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Abstract. Communications between systems is often initially represented at a single, high 

level of abstraction, a link between components.  During design evolution it is usually 
necessary to elaborate the interface model, defining it from several different, related 
viewpoints and levels of abstraction.  This paper presents a pattern to model such multi-layered 
interface architectures simply and efficiently, in a way that supports expression of technical 
complexity, interfaces and behavior, and analysis of complexity.  Each viewpoint and layer of 
abstraction has its own properties and behaviors.  System elements are logically connected 
both horizontally along the communication path, and vertically across the different layers of 
protocols.  The performance of upper layers depends on the performance of lower layers, yet 
the implementation of lower layers is intentionally opaque to upper layers.  Upper layers are 
hidden from lower layers except as sources and sinks of data.  The system elements may not be 
linked directly at each horizontal layer but only via a communication path, and end-to-end 
communications may depend on intermediate components that are hidden from them, but may 
need to be shown in certain views and analyzed for certain purposes. 

This architectural model pattern uses methods described in ISO 42010 [1], Recommended 
Practice for Architectural Description of Software-intensive Systems and CCSDS 311.0-M-1 
[2], Reference Architecture for Space Data Systems (RASDS).  A set of useful viewpoints and 
views are presented, along with the associated modeling representations, stakeholders and 
concerns. These viewpoints, views, and concerns then inform the modeling pattern. This 
pattern permits viewing the system from several different perspectives and at different layers of 
abstraction.  An external viewpoint treats the systems of interest as black boxes and focuses on 
the applications view, another view exposes the details of the connections and other 
components between the black boxes.  An internal view focuses on the implementation within 
the systems of interest, either showing external interface bindings and specific standards that 
define the communication stack profile or at the level of internal behavior.  Orthogonally, a 
horizontal view isolates a single layer and a vertical viewpoint shows all layers at a single 
interface point between the systems of interest.  Each of these views can in turn be described 
from both behavioral and structural viewpoints. 

Introduction 
Specifying and managing interfaces is at the heart of systems engineering.  Well defined 

interfaces and interoperable protocols allow a designer the freedom to implement the internals 
of their system independently of the other systems to which it may be connected, and to make 



 

 

their systems more easily re-usable in different contexts.  But simple interfaces from one point 
of view may actually involve multiple levels of complexity.  For example, a USB “thumb 
drive” is a ubiquitous and simple appearing device, but the document for the USB 3.1 
specification alone consists of a primary document and several supplements totaling over one 
thousand pages that cover physical, logical, service and behavioral specifications. 

With increasing use of model-based systems engineering (MBSE) as a tool to help manage 
complexity in systems engineering, there is a need for a focused method to model interface 
complexity. The most common language for MBSE is the Systems Modeling Language 
(SysML) [3], which is based on the Unified Modeling Language (UML) [4].  For the system 
engineer an MBSE tool combined with modeling patterns and methodology will help form 
model information into a “single source of truth”, support static and dynamic analysis of the 
models, and interface with external modeling and analysis tools. 

This paper is focused on a pattern for modeling layered interfaces, and making this pattern 
available for reuse by other systems engineers.  It is common in systems engineering to 
represent a single item at different levels of abstraction.  In its simplest form, an item may be 
represented both logically and physically, but in different views.  An archetype for such 
multi-layer abstraction of interfaces is the pattern for describing protocol stacks for computer 
networks, such as TCP/IP, using the ISO / OSI Basic Reference Model (OSI BRM) [5].  This 
concept has been adopted and generalized and applied to systems engineering to allow multiple 
simultaneous levels of abstraction, or layers. 

We have defined an interface modeling pattern using SysML that provides a method for 
modeling interfaces at different levels of abstraction and detail.  This pattern is intended as a 
framework within which users may incorporate as much or as little detail as is needed for their 
problem domain.  That detail may include both structural and behavioral aspects, and is 
intended to manage the complexity and give a representation of the entire interface.  The 
benefit of this approach is to enable an integrated description and analysis of system interfaces, 
either statically, dynamically, or both. 

This paper presents some key viewpoints, views, and related concerns, leveraging ISO 
42010 and RASDS specification of architecture description, and shows how they may be 
applied to interfaces modeled with our pattern.  Describing interfaces is standard practice in 
systems engineering, but in the case of MBSE a clearly defined modeling practices has been 
shown to be of benefit.  We will present some example applications of the pattern.  And, 
finally, we will outline some future work that could be done to adapt and apply this interface 
modeling pattern to other engineering domains. 

