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 A MASSIVELY PARALLEL BAYESIAN APPROACH TO 
PLANETARY PROTECTION TRAJECTORY  

ANALYSIS AND DESIGN 

Mark S Wallace* 

The NASA Planetary Protection Office has levied a requirement that the upper 
stage of future planetary launches have a less than 10-4 chance of impacting 
Mars within 50 years after launch. A brute-force approach requires a decade of 
computer time to demonstrate compliance. By using a Bayesian approach and 
taking advantage of the demonstrated reliability of the upper stage, the required 
number of fifty-year propagations can be massively reduced. By spreading the 
remaining embarrassingly parallel Monte Carlo simulations across multiple 
computers, compliance can be demonstrated in a reasonable time frame. The 
method used is described here. 

INTRODUCTION 

The next NASA Mars mission, the Interior Exploration using Seismic Investigations, Geode-
sy, and Heat Transport (InSight), is scheduled to launch in March 2016 using a United Launch 
Alliance (ULA) Atlas V 401 rocket with a Centaur upper stage. The project is carrying a re-
quirement, levied by the NASA Planetary Protection Office, that the upper stage of the launch 
vehicle have a less than 10-4 chance of hitting Mars within 50 years after launch. This 10-4 proba-
bility includes the probabilities of an upper stage anomaly. Considering the nominal mission or a 
worst-case anomalous scenario is insufficient. The nominal Centaur mission is to separate from 
the InSight spacecraft at a specific attitude, slew to a second attitude, perform a Contamination 
and Collision Avoidance Maneuver (CCAM), slew to a third attitude, and dump the remaining 
LOX/LH2 propellant and burn the remaining hydrazine. This final step is known as the blow-
down and hydrazine depletion sequence or simply “the blowdown.” All three attitudes are availa-
ble as controls to allow the designer to comply with the planetary protection requirements as well 
as the hyperbolic Earth departure targets. The anomalous scenarios considered by the InSight pro-
ject are: failure to separate, failure to perform the CCAM, and failure to perform the blowdown. 
The failure of any given event ends the sequence. If the upper stage fails to separate, then neither 
the CCAM nor the blowdown will occur. Likewise, if the CCAM fails, the blowdown will not 
occur either.  

After the separation-CCAM-blowdown sequence is completed or aborted due to failure, the 
upper stage will fly toward Mars. The initial uncertainty in the spacecraft state, expressed as a 
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6×6 covariance matrix, called an injection covariance matrix, or ICM, is mapped forward to the 
time of closest approach using the state transition matrix. The resulting hyper-ellipsoid is then 
projected into the Mars B-Plane1, illustrated in Figure 1. The Earth departure hyperbola is de-
signed to ensure that the upper stage has a low probability of impacting Mars on that first encoun-
ter. The spacecraft must remove this “launch bias” in order to meet its mission objectives. The 
attitudes for Separation, CCAM, and Blowdown are designed to push the first Mars encounter 
further from Mars. 

 

Figure 1: An ICM mapped to the first Mars encounter 

After this first encounter, future Mars impacts can occur due to several factors. The first is that 
the flyby may place the upper stage on a direct resonant trajectory such that its orbital period and 
the Mars year are a rational fraction of each other. This generally requires that the flyby be rela-
tively near Mars, as the ∆V required is on the order of 100s of m/s. The loci of B-Plane intersec-
tions that place the vehicle on a resonant trajectory follow arcs, called isochrones. These flybys 
result in nearly constant post-heliocentric orbital periods. Figure 2 highlights those points that 
reach the Mars sphere of influence2 (574,000 km) sometime after the first flyby in an example 
Monte Carlo. Note that none of these cases impact Mars. In theory, the bias and attitudes could be 
designed to avoid these isochrones and eliminate the probability of impact via this mechanism.  
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Figure 2: A sample 5000-case Monte Carlo with 256 trajectories returning to Mars 

The second type of flyby that can place the upper stage on an impact trajectory is one that 
places the post-encounter heliocentric orbit in the Mars plane. If the spacecraft and Mars orbits 
are in the same heliocentric plane, then an impact could theoretically occur any place in Mars’s 
orbit. Like the isochrones of the first mechanism, the locus of B-Plane points that can place the 
upper-stage on such a trajectory are relatively easy to find and can theoretically be avoided. 

