Spot: A Programming Language for
Verified Flight Softwar

Rob Bocchino
Ed Gamble
Kim Gostelow
Rafi Som

Jet Propulsion Laboratory
California Institute of Technology

High-Integrity Language Technology (HILT)
October 21, 2014

© 2014 Callifornia Institute of Technology
Government sponsorship acknowledged

Motivation

« Most flight soft are (FSW) today is written in C

* Pros
v/ Familiar
v/ Simple
v/ Low overhead
v/ Easy to reason about resource use (speed, memory, power)

« Cons
X Lacks important abstractions for FSW
X Requires unsafe, low-level code
X Verification and alidation (V&V) is very expensive

© 2014 California Institute of Technology
Government sponsorship acknowledged

Example

Failed

|

P Not Checked

Mars Science Laboratory (MSL) FSW coverage
using the Spin model checker

© 2014 California Institute of Technology
Government sponsorship acknowledged

Experience

* Spin is under-utilized for FSW

— Extracting a Spin model is hard work

— Three man-months per module

« Reason: C is very unstructured

Program Property

Expressed in C as

Spacecraft state

malloc, pointers

Concurrency

C library calls

FSW abstractions

C library calls

© 2014 California Institute of Technology
Government sponsorship acknowledged

Our Solution: Spot

* A new domain-specific language (DSL) or FSW

« BasedonC
— Retains the benefits of C or FSW programming
— Linkage compatible with C in both directions

— Supports incremental adoption

+ Key features
- FSW abstractions: modules and messages
- Improved memory management and precise accounting of state
— Annotations for automatic testing and verificatio
— Improved arrays, no pointer arithmetic
— Value type system supporting safe parallelization

© 2014 California Institute of Technology
Government sponsorship acknowledged

Outline

The Spot language

Benefit

Implementation status

Future plans

© 2014 California Institute of Technology
Government sponsorship acknowledged

Modules and Messages

Module Code

module Counter
priority P gsize 100
constructor create ()
state int count = 0
message void increment
next count = count +

}

{}

() priority P {
1;

message int read() priority P

return count;

}
}

Client Code

val Counter c¢ = Counter.create () ;
var int count;

send c.increment () ;

send c.read () receive count;
printf ("count is %d\n", count);

© 2014 California Institute of Technology
Government sponsorship acknowledged

Messages

Counter

Client

Modules and Messages

Module Code

module Counter
priority P gsize 100

constructor create () {J—

state int count = 0

Modules have state

message void increment () priority P {

next count = count + 1;

}

message int read() priority P

return count;

}
}

Client Code

val Counter ¢ = Counter.create () ;

var int count;
send c.increment () ;
send c.read () receive count;

printf ("count is %d\n", count) ;

© 2014 California Institute of Technology
Government sponsorship acknowledged

Messages

Counter

Client

Modules and Messages

Module Code

module Counter ({
priority P gsize 100 Modules have state

constructor create () {J—

state int count = 0

message void increment () priority P {
next count = count + 1;

message int read() priority P
return count;

} } \ Messages operate on state

Client Code

val Counter c¢ = Counter.create () ;
var int count;

send c.increment () ;

send c.read () receive count;
printf ("count is %d\n", count);

© 2014 California Institute of Technology
Government sponsorship acknowledged

Messages

Counter

Client

Modules and Messages

Module Code

module Counter ({
priority P gsize 100 Modules have state

constructor create () {J—

state int count = 0

message void increment () priority P {
next count = count + 1;

message int read() priority P
return count;

} } \ Messages operate on state

Client Code

val Counter c¢ = Counter.create () ;
var int count;

send

send c.read () receive count;
printf ("count is %d\n", count);

© 2014 California Institute of Technology
Government sponsorship acknowledged

Messages

Counter

Client

Modules and Messages

Module Code Messages

module Counter ({
priority P gsize 100 Modules have state

constructor create () {J—

state int count = 0 Counter

message void increment () priority P {
next count = count + 1;

} ‘

message int read() priority P
return count;

} — read
Messages operate on state

}

Client Code

val Counter c¢ = Counter.create () ; Client
var int count;

send

send c.read () receive count;

printf ("count is %d\n", count);

© 2014 California Institute of Technology
Government sponsorship acknowledged

Memory Management

1. Stack variables: As in C

2. Message-local heap variables
— Are created during a message invocation
— Do not persist across messages
— Are automatically reclaimed at the end of a message

3. State variables

— Must be declared
* With state keyword
* |nside a module definitio

— Are associated with a module instance m

— Persist across all messages received by m

There are no global variables in Spot

© 2014 California Institute of Technology
Government sponsorship acknowledged

Typing Guarantees

1. No two module instances share memory
— Modules communicate by passing values
— Easy to move modules between cores

2. State memory stores no pointers
- State memory never points to non-state memory
— Deallocation of message-local memory is safe

© 2014 California Institute of Technology
Government sponsorship acknowledged

Updating State

« State update
— Is called out with the next keyword
— Occurs all at once at the end of message processing

 Purpose
— Buffer current state for possible undo

— Separate current state from next state in assertions

module Counter (
state int count = 0

message int read and increment () priority P {
next count = count + 1;
return count;

}
}

© 2014 California Institute of Technology
Government sponsorship acknowledged

10

Updating State

« State update
— Is called out with the next keyword
— Occurs all at once at the end of message processing

 Purpose
— Buffer current state for possible undo

— Separate current state from next state in assertions

module Counter (
state int count = 0

count is N — message int read and_increment () priority P {
next count = count + 1;
return count;

}
}

© 2014 California Institute of Technology
Government sponsorship acknowledged

Updating State

« State update
— Is called out with the next keyword
— Occurs all at once at the end of message processing