Basic Concepts 
A basic, familiar, example of two interacting systems is shown in Fig. 1.  This figure shows 

a PDF file being transferred from a sender, perhaps the author of a paper, to a receiver, perhaps 

Figure 1. Transferring a PDF file from Sender to Receiver. 
 



 

 

the editor of a technical conference.  This first view shows two elements, the sender and 
receiver, which are transferring a file.  It says nothing about the manner in which the file is 
exchanged.  There must be some interfaces and underlying protocols, but these are abstracted 
away in this applications view.  Providing the means for describing the mechanism of the 
transfer is the focus of the rest of this paper.  The OSI BRM standardizes the concepts of a 

layered communications architecture.  This forms the basis for the way that we construct our 
layered systems interfaces.  All the figures in this section comprise a single, unified example 
intended to be simple and familiar.  Each is a different view of the same example at different 
levels of abstraction.  The correspondence between diagrams can be made by matching the 
names inside the boxes and on the lines. 

A more complete model of the exchange is shown in Fig. 2 which exposes four layers of 
protocol below the exchange of the PDF file itself.  Each of the layers has flows in the 
horizontal direction between peer protocol entities and flows in the vertical direction between 
adjacent layers. The sender and receiver each have a set of entities that implement the 
functionality of each layer.  At each of these connections and entities it may be necessary to 
specify interface bindings, controlling standards, requirements, constraints and behavior, and 
all must be satisfied for the end-to-end communications to perform as desired. 

The horizontal connections between peer protocol entities is what determines the 
interoperability of the sender and receiver.  The vertical connections do not govern the 
interoperability, but must support the behavior of the layers above within each system.  
Provided interfaces in a lower layer must meet required functionality by an upper layer.  
Upward transformations in the receiver must match downward transformations in the sender, 
and vice versa. 

Figure 2. Layered communication beneath the file transfer. 
 



 

 

The horizontal dashed connections represent logical exchanges between peer protocol 
entities, the sender and the receiver.  The data types exchanged at each horizontal level are 
specialized and the general term for them is Protocol Data Units (PDU).  In this case, the data 
type across connection ‘a’ is the PDF file itself.  Along connection ‘b’, it is requests and 

responses between an http client and server.  The bottom three connections, ‘c’, ‘d’ and ‘e’, use 
TCP sequences, IP datagrams and Ethernet frames respectively.  Horizontal exchanges are 
generally considered to be logical except at the lowest physical layer.  Actual data flows go up 

and down the stack where the lower layers encapsulate 
PDUs from upper layers. Not all systems need to be 
modeled down to the physical layer, in some cases the 
stack may be “stubbed off” at a higher layer. 

Vertical connections represent transformations within a 
system.  It should be emphasized that the data types 
exchanged vertically between layers are not the same as the 
data types exchanged horizontally.  Conceptually, the data 
moved horizontally and vertically is the same.  But, the 
packaging, representation and related behavior will be 
different in practice.  The general term for vertical 
exchanges is Service Data Unit (SDU).  Since these 
vertical exchanges are unrelated to the interoperability of 
the systems, and are often only described as abstract 
service interfaces, they need not be the same in the sender 
and receiver. 

At each layer it may be necessary to describe the 
behavior that occurs across each horizontal connection. 
The behavior on connection ‘a’ is that a file is transferred 
from sender to receiver. Connection ‘b’ uses HTTP which 
is a client and server protocol.  The client sends requests 
and the server provides responses.  Connection ‘c’ uses 
TCP, which is responsible for the end-to-end delivery and 
retransmission of pieces of the file.  This layer transports 
data end-to-end once, in order and with no omissions.  
Connection ‘d’ is IP, which handles point-to-point routing 
– potentially many hops – of pieces of the data. And 
finally, connection ‘e’ is the Ethernet layer, is responsible 
for logical and electrical signaling and physical cabling 

between the sender and receiver. 
For some purposes it is necessary to describe properties of the connections at each layer.  

We can specify the speed, in bits per second, of the connection.  At higher levels, we can 
specify, expected rates of error, retransmission, disconnections etc.  These properties or 
constraints may be the basis for static analysis of the interface. 