Finally, given that the solar system is not comprised solely of the sun and a massless Mars, a 
third mechanism exists that could place the upper stage on an impact trajectory. A later encounter 
with the Earth or any other planetary body could change the upper stage’s trajectory and lead to a 
future impact. Exactly that sort of trajectory was observed in one 50,000 case Monte Carlo, illus-
trated in Figure 3. In this figure, the cyan points returned to the Earth sphere of influence2 
(924,000 km), the magenta stars returned to the Mars sphere of influence as a result, and a single 
red star impacted Mars. Like the isochrones shown in Figure 2, future Earth encounters could 
theoretically be mapped and avoided. The net effect of these three mechanisms, coupled with the 
need to design a single set of attitudes for every day in the launch period, means that the ∆V cost 
to the spacecraft of entirely avoiding all of these loci is excessive. A rough estimate indicated that 
just avoiding the direct resonance isochrones would require an order-of-magnitude increase in the 
launch bias.  

A method was required to determine an upper bound on the future probability of impact via 
Monte Carlo analysis. 
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Figure 3: Distant flybys of Earth changed the trajectory enough to cause a future Mars encounter 

STATISTICAL FORMULATION 

In statistical parlance, the each step in the Centaur sequence and any impacts can be denoted 
as events which have a probability of occurrence. In this document, a successful Centaur/InSight 
separation event shall be denoted as 𝑠𝑠, and a failure shall be denoted as 𝑠̅𝑠. Similarly, a successful 
CCAM, 𝑐𝑐, and a successful blowdown, 𝑏𝑏, with failures in either being indicated by 𝑐𝑐̅ and 𝑏𝑏�, re-
spectively. The probability of an event, e, is denoted by P(e). The probability that an event, e, 
occurs given that event, y, has already occurred is P(e|y). Similarly, the probability of e occurring 
given that both y and z have occurred is P(e|y,z). By definition, the probability an event e does not 
occur is equal to one minus the probability it does occur, or 𝑃𝑃(𝑒̅𝑒) = 1 − 𝑃𝑃(𝑒𝑒). Thus, the total 
probability of impact, event I, can be expressed as: 

𝑃𝑃(𝐼𝐼) =

𝑃𝑃(𝑠̅𝑠)𝑃𝑃(𝐼𝐼|𝑠̅𝑠) +
𝑃𝑃(𝑠𝑠)𝑃𝑃(𝑐𝑐̅)𝑃𝑃(𝐼𝐼|𝑠𝑠, 𝑐𝑐̅) +

𝑃𝑃(𝑠𝑠)𝑃𝑃(𝑐𝑐)𝑃𝑃�𝑏𝑏��𝑃𝑃�𝐼𝐼�𝑠𝑠, 𝑐𝑐, 𝑏𝑏�� +
𝑃𝑃(𝑠𝑠)𝑃𝑃(𝑐𝑐)𝑃𝑃(𝑏𝑏)𝑃𝑃(𝐼𝐼|𝑠𝑠, 𝑐𝑐, 𝑏𝑏)

    (1) 
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The individual probabilities of impact given some sequence of events (z) can be calculated in 
two parts: the probability of impact on the first encounter plus the probability of impact during 
the ensuing 50 years given that no impact occurred on the first encounter, or Equation 2, where I0 
is a first-encounter impact and I50 is a later impact: 

𝑃𝑃(𝐼𝐼|𝑧𝑧) = 𝑃𝑃(𝐼𝐼0|𝑧𝑧) + 𝑃𝑃(𝐼𝐼0� |𝑧𝑧)𝑃𝑃(𝐼𝐼50|𝐼𝐼0� , 𝑧𝑧)   (2) 

Equations (1) and (2) can then be combined for the total probability of impact: 

