 10-6 

Failure to perform CCAM 9.3 × 10-6 

Failure to perform the blowdown 1.4 × 10-8 

Nominal Mission 1.3 × 10-300 

 

Scenario Monte Carlo 
Size 

Number of  
Impacts Beta Distribution 

Failure to separate 5,000 0 β( 0.5, 5000.5 ) 

Failure to perform CCAM 5,000 0 β ( 0.5, 5000.5 ) 

Failure to perform the blowdown 5,000 1 β ( 1, 4999 ) 

Nominal Mission 50,000 1 β ( 1, 49999 ) 
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Applying Parallel Computing
• For InSight, 8,265,000 Monte Carlos were 

required to demonstrate compliance using this 
method (731 computer-days)

• Monte Carlos are embarrassingly parallel
– Each initial condition is an independent draw
– No propagation depends on any other

• 776 CPUs available, theoretically reduces runtime 
to 24 hours
– Other users on the system
– Real-world performance ≈80 hours
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Conclusion
• Space is big; Mars is small. The probabilities of 

impact are accordingly tiny.
– Textbook statistical methods require an unbounded 

number of Monte Carlo runs
– Brute force frequentist approach places an upper 

bound on the problem, but still intractably large.
• Use the demonstrated reliability of the upper 

stage and a Bayesian approach to reduce the 
number of propagations required.

• Apply parallel computing to demonstrate 
compliance in 80 hours instead of two years.
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