Figure 3.  A single layer between the Sender and Receiver. 
 

Figure 4.  The layers 
within a single system, the 

Sender. 



 

 

The OSI BRM assigns unique functionality to a total of seven different layers.  Our 
modeling pattern is capable of representing these layers, but nothing in it requires the use of the 
OSI specification.  System engineers can and should define the necessary protocol 
architectures for their own domains which may contain fewer layers, or more of them.  The 

benefit is that it is possible to separate concerns, and specify 
properties and behaviors at their appropriate level of abstraction 
for as many layers as are needed to understand the emergent 
properties of the architecture. 

In order to address different concerns and focus on different 
aspects of the systems and their interfaces, it may be necessary to 
focus on horizontal or vertical slices of the system.  Fig. 3 shows 
a horizontal slice between sender and receiver.  This sort of view 
might be used to focus on interactions at a single protocol layer, 
especially if many systems are part of the end-to-end chain. 
Some systems may be disconnected entirely at higher layers. 
Some lower layers may have complexity and heterogeneity of 
their own. These views are useful to find possible paths through a 
large network, and analyze interconnectedness. 

In some cases it is necessary to define a vertical slice through 
a single system, as shown in Fig. 4.  This would be of use to someone designing, integrating 
and testing the internal structure of that system.  While this diagram shows just a single vertical 
path, in reality, much more complex structures are possible. In some cases a single system 
element may have to bridge two different protocol stacks, where the source stack and 
destination stack differ significantly. 

At each layer in the stack the behavior of the peer protocol entities is usually specified in a 
standards document, in the form of a state machine or some similar mechanism.  The state 
machines at each end of a connection must interact with each other according to the 
specification as if they communicated directly with each other via the PDUs at that level of 
abstraction.  Fig. 5 shows a decomposition of the TCP protocol entity.  The TCP PDU state 
machine, TPDU SM, is in the middle.  It communicates virtually with its peer in the receiver 
across connection ‘c’.  Above and below the TPDU SM are SDU - PDU adapters.  These 
convert PDUs to SDUs and vice versa.  So, a TCP SDU coming from above across provided 
interface ‘g’ is converted to a TPDU by the TSDU - TPDU adapter and sent to the TPDU SM.  
If it represents a valid transition of the state machine, it is passed downward, converted to an 
IP SDU by the TPDU - ISDU adapter and sent out required interface ‘h’.  In this way, the two 
TPDU SMs communicate across the virtual connector ‘c’.  The process is reversed when 
IP SDUs come in required interface ‘h’ from below.  Typically, any protocol standards 
document defines the abstract provided interface and SDUs that must be used to communicate 
with the layer above.  And, each entity may have several choices of PDU - SDU, or abstract 
service interfaces, to communicate with entities below it. 

System Interface Modeling Pattern 

Views and Viewpoints 
A tenet of system architecture practice is to identify appropriate views and viewpoints to 

address the concerns of stakeholders, and to identify appropriate means for representing those 
views.  This section outlines some concerns that we have identified and the associated view, 
see Table 1.  Each of the viewpoints and views described below addresses one or more of these 
concerns.  Views may be internal vs. external, horizontal vs. vertical, abstracted or detailed, as 
required.  Any single view may focus on one, some, or all of the systems involved.  Individual 

Figure 5.  Internal 
structure of the TCP 

protocol entity. 



 

 

views may focus only on a pair of elements or on all of the elements in a communications 
chain.  Internal details may be abstracted away or they may be described in depth, as needed. 

Behavior, connectivity, and performance may be carefully described such that it may be 
analyzed or it may be left abstract.  The basic pattern defines the elements, interfaces and 
composition, interface types & binding specifications, and provides the “hooks” for adding 
further specifications and details.  The construction pattern also permits details in any given 
view to be abstracted away if they are not needed to address a particular concern, but manages 
all of these different views in a consistent way within the model framework. 