𝑃𝑃(𝐼𝐼) =

𝑃𝑃(𝑠̅𝑠)[𝑃𝑃(𝐼𝐼0|𝑠̅𝑠) + 𝑃𝑃(𝐼𝐼0� |𝑠̅𝑠)𝑃𝑃(𝐼𝐼50|𝐼𝐼0� , 𝑠̅𝑠)] +
𝑃𝑃(𝑠𝑠)𝑃𝑃(𝑐𝑐̅)[𝑃𝑃(𝐼𝐼0|𝑠𝑠, 𝑐𝑐̅) + 𝑃𝑃(𝐼𝐼0� |𝑠𝑠, 𝑐𝑐̅)𝑃𝑃(𝐼𝐼50|𝐼𝐼0� , 𝑠𝑠, 𝑐𝑐̅)] +

𝑃𝑃(𝑠𝑠)𝑃𝑃(𝑐𝑐)𝑃𝑃�𝑏𝑏���𝑃𝑃�𝐼𝐼0|𝑠𝑠, 𝑐𝑐, 𝑏𝑏�� + 𝑃𝑃�𝐼𝐼0� |𝑠𝑠, 𝑐𝑐, 𝑏𝑏��𝑃𝑃�𝐼𝐼50|𝐼𝐼0� , 𝑠𝑠, 𝑐𝑐, 𝑏𝑏��� +
𝑃𝑃(𝑠𝑠)𝑃𝑃(𝑐𝑐)𝑃𝑃(𝑏𝑏)[𝑃𝑃(𝐼𝐼0|𝑠𝑠, 𝑐𝑐, 𝑏𝑏) + 𝑃𝑃(𝐼𝐼0� |𝑠𝑠, 𝑐𝑐, 𝑏𝑏)𝑃𝑃(𝐼𝐼50|𝐼𝐼0� , 𝑠𝑠, 𝑐𝑐, 𝑏𝑏)]

 (3) 

Thus stated, the problem of determining the total probability of impact for a given design is 
reduced to determining each of the individual terms.  

FIRST-ENCOUNTER IMPACTS 

The problem of determining the impact probability on the first encounter is a solved one. With 
the ICM mapped into the B-Plane as an ellipse, the probability that the spacecraft state then lies 
within the impact radius of Mars has an analytical solution.3 If the B-Plane ellipse is described by 
the 2×2 covariance 𝚲𝚲, the impact radius of Mars has radius R at the location (𝑢𝑢0,𝑣𝑣𝑜𝑜) relative to 
the center of the ellipse, and the vector u is described by the elements (𝑢𝑢, 𝑣𝑣), then the impact 
probability is the double-integral: 

𝑃𝑃(𝐼𝐼𝑜𝑜|𝑧𝑧) = 1
2𝜋𝜋�det(𝚲𝚲)∬ exp �−  1

2
𝒖𝒖𝑇𝑇𝚲𝚲−1𝒖𝒖�𝑑𝑑𝑑𝑑   (4) 

over the region: 

(𝑢𝑢 − 𝑢𝑢0)2 − (𝑣𝑣 − 𝑣𝑣0)2 = 𝑅𝑅2    (5) 

where the impact radius, R is defined in terms of the hyperbolic semi-major axis, a, and the phys-
ical planetary radius, r, as: 

𝑅𝑅 = 𝑟𝑟�1 − 2𝑎𝑎
𝑟𝑟

     (6) 

So long as the initial uncertainty can be mapped forward to a time of closest approach linearly, 
this method is sufficient. It is a standard practice in deep space navigation to use this linear map-
ping through a deep space cruise, so all of the first-encounter impact terms of Equation (3) can 
thus be determined analytically, as implied by the notation in Equation (4). However, this method 
fails if the linear mapping is insufficient to capture the evolution of the uncertainty.  

Unfortunately, the linear mapping fails if a sufficiently large and sufficiently uncertain ∆V is 
applied to the trajectory, such as one which occurs during a planetary encounter. Even absent a 
subsequent flyby, the simple passage of time leads to non-Gaussian uncertainties with a Cartesian 
mapping. For example, the resulting semi-major axis uncertainty leads to an along-track position 
uncertainty that eventually grows such that the initially elliptical position uncertainty becomes 
distinctly nonlinear, as illustrated in Figure 4. In this figure, an initial uncorrelated 10 km and 1 
m/s uncertainty is applied at the perihelion of a simple coplanar Earth-Mars Hohmann transfer 
ellipse. The resulting trajectories are then propagated both with the state transition matrix (blue 
ellipses) and with a simple Keplerian propagator (red crosses). After a half-revolution (left panel), 
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the linear propagation remains a reasonable approximation of the non-linear results. However, 
after a single revolution (right panel), the linear approximation is clearly no longer able to capture 
the uncertainty in the spacecraft position as the heliocentric semi-major axis uncertainty has 
spread out the locus of trajectories along the orbit. However the Keplerian time to periapsis re-
mains Gaussian effectively indefinitely as illustrated in Figure 5.  

