


While global optimization techniques exist, there is dif-
ficulty in keeping the problem tractable. For example, an
existing approach to globally optimize a similar problem is
to encode it as a mixed-integer programming problem where
obstacles are represented as arithmetic inequality constraints,
e.g. [10]. However, such a representation for obstacles is
not directly applicable to the more common occupancy grid
approach and the computation grows exponentially with the
number of obstacles.

A more tractable approach is to use local optimization
techniques as in [11]. While such a gradient-based method
can directly handle occupancy maps and converges very
quickly, it is sensitive to the initial solution. As in [11],
there are often techniques for introducing smarter initial
conditions. However, these techniques may not always be
extensible to the high dimensional state space of a multi-
vehicle system.

We marry solution efficiency and tractability by employing
a two-layer architecture, consisting of a graph-based planner
and a local optimizer. First, a graph planner quickly generates
an obstacle-free path using an A* search on a discretized
state lattice with a simplified vehicle dynamics. This path is
then used as an initial solution for a local optimizer, which
refines the paths. Although this approach does not provide
a guarantee of global optimality, practically it is capable of
generating a near-optimal path very quickly.

C. Spatially- and temporally-coordinated formations

Road-following formation control consists of two con-
ceptually distinct types of coordination, which we call spa-
tial coordination and temporal coordination. In a spatially-
coordinated formation, the trajectories of the vehicles are
spatially aligned, as in Figure 2-(a). Note that the relative
positions of the vehicles at a given point in time are not
coordinated. In a temporally-coordinated formation, the rel-
ative positions of the vehicles at the same time instance
are maintained constant, as in Figure 2-(b). Note that the
trajectories of the vehicles are not spatially coordinated.

(a) Spatially-coordinated formation (b) Temporally-coordinated formation

Planned trajectory

Current position

Past trajectory

Fig. 2: Examples of spatially- and temporally-coordinated
formations.

A practical road-following formation control problem is
usually a hybrid of the two. For example, purely spatial
coordination does not prohibit a follower vehicle to go ahead
of the leader. To prohibit such a behavior, we need to impose

a temporal coordination constraint that, at any given point of
time, the positions of the followers are behind the leader.

Planning with spatio-temporal constraints has been studied
in the AI planning community, represented by a classical
example of STRIPS (Stanford Research Institute Problem
Solver) [12] and a more recent example of PDDL (Planning
Domain Definition Language)-based planners [13]. However,
their capability to handle a problem with continuous dynam-
ics such as path planning is limited.

Existing research in formation control has mostly focused
on the temporal coordination. A main contribution of this
work is a framework that can handle a hybrid of spatially
and temporally coordinated formations.

The rest of the paper is organized as follows: In Section II
we formally define key concepts, such as spatial and temporal
coordination constraints, and formulate the problem. Section
III presents our solution approach, which consists of a
graph planner and a local path optimizer. Finally Section
IV presents simulation results.

II. PROBLEM FORMULATION

A. Coordinate System

We first define the sr coordinate system, which we use
for planning. As shown in Figure 3, the s axis is laid along
the road, typically corresponding to the center of the road.
The r axis is set so that it is locally orthogonal to the s axis.
Note that the mapping from the sr coordinate to a Cartesian
coordinate can be a surjection. However, in practice, the
mapping is usually bijective within a road whose curvature
is limited.

𝑠

𝑟

𝑠𝑖

𝑟𝑖

𝛿𝑖 𝛾𝑖

0

Desired position
Actual position

Fig. 3: The s-r coodinate system that we use for planning.

B. Definition of Desired Vehicle Position

We separate the planning problem into two parts. The first
part is to plan the desired position for each vehicle, while
the second part is to control each vehicle to converge to the
desired position while avoiding obstacles and satisfying var-
ious constraints. The first part is described in this subsection
while the second part is described in Section II-C.

We specify the desired position of each vehicle in the
sr coordinate, as shown in Figure 3. We first specify si,
the s coordinate for the i’th vehicle, as a function of time,
denoted by si(t). An underlying assumption is that si is
monotonically increasing with t, meaning that vehicles do
not back up. This limitation can be removed but it is beyond
the scope of this paper. Then we specify ri for a given s,







On-line computation is required to evaluate obstacle
avoidance, spatial coordination, and temporal coordination
constraints. For each nodes v ∈ V i, the planner checks
the satisfaction of the constraints (3)-(5). If one or more
constraints are violated at a node, all the edges connected
to the nodes are removed from the graph. The obstacle
avoidance constraints (3) are check at all the nodes on all
the slices in the graph. We note that the spatio-temporally
extended graph allows for the handling of moving obstacles.

The spatio-temporal graph representation fully accounts
for both spatial and temporal coordination constraints, (4)
and (5). Let ski and tki be the s coordinate and the time at the
kth slice of the spatio-temporal graph. (Hence si(tki ) = ski .)
Assuming that Vehicle j is the reference vehicle of Vehicle
i, let rj(sj(t)) be the past and planned path of Vehicle j.
Then, for all nodes on the kth slice of the graph, the spatial
coordination constraint (4) is checked against rj(skj ), while
the temporal coordination constraint (5) is checked against
(sj(sj(t

k
i ), rj(sj(t

k
i )))). Note that ski 6= sj(t

k
i ).