The Pattern as Expressed in UML and SysML 
These specific examples concern the communications between a Space User Node 

(spacecraft) in flight and an Earth User Node (mission operations center) on the ground. They 
are drawn from the CCSDS Space Communications Cross Support Architecture document 
(SCCS-ADD) [6].  These views show how commands are sent from the Earth User Node to the 
Space User Node.  In between are two intermediary systems, a Earth-Space Link Terminal 
(ESLT, or ground station) and a terrestrial wide-area network.  Space communications links are 
often challenging because they contain inherent asymmetries in end-to-end protocols.  Table 1 
lists some of the early concerns that we have identified.  

Table 1. List of Concerns. 
 Concern View 

1 What is the end-to-end construction of the system in terms of 
major elements? 

End-to-End black box 
view 

2 What is the specific stack of protocols needed in each element? Protocol stack view 

3 What is the behavior within a given protocol layer? Protocol state 
machine view 

4 What are the standards or specification that govern the behavior 
of each layer? 

Interface binding 
view 

5 How are the protocol stacks deployed, end-to-end in order to 
meet the system requirements? 

End-to-End white box 
view 

         
        

 

 
  

 

 

Figure 6.  Black box end-to-end view. 

 



 

 

The first view in Fig. 6 an end-to-end black box view, showing components, connections 
and interfaces, without any internals.  This black box view shows all systems and provides an 
overall perspective of the system.  The Over relations show how upper layers are encapsulated 

into lower layers.  The ESLT clearly must do some sort of protocol bridging since its input and 
output interfaces are different in number and type. The Terrestrial WAN is completely hidden 
from the Space User Node, yet the latter depends on the former to communicate with the Earth 
User Node.  It may be the case that the Terrestrial WAN is a commercial service, not developed 
or under the control of the project.  In such cases, this modeling pattern can be used to identify 
and characterize the reliance on such hidden and external systems.  All the SysML diagrams in 
this section comprise a single example.  They are all taken from a single, unified SysML model, 
focused on space data systems.  Each is a different view of example at different levels of 
abstraction.  The correspondence between diagrams can be made by matching the names, types 
and stereotypes inside the boxes and on the lines. 

The next view, Fig. 7 isolates the communication between the earth user node and the space 
user node and abstracts away the intermediate systems and the details of the protocol stacks. 
This view is useful to describe how the space user node and earth user node communicate 
commands. Of course, the performance of the link would vary widely depending physical 
implementation, including the bandwidth and latency of terrestrial connections and of the 
space link.  This abstract view may be relevant whether the spacecraft is in flight, or when the 
spacecraft is on the ground during assembly, test and launch operations.  In reality there would 
be different protocols and intermediate systems at the lower layers, but this end-to-end view 
would still be true.  This example also illustrates the concept that the Over relations outside the 
systems must be consistent with the way in which protocol entities are connected inside the 
systems.  

Fig. 8 is a white box protocol stack view that shows the earth-space link terminal and the 
protocol stacks implemented within it.  It shows the details of the bridge function, the F-Frame 
Production application, within the ESLT that was mentioned in Fig 6.  This application bridges 
the two protocol stacks on the earth- and space-facing sides of the terminal.  It translates 
between the top-most SDUs of the two.  The earth- and space-facing interfaces are 
intentionally modeled to different levels of detail. On the earth-facing side, we chose only to 
model down to the level of IP, there was little to be gained by modeling further since it is a well 
established service.  An Internet service provider might wish to model this more deeply, but it 

Figure 7.  White box user-only view. 

 



 

 

is not needed for this purpose. On the space-facing side there are a number of specific protocol 
choices to be made so we chose to model all the way to the physical layer.  The C & S layer 
manages coding and synchronization, and the RF & Mod layer produces the physical signal 
that is modulated and transmitted at some RF frequency.  In a further refinement of the model 
all of the specific details of link layer protocol, coding, modulation, and forward / return 

frequency may be added to these blocks. In space communications, the uplink and downlink 
RF links are often very different, in frequency, data rates, and protocols.  This view only shows 
the uplink path, the downlink path would be modeled with different components. 

Our final example, Fig. 9, drills into a pair of peer protocol entities in a single layer to show 
how the logical connection between peers, in this case TCP, is realized using the vertical 
provided and required interfaces.  In this example, the ESLT is the sender and the user node is 
the receiver.  A similar pattern could be used to describe the protocol behavior details in the 
application bridge shown in Fig. 8.  User data is presented to the TCP protocol entity at the 
upper interface.  The sender 1 adapter converts the user data into TCP PDUs.  Those PDUs are 
sent to the TCP state machine.  If they represent a valid transition in the state machine they are 
processed and the resulting TCP SDU is passed down to the receiver 1 adapter where they are 
converted into user data for the next lower level, in this case IP.  The reverse happens on the 
way up in the user node.  But from a logical point of view the PDUs are exchanged directly 

Figure 8.  White box bridge for Earth-Space Link Terminal. 