 
 

 

Figure 4: The passage of time causes the initially Gaussian distribution to become non-linear 

 

 

Figure 5: After a revolution (top, blue) and 50 years (below, red), the Keplerian time to periapsis  
remains Gaussian in the simple two-body system 

One revolution 

50 years 

Half-Revolution One Revolution 
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However, when real dynamics are used, the variances of the Keplerian elements grow dramat-
ically and even the Keplerian covariance matrix is no longer sufficient to capture the uncertainty 
in the future position. Consider the example case from Figure 3, where a future Earth encounter 
resulted in a Mars impact. The time history of the ranges to Earth and Mars are shown in Figure 6 
in blue and red, respectively, for the nominal trajectory. As you can see, the first Mars encounter 
is a very distant one, 1.9 million km, and it never gets closer than 2.5 million km from Mars af-
terwards. Figure 7 illustrates the failure of the linear covariance mapping to accurately represent 
the uncertainties. In this plot, the red lines are the linearized 3σ bounds on the heliocentric semi-
major axis, while the blue lines are 100 samples of a Monte Carlo. Both are taken from the same 
ICM. Through the 10 million km Earth encounter 31 years after launch, the linearized 3σ bounds 
contain the non-linear Monte Carlo results. Unfortunately, that Earth encounter causes the non-
linear results to diverge greatly. That the heliocentric semi-major axis would be perturbed at this 
time was predicted by the linear approximation, but not the scale of it. This encounter, in a few 
cases, perturbed the trajectory enough that subsequent encounters further perturbed the heliocen-
tric semi-major axis at times not predicted by the linear method. The distribution of heliocentric 
semi-major axes after 50 years is clearly out of family with the linear distribution, leaving a Mon-
te Carlo analysis as the only remaining method of estimating the future state of the upper stage.  

 

Figure 6: Time history of the nominal trajectory from Figure 3 

 

Figure 7: Comparison of the linear 3σ bounds (red) and Monte Carlo results (blue) for  
heliocentric semi-major axis  
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LATER IMPACTS 

Because a Monte Carlo analysis is a simulation of a number of trials, the calculated probabili-
ties are estimates subject to uncertainty. By treating any given propagation of the Monte Carlo as 
a Bernoulli process in which the propagation results in either an impact or a flyby, a confidence 
interval for the estimate of the likelihood of an impact can be determined. The method of calcu-
lating the Bernoulli confidence interval (CI) presented in textbooks is the normal approximation 
or Wald method4, described in Equation (8), where the estimate of the probability of the event, 𝑝̂𝑝, 
is the number of observed events, x, divided by the number of trials, n. 

𝑝̂𝑝 = 𝑥𝑥 𝑛𝑛⁄      (7) 

𝐶𝐶𝐶𝐶 = �𝑝̂𝑝 ± 𝑧𝑧�𝑝𝑝�(1−𝑝𝑝�)
𝑛𝑛

�     (8) 

In Equation (8), the parameter z is the number of standard deviations between which some 
percentage of the normal distribution lies. For a 99% confidence interval, z = 2.576. Using that 
value, one can state that they have 99% confidence that the true probability of the event, p, lies 
within the confidence interval.  