 Purpose
— Buffer current state for possible undo

— Separate current state from next state in assertions

module Counter (
state int count = 0

count is N — message int read and_increment () priority P {
next count = count + 1;
return count;
} T Set count ton+1 and return n

}

© 2014 California Institute of Technology
Government sponsorship acknowledged

10

Annotation Language

« Spot has a simple but powerful annotation language built in
« Syntax: @ identifie (expression)

« Semantics: define by pluggable checker
— Spin code generation
— Design-by-contract-style runtime checks

module Counter ({

state int count = 0
message void increment () priority P
private (count >= 0)
private (next count == count + 1)

{

next count = count + 1;

)
J

© 2014 California Institute of Technology
Government sponsorship acknowledged

11

Other Features of Spot

* Improved arrays
— Arrays store their length and are bounds-checkable
— Fortran-style loops and array slices
— Multidimensional arrays with variable dimension sizes

— No pointer indexing! (Arrays # pointers in Spot)

« Value types
— You can atomically create and initialize immutable struct values

— Essential for safe parallelization

- InC
* You can define a st uct with const members
« But atomic object creation is limited, even with C99 extensions
« As a result, mutable structures are effectively required

12

© 2014 California Institute of Technology
Government sponsorship acknowledged

Outline

The Spot language
Benefit
Implementation status

Future plans

© 2014 California Institute of Technology
Government sponsorship acknowledged

13

Benefits of Spo

* |Improved programmability vs. C
— Module and message abstractions
— Memory management and state partitioning
— Improved arrays and value types

« Atomic update of state

* Auto-generation of
— \Verificatio
- Telemetry

e Multicore support

« C compatibility

© 2014 California Institute of Technology
Government sponsorship acknowledged

14

Atomic Update

« Message handlers function as atomic transactions
— Modules M4, ..., M, run concurrently
— Within module M;, handlers run sequentially

 Message m can be safely aborted and restarted

- If m sends no message that updates remote state
« All state accessed by m is known and buffered
« Just throw away next state and start over

- If m sends a message m’ that updates remote state
 m’ must have return type void
« Defer sending of m” until m’s computation is done

« Big step towards controlled software reset
— Avoid sledgehammer of system reboot

© 2014 California Institute of Technology
Government sponsorship acknowledged

15

Verificatio

« Easy to translate annotations into runtime checks

— Test cases
* Input ranges
» All cases satisfying condition B

* Spin code generation is also straightforward
— Concurrency is explicit

— Typing guarantees reduce the state space

« Should vastly reduce the cost of V&V for FSW

© 2014 California Institute of Technology
Government sponsorship acknowledged

16

Telemetry

« Telemetry causes lots of code generation
— A pain to manage using current techniques
— Duplicates information already in FSW code

« Spot can do much of this with simple annotations

module GnC {

(g, planet) type GnCVector = struct {
(planet) var double[4] g
state GncVector x var Planet planet

var GncMode mode
var int a
state GncParms z }

© 2014 California Institute of Technology
Government sponsorship acknowledged

17

Telemetry

« Telemetry causes lots of code generation
— A pain to manage using current techniques
— Duplicates information already in FSW code

« Spot can do much of this with simple annotations

Send g, planet periodically to the ground
module GnC L/////////

(g, planet) type GnCVector = struct {
(planet) var double[4] g
state GncVector x var Planet planet

var GncMode mode
var int a
state GncParms z }

© 2014 California Institute of Technology
Government sponsorship acknowledged

17

Telemetry

« Telemetry causes lots of code generation

— A pain to manage using current techniques

— Duplicates information already in FSW code

« Spot can do much of this with simple annotations

Send g, planet periodically to the ground
Send planet to the ground
module GnC / when it changes

(g, plane
(planet) var
state GncVector x var
var
var
state GncParms z }

© 2014 California Institute of Technology
Government sponsorship acknowledged

type GnCVector = struct {

double[4] g
Planet planet
GncMode mode
int a

17

Telemetry

« Telemetry causes lots of code generation
— A pain to manage using current techniques
— Duplicates information already in FSW code

« Spot can do much of this with simple annotations

Send g, planet periodically to the ground
Send planet to the ground
module GnC / when it changes

(g, plane type GnCVector = struct {
(planet) var double[4] g
state GncVector x var Planet planet

var GncMode mode
var int a
state GncParms z }

} \ z IS a parameter variable

17

© 2014 California Institute of Technology
Government sponsorship acknowledged

Multicore Support

« Each module
— s logically a thread
— Can go on its own core

 Message bodies can be parallelized

— Value types minimize access to shared mutable data
« Write helpers as pure functions
« Enables auto-parallelization

— Where mutable data is required (e.g., arrays)
* Encapsulate parallel data structures behind library APls
« Update state at top-level only

« Concurrent message handling is future work

© 2014 California Institute of Technology
Government sponsorship acknowledged

18

Outline

The Spot language
Benefit
Implementation status

Future plans

© 2014 California Institute of Technology
Government sponsorship acknowledged

19

Implementaton Status

« Draft language specification is don
— Formal syntax

— |Informal semantics

« Compiler implementation is in process
— Complete parser
— Mostly-complete C code generator
— Prototype Spin code generator

« Case studies
- We have compiled, run, and verifie several simple examples

— Working on more extensive examples drawn from MSL code

© 2014 California Institute of Technology
Government sponsorship acknowledged

20

Outline

The Spot language
Benefit
Implementation status

Future plans

© 2014 California Institute of Technology
Government sponsorship acknowledged

21

Future Plans

* Further evaluation to answer research questions

— What are the gains vs. plain C
* |n safety and verification
« In productivity?

— What is the performance cost?
« Evaluate for deployment

« Several fight projects have expressed interest

© 2014 California Institute of Technology
Government sponsorship acknowledged

22