 



 

 

between the two TCP state machines.  In this way, the two state machines remain in sync 
according to the TCP specification.  It should be emphasized again that all these views were 
produced from a single, integrated model.  A change made in one view is automatically 
reflected in all the others, and all views are guaranteed to be consistent with one another. 

Application of System Interface Models 
The primary value of this modeling pattern is to allow complex system and interfaces 

interactions to be decomposed and represented in a self-consistent way.  It describes a 
appropriate set of views and viewpoints that can be used to describe system element 
connections, behaviors, and constraints at successively deeper level of detail. This pattern, and 
some similar patterns, have been applied to several real-world problems already.   

On the NASA Exploration Flight Test 1 (EFT-1) project [7], we have modeled the ground 
system of computer networks, using only two levels of abstraction.  The lower level of 
abstraction represents network connections between computers, locations and flight hardware 
in the system.  The higher level of represents required data flows, needlines, from source to 
destination in a single hop.  The primary aim was to show the path along the network that each 
needline follows.  But, it is impractical to specify and maintain an Over relation for each step as 
the model changes and evolves.  There are several hundred nodes in this model, and close to as 
many network connections and needlines.  So, we specify an ordered sequence of a few key 
Over relations for each needline, and use graph analysis algorithms to determine the shortest 
path that goes over all the specified network connections in the specified order.  This makes 
model maintenance much more practical, and automates an otherwise tedious process. 

NASA has three space communications networks, the Deep Space Network (DSN), Near 
Earth Network (NEN), and Space Network (SN), all of which have been separately designed, 
developed and operated for decades.  However, new space missions, including, coincidentally, 
ones such as EFT-1, need to use the services of all three networks, but the interfaces and 

Figure 9.  TCP internal state machine. 

 



 

 

services are quite different.  The Space Communication and Navigation Office (SCaN) of 
NASA, which manages these networks, chartered a series of system of systems trade studies to 
evaluate different architectural options for integrating these networks.  The method described 
in this paper was used in the Cycle 5 and 6 trade studies to document all of the system 
interfaces, their end-to-end configurations, and their interface protocol bindings [8,9]. 

Even more sophisticated techniques to accomplish design and performance evaluation are 
possible by leveraging the framework described in this paper.  Primary among these would be 
checking the types of the PDU flows to know which horizontal connections between systems 
are allowable, which end-to-end flows are complete, and the SDU flows within components to 
know which lower layers may carry data for which upper layers. 

We believe that this pattern of interface modeling has wider potential application than just 
protocol stacks and communications systems.  One such area would by systems engineering for 
physical systems.  For example, two components might share a thermal interface whereby they 

exchange heat.  That exchange may be realized by any or all of three different mechanisms: 
conduction, convection and radiative transfer.  This would be modeled as a single connection at 
the top layer, with three possible layers underneath.  Similarly, a copper wire at one layer may 
be used by several connections at the layer above, such as electrical, mechanical and thermal. 

We have done some initial work to show how the layered interface pattern might be applied 
to more general systems engineering problems.  Our pattern, as it exists, does not specify which 
or how many layers must be defined for a given problem.  The OSI model [5] specifies seven 
layers that are used in computer networking applications.  We describe here a simplified, 

Table 2. Example Four Layer Structure 

Example Message Encoding Signal Physical 

Document 
Transfer 

Document PDF file HTTP stack Ethernet 

Automobile Stop car Brake pedal 
pressure 

Hydraulic 
pressure 

Brake caliper 
pressure 

     
 

    

 

Figure 10.  The simplified pattern. 

 



 

 

four-layer model that might apply to systems engineering.  The four layers, in order from most 
abstract to most concrete, are Message, Encoding, Signal and Physical.  Table 2. 