The Wald interval has two serious shortcomings, however. If no events are recorded, and 𝑝̂𝑝 is 
thus 0, the confidence interval is always {0,0}. Further, if  𝑝̂𝑝 is small enough, the lower bound of 
the confidence interval can be negative. The former is not a useful interval and the latter is non-
physical. Either additional cases must be run until the confidence interval is useful and physical, 
or a different confidence interval must be used when 𝑝̂𝑝 is small. One recommended but conserva-
tive interval is the Wilson interval5: 

𝐶𝐶𝐶𝐶 = � 𝑛𝑛
𝑛𝑛+𝑧𝑧2

�𝑝̂𝑝 + 𝑧𝑧2

2𝑛𝑛
± 𝑧𝑧�4𝑛𝑛𝑝𝑝�(1−𝑝𝑝�)+𝑧𝑧2

4𝑛𝑛2
��   (9) 

If 𝑝̂𝑝 = 0, then the Wilson interval reduces to a convenient form: 

𝐶𝐶𝐶𝐶|𝑥𝑥=0 = �0, 𝑧𝑧2

𝑛𝑛+𝑧𝑧2
�     (10) 

Unlike other confidence intervals, this lower bound is identically zero, regardless of the desired 
level of confidence (99%, 95%, etc.). Since an impact may indeed be physically impossible, the 
lower limit of zero is desirable.  

Using Equation (10), it can be determined that at least 66,352 Monte Carlo simulations would 
be required to meet a 10-4 probability of impact with 99% confidence. Unfortunately, this only 
holds if no impacts are found. If a single impact is detected in 66,352 runs, then Equation (9) 
yields a confidence interval of {0.0177 × 10-4 , 1.28 × 10-4}. This would violate the requirement. 
To be robust against a single impact, at least 85,169 runs would be required under this metric. 
Without accounting for the probability of one of the four scenarios (three anomalous and one 
nominal) occurring, a brute-force approach is to perform 85,169 fifty-year propagations for any 
scenario likely to find direct-resonance isochrones and 66,352 fifty-year propagations for the oth-
ers. If each scenario meets the 10-4 requirement, then the total requirement is met regardless of the 
probability of the upper stage events. However, this is a truly brute-force approach. A simple 
speed test of the Monte Carlo software used by JPL indicates that a single 50-year propagation-
and-search requires about 12 seconds. To analyze the full suite of scenarios required in this man-
ner would require almost 10 computer-years.  
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Examining Equation (3), the number of fifty-year propagations could be reduced by determin-
ing the probability that the Centaur successfully completes each step in its sequence. The reliabil-
ity of the Centaur can be estimated from the historical flight record. The relevant data, as of early 
2015, was 43 successes in 43 attempts. The 99% confidence intervals for success and failure are 
thus {0.866, 1} and {0, 0.134}, respectively. Since 𝑃𝑃(𝑠̅𝑠) = 1 − 𝑃𝑃(𝑠𝑠), the end-points of the con-
fidence interval can be used (e.g. 𝑃𝑃(𝑠𝑠) = 0.866 and 𝑃𝑃(𝑠̅𝑠) = 0.134 or 𝑃𝑃(𝑠𝑠) = 1 and 𝑃𝑃(𝑠̅𝑠) = 0); 
however, it is not necessarily obvious which should be the worst-case, though they could be com-
bined until a maximum value of 𝑃𝑃(𝐼𝐼) is determined. Even then, since the worst-case ends of the 
confidence intervals were stacked together, the resulting value would be larger than the 99% con-
fidence interval and thus be excessively conservative, leading to more propagations and more 
computer time than necessary.  

The question then becomes, what is the reliability of Centaur, and how certain are we of that 
estimate? A perfect record to date is no guarantee of future success, and a confidence-interval 
approach has been shown to be conservative. If a Bayesian approach is taken, instead of the fre-
quentist approach of confidence intervals, then this question can be answered. The Beta distribu-
tion captures the distribution of the estimate probability of an event based on previous experience. 
The shape parameters are (α, β). It is recommended that α+β equal the number of trials, n, and α 
equal the number of events, x, recorded in those trials.4 Both terms must be greater than zero, 
however. If is either parameter would be 0, then both parameters should be incremented by 0.5 
(see Reference 5). The Beta distribution is defined on the domain 0 ≤ p ≤ 1 and has the probabil-
ity density function (PDF)4: 

𝑓𝑓(𝑝𝑝;𝛼𝛼,𝛽𝛽) = Γ(𝛼𝛼+𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽)𝑝𝑝

𝛼𝛼−1(1 − 𝑝𝑝)𝛽𝛽−1   (11) 

and the cumulative distribution function (CDF): 

𝐹𝐹(𝑝𝑝;𝛼𝛼,𝛽𝛽) = Γ(𝛼𝛼+𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽)∫ 𝑡𝑡𝛼𝛼−1(1 − 𝑡𝑡)𝛽𝛽−1𝑑𝑑𝑑𝑑𝑝𝑝

0    (12) 

where Γ is the gamma function: 

Γ(𝑡𝑡) = ∫ 𝑥𝑥𝑡𝑡−1𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑∞
0     (13) 

and the shape parameters are defined as: 

𝛼𝛼 = �𝑥𝑥,               0 < 𝑝̂𝑝 < 1
𝑥𝑥 + 0.5,  𝑝̂𝑝 = 0 𝑜𝑜𝑜𝑜 1

𝛽𝛽 = �𝑛𝑛 − 𝑥𝑥,               0 < 𝑝̂𝑝 < 1
𝑛𝑛 − 𝑥𝑥 + 0.5,  𝑝̂𝑝 = 0 𝑜𝑜𝑜𝑜 1

    (14) 

Figure 8 illustrates the PDF of a Beta distribution for the probability of failure derived from 
the Centaur flight record, and Figure 9 illustrates the CDF. Close examination of the CDF reveals 
that the 99% confidence value of the probability of failure is 0.0738 by this metric, and not 0.134 
as derived from the Wilson interval. This suggests that the brute force method briefly considered 
above was even more conservative than necessary. If 33,173 cases are run without any impacts, 
the 99th percentile value of the probability of impact is 10-4. With a single impact, 46,051 cases 
would need to be run (refer to Figure 10) resulting in a dramatic reduction compared to the Wil-
son-interval derived values of 66,352 and 85,169. This alone is sufficient to reduce the total com-
puter time from 10 years to 5.3 years. 



 10 

 

Figure 8: PDF of the estimate of the probability of a Centaur failure given no failures in 43 attempts 

 

Figure 9: CDF of the estimate of the probability of a Centaur failure given no failures in 43 attempts 

 
Figure 10: 99th Percentile probability of an event in a given number of trials 

The only question remaining is how large of a Monte Carlo is needed for each scenario. If we 
assume that the Centaur reliability is 0.9, the first-encounter probabilities of impact are 10-4 for 
any of the anomalous scenarios, and that the probability of impact is zero for the nominal mis-
sion, then Equation (3) can be re-written to give an order-of-magnitude estimate of the maximum 
allowable 50-year probabilities:  
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𝑃𝑃(𝐼𝐼) ≈ 𝕆𝕆�
3 × 10−5 + 0.7[𝑃𝑃(𝐼𝐼50|𝐼𝐼0� , 𝑠𝑠, 𝑐𝑐, 𝑏𝑏)] +

0.1�𝑃𝑃(𝐼𝐼50|𝐼𝐼0� , 𝑠𝑠, 𝑐𝑐̅) + 𝑃𝑃(𝐼𝐼50|𝐼𝐼0� , 𝑠̅𝑠) + 𝑃𝑃�𝐼𝐼50|𝐼𝐼0� , 𝑠𝑠, 𝑐𝑐, 𝑏𝑏���
� (15) 

Equation (15) suggests that the anomalous-scenario probabilities of impact should be no higher 
than 10-3 and that the nominal mission probability of impact should be no higher than 10-4. Such 
values would yield a probability of impact of 4 × 10-4. If robustness against a single impact is de-
sired, then 4,604 and 46,051 cases would be required. If not, then only 3,316 and 33,173 cases 
would be required. These are very rough estimates for the required number. The Centaur reliabil-
ity is very likely to be greater larger than 0.9, putting more emphasis on the number of nominal-
mission runs. The first-encounter probabilities of impact are likely to be much smaller than 10-4, 
which reduces the relative importance of the anomalous-mission runs. Finally, this back-of-the-
envelope estimation is a factor of four greater than the requirement, which suggests that more 
cases may be required.  

DETERMINING THE TOTAL PROBABILITY OF IMPACT 

Equation (3) can now be solved through a combination of analytical calculations of first-
encounter impact probabilities, the Centaur flight record, and 50-year Monte Carlo propagations. 
These later two are used to feed a random number generator to produce many Beta-distributed 
values for the component probabilities. The method for analyzing a given set of targets and atti-
tudes is thus a five-step process: 

1. Determine the first-encounter probabilities of impact for each of the four scenarios 
(no-separation, no-CCAM, no-blowdown, and the nominal mission). 