These examples are somewhat simplified in that they assume a single direct connection at 
each layer from one end to the other.  In a real automobile model, there would be several 
intermediate steps at lower layers of abstraction.  To illustrate this idea see Fig. 6.  The top two 
layers, Command and TC Frame, have no intermediate steps.  The ABA Earth-Space Link 
Terminal and Terrestrial WAN create two and three steps respectively between the two end 
nodes.  The number of layers need not be constant along the entire path.  Nonetheless, we feel 
that these four layers are a good starting point for many system engineering problems. 

It is also possible to model how the data representation is transformed between layers.  A 
simple application of this would be to show how telemetry channels are arranged inside a 
telemetry packet.  Such data is commonly put in fixed locations of a fixed-size packet.  Fig. 10 
shows how channels X, Y and Z are packed in the Message Layer are packed into Packet A of 
the Encoding Layer.  This is a simple description of a data transformation.  All packets have 
sixteen bits.  Packet A uses the first four bits for Channel X, the next four for Y and the next for 
Z.  The last four bits of packet A are reserved and unused.  The order and position of the data 
within Packet A is specified by the order and size of its four part properties. The allocate 
relations here parallel the Over relations to show the correspondence between layers. 

Pattern 
Ordinary SysML and UML constructs were used as much as possible.  The only extensions 

made were implemented as UML stereotypes to define concepts that are part of the pattern, but 
not explicitly included in UML or SysML, e.g. «Protocol Entity», «PDU» and «Provided».  All 
of the diagrams in this section are SysML Internal Block Diagrams (IBD).  These diagrams 
show parts connected to each other by connectors.  In addition, the ports on the boundaries of 
the parts are used as the attachment points for the connectors.  In this method the ports are 
further restricted to be SysML proxy ports, which means that they define what data may flow 
through them, but contain no further structure or behavior.  We have defined several 
stereotypes to help clarify roles and provide a mechanism to support model validation.  As 
specializations of the SysML proxy port, we have defined PDU, Provided and Required ports.  
The PDU ports may only be connected horizontally.  Provided and Required ports may only be 

connected vertically, with Provided ports facing up and Required down.  The parts inside the 
systems are tagged with either the Protocol Entity or Application stereotype to further clarify 
the types of ports they must have.  Finally, the Over stereotype used to establish the vertical 
relationship between horizontal connectors.  These relationships must match the vertical 
connections within the systems. 

Figure 11.  The simplified pattern. 

 



 

 

Fig. 11 shows an intentionally simplified representation of our pattern.  This version is not 
intended to capture all possible configurations of layered interfaces, just a representative set.  
The pattern is divided into an abstract section and a concrete section.  The boxes represent 
concepts and the lines with dark arrow heads represent relations between concepts.  The shaded 
concepts are those for which we created UML stereotypes in our example.  The relationships 
between the abstract and concrete portions are not shown explicitly, they are indicated by 
naming and diagrammatic proximity.  Neither shown are multiplicities, direction of data flow 
or other information that would be necessary for a full set of validation and analysis rules. 

In the abstract portion, Components present Interfaces, Links connect Interfaces and Data 
flows over Links.  In addition, Components can be made of, i.e. have, other Components.  In 
the concrete portion, there are three kinds of Components.  Nodes serve to contain Protocol 
Entities and Applications.  Those two Components are distinguished by the kinds of Interfaces 
they present.  Protocol Entities present all three kinds of Interface, while Applications present 
only Required Interfaces.  SDU Links connect a Required to a Provided interface.  PDU Links 
connect PDU Interfaces.  PDU Links may be joined by Over relationships.  Finally, PDU Data 
flows over PDU Links, and SDU Data over SDU Links. 

The pattern thus established provides a rich framework on which to hang behaviors, 
properties, constraints and requirements.  The advantage is that these may be applied at the 
appropriate horizontal place in or between systems, and the appropriate vertical level of 
abstraction.  For example, it would be appropriate to put statements about the raw, low-level bit 
rate on the RF connector between the ESLT and the space user node.  It would not be 
appropriate to place it on the top-level Command connector.  However, given the bit-rate 
constraint and the relevant protocol layers in the stack (and their PDU specifications), it would 
be possible to compute the effective bit rate of commands, excluding the overhead that the 
lower layers add.  Alternately, the analysis could be run in reverse, given the required number 
of commands per second, and the sizes of commands, that could be compared to the bit rate to 
see if the RF connection can support the desired behavior.  Once populated with these 
specifications and constraints, the framework can be used as the basis for a variety of analyses, 
including static, dynamic, simulation, validation, etc. 

Future Directions 
There are several areas in which we would like to see this basic approach extended. The 

OSI BRM defines seven abstract layers of communication between open systems.  It then 
assigns functionality and requirements to each layer.  It says nothing about any specific 
network protocol but it gives protocol designers and implementers a framework within which 
to work.  We think it would be beneficial for other domain practitioners to devise similar 
layered descriptions of interfaces in their own domains.  This could then help implementers to 
build systems in those domains, and systems engineers to integrate such systems.  Domains 
such as electrical, thermal, and fluids systems also exhibit similar concerns where separating 
out external, internal, logical and physical viewpoints might prove to be of use in describing 
these systems. 

The viewpoints, views and concern we have defined up to this point are high level.  We 
would like to encourage the development of other viewpoints. Some areas of particular interest 
would be views for networking, relaying and tunneling.  We have already addressed bridging 
in a simple case like the ESLT.  A more general approach would identify different relaying 
opportunities in a complex network of interfaces.  Tunneling is when the usual vertical order of 
interfaces is broken and a low-level data flow is transferred over what is normally a high level 
connector.  This has found many applications in computer networking, notably virtual private 
networks. 



 

 

The mapping between layers in general is many-to-many.  A single upper layer between 
two systems may have several different transport mechanisms below available to it.  The signal 
to apply the brakes may be encoded as hydraulic pressure or an electrical signal, depending on 
the design of the car.  Or, the same Ethernet cable can transport FTP, HTTP and many other 
kinds of content.  It is also possible for the same upper layer to be routed through different 
intermediate systems at lower layers.  A commercial airline flight from New York to Los 
Angeles may be routed through either Chicago, Denver or Dallas.  The future work in these 
areas would be to develop analysis and validation algorithms for these applications, and make 
corresponding extensions to the pattern where needed. 

In our early experience, there seems to be a conceptual divide between how different 
people put emphasis on different parts of the pattern.  More work needs to be done to bridge 
this gap, and extend the pattern to communicate better to all. System engineers typically work 
with physical rather than information systems.  As such, they seem to resonate more with the 
PDU exchanges between Components.  This is naturally what systems engineers are concerned 
with.  An important part of the future work would be to find a metaphor for the 
transformational SDU exchanges that happen within Nodes in domain of physical systems. 

At a pragmatic level, there is much to be gained by integrating UML and SysML based 
model with external analysis tools and standards.  This is a common pattern in Model Based 
Systems Engineering.  It is not generally intended that the system engineering modeling tool 
perform specialized analysis.  Rather, it generally serves as a central repository that federates 
with more domain-specific and detailed tools.  The forms of this analysis could be static, or 
dynamic, especially tools that perform discrete event simulation.  We also foresee the 
beneficial use of more and different graph analysis algorithms.  Our applications to date have 
used a shortest path analysis, but other algorithms could be used to determine the amount of 
redundancy in the connections between systems, the points of greatest vulnerability and 
end-to-end performance. 

Summary 
We have described a general-purpose pattern for modeling interfaces that has a wide range 

of applications.  It leverages a well-established pattern from the Open Systems Interconnection 
Basic Reference Model, in conjunction with model-based systems engineering, and the 
analysis of stakeholders, concerns, views and viewpoints as described in ISO 42010 and 
RASDS.  The primary benefits of this pattern are in the way it lets system engineers separate 
concerns in their design.  By treating the layers of abstraction separately, it allows more 
specific definition of required interaction between systems.  To the extent that stakeholder 
concerns can be associated with particular levels of abstraction, it enables the production of 
views that are more narrowly focused on those concerns.  Similarly, it enables the explicit 
specification of the transformation of data or material as it passes vertically between layers.  
Individual views slice the system in different ways to show overview or details.  It enables 
end-to-end data flow analysis and addresses interactions at each layer or combination of layers.  
In the current state of practice, we have observed that different layers of abstraction are easily 
conflated, leading to complexity in presentation of views, and potential gaps and conflicts in 
the design.  We hope to extend and apply the pattern to other domains of engineering and 
system engineering to address the increasing complexity and number of interfaces that system 
engineers must manage for today’s projects. 
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