2. Perform 50-year Monte Carlos for each of the four scenarios and record how many 
cases impact Mars during the integration. 

3. Generate one million samples of each of the seven Beta distributions representing the 
probability of each of the scenarios and the resulting probability of impact. 

4. Solve Equation (3) one million times with each sample from the seven sets of Step 3 
and the results from Step 1. 

5. Sort the resulting values and determine the 99th percentile value. 

For example, at the opening of the launch window on the first day in the InSight launch peri-
od, the first-encounter probabilities of impact were as in Table 1. Given the results of the Monte 
Carlos in Table 2, then the total distribution of the probability of impact would be as in Figure 11 
and the cumulative probability would be as in Figure 12. 

Table 1: Example First-Encounter Probabilities of Impact 

Scenario First-Encounter 
Impact Probability 

Failure to separate 9.0 × 10-6 

Failure to perform CCAM 9.3 × 10-6 

Failure to perform the blowdown 1.4 × 10-8 

Nominal Mission 1.3 × 10-300 
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Table 2: Example Results from Monte Carlos 

Scenario Monte Carlo 
Size 

Number of  
Impacts Beta Distribution 

Failure to separate 5,000 0 β( 0.5, 5000.5 ) 

Failure to perform CCAM 5,000 0 β ( 0.5, 5000.5 ) 

Failure to perform the blowdown 5,000 1 β ( 1, 4999 ) 

Nominal Mission 50,000 1 β ( 1, 49999 ) 

 

 
Figure 11: Example Distribution of the Total Probability of Impact 

 
Figure 12: Example Cumulative Probability of Impact 
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APPLYING PARALLEL COMPUTING 

The InSight mission’s planetary protection plan states that compliance has been demonstrated 
if the 99th percentile estimate of the probability of impact is less than 10-4 for the open, middle, 
and close of the launch window on each day of the 27-day launch period, for a total of 81 cases. 
Within each case, there are four scenarios involving the Centaur upper stage successfully com-
pleting its mission. The Centaur must successfully separate from the InSight spacecraft, perform 
the collision and contamination avoidance maneuver (CCAM), and dump the remaining propel-
lants. Thus, 324 separate cases must be examined via Monte Carlo. 

Performing 81 50,000-case Monte Carlos and 243 5,000 case Monte Carlos, as was done for 
the example above, is a total of 8,265,000 propagations. At 12 seconds per propagation, it would 
require 731 days to demonstrate compliance with the planetary protection requirement. Fortunate-
ly, such a Monte Carlo application is the very definition of an embarrassingly parallel problem.6 
Each Monte Carlo initial condition is an independent draw from the injection covariance matrix. 
No propagation depends on any other propagation. By distributing the propagations across 776 
CPUs, the run time can theoretically be reduced to just under 24 hours. There are other users on 
those systems, and this theoretical performance remains theoretical. In the real world, the run 
time was approximately 80 hours. Larger clusters would permit further reductions in the run time.  

CONCLUSION 

The Planetary Protection Office’s requirement that the upper stage of all Mars-bound space-
craft have a less than one in ten-thousand chance of hitting Mars within 50 years after launch pre-
sents a unique challenge to the mission designer. While it may be possible to entirely eliminate 
the possibility of a future impact, doing so would come at an unacceptable cost to the mission 
propellant budget. The probability of impact must therefore be estimated. 

Space is big and Mars is small; the probability of impact within 50 years is accordingly tiny. 
Textbook statistical methods for estimating the probability of an event given a random sample 
require that a relatively large number of events be recorded. The number of Monte Carlo samples 
necessary in such an approach is effectively unbounded. Using the more sophisticated Wilson 
interval places an upper bound on number of Monte Carlo runs required, but the problem remains 
intractably large. By taking advantage of the demonstrated reliability of the Centaur upper stage 
and applying the Beta distribution in a Bayesian approach, the problem of demonstrating compli-
ance with the planetary protection requirement is reduced to a manageable size.  
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