2) Search: The A* algorithm is used to find the optimal
path on the spatio-temporally extended graph. The initial
node is the one that is closest to the current position of the
vehicle at the first slice of the graph; the search terminates
once it reaches one of the nodes in the last slice of the graph.

The control objective is to keep vehicles as close as pos-
sible to the desired position. Therefore the planner penalizes
the aggregated deviation from (δi, γi) = 0 over the planning
horizon. In a typical formulation of A*, cost is associated to
edges; we use a variant cost is associated with nodes. More
specifically, we use the following cost function:

H∑
k=1

(
δi(s

k
i )2 + γi(s

k
i )2
)
,

where H is the number of time steps in the horizon.
In order to guarantee the optimality of the A* search,

heuristics must be admissible, meaning that it must not
overestimate the cost-to-go from every node. For the leader
vehicle we use the cost of unconstrained optimal path from
each node as the heuristic. This heuristic is pre-computed by
optimizing the path without constraints from each node. It
is easy to show that the cost of unconstrained optimal path
always underestimate the cost of constrained optimal path.
Since the leader vehicle has already found an obstacle-free
path and the desired position of the followers are specified
relative to the leader, the solution typically lies very close
to the desired position. Hence, for the follower vehicles, we
do not use heuristics, but instead use a greedy search to find
the optimal solution very quickly.

D. Local Path Optimizer

The output of the graph planner is a series of discrete
points which take into account the spatial and temporal
constraints imposed on the system. The nature of the graph-
based search forces the chosen parameters to be conservative
as the state of the vehicle is abstracted to allow for a low
dimensional search for the optimization. The purpose of

the local planner is to generate a continuous path which
satisfies both the temporal and spatial constraints imposed on
the vehicles while considering path smoothness and vehicle
parameters along the path, such as vehicle dimensions,
orientation, velocities, and accelerations.

To make a continous transition from the output of the
graph planner to continuous space, we utilize a control
theoretic spline, [15], for each of the sr variables. Such
splines allow for a perfect interpolation of the input points
with the least amount of curvature. The points can then be
adjusted, as shown in Figure 7, using an optimal control
framework to optimize the desired parameters. As the splines
are semi-parametric, the optimization of the trajectory is
greatly simplified as it can be done using parameter opti-
mization techniques.

We now briefly describe the concept of control theoretic
splines, define the splines for the sr coordinates, and formu-
late the optimal control problem.

1) Control Theoretic Splines Background: The notation
and development in this section follows closely the work
in [15]. Control theoretic splines are defined in terms of the
output, y ∈ R, of a linear system with state x ∈ Rn and input
u ∈ R. The differential equations defining the relationship
between these variables can be expressed as

ẋ = Ax+Bu

y = Cx
, (6)

where A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n.
The fundamental idea behind control theoretic splines is

that the solution for y can be expressed in terms of a basis
function, lt(s), as:

y(t) = CeAtx0 +

∫ t

0

lt(s)u(s)ds. (7)

where the basis function is parameterized by t and is a
function of s. It is expressed in terms of the linear system
variables as:

lt(s) =

{
CeA(t−s)B t > s

0 otherwise
. (8)

The spline can then be formulated by defining the input
as a weighted summation over a number of basis functions
with differing values of t. Specifically, defining a number of
points in time, t1, t2, . . . , tN , as well as the same number of
scaling values, τ1, τ2, . . . , τN the input can be written as

u(s) =
N∑
i=1

τilti(s). (9)

Finally, given a vector of points, α ∈ RN , to interpolate
between, i.e. y(ti) = αi, the scaling factors, τ = [τ1, ...τN ]T ,
can be defined to achieve the least amount of control effort,
this corresponds to minimizing curvature as follows:

τ = αTG−1, G =

∫ T

0

l(s)l(s)T ds (10)



Fig. 7: This figure shows the result of using the optimization to smooth the inputs given by the graph planner. The arrows
illustrate the movement of a few of the points. The far right image shows the resulting trajectory.

where l(s) = [lt1(s), lt2(s), ..., ltN (s)]T . Note that G−1

exists assuming ti 6= tj for i 6= j. Also, as long as the
number of points being interpolated and the spacing between
them stays the same, G−1 need only be calculate one time
at initialization. Equation (10) is used to interpolate both
the inputs from the graph planner and then the values for
α are optimized1 through optimal control based parameter
optimization.

2) Defining Splines for the sr Variables: A separate spline
is defined for both s and r with the subscripts as and
ar denoting variable a for the s and r spline respectively.
To naturally minimize the curvature of the path, the linear
systems are designed as second order systems so that the
minimization of the input corresponds to minimizing the
curvature of each spline. To allow the parameters to take
on specific roles in the optimization, we allow s to be a
function of time and r to be a function of s. This allows the
offset r to shape the path and the spatial index s to shape
the velocities. The dynamics for the systems can thus be
described as2:

dxs
dt

(t) = Axs(t) +Bus(t)

s(t) =
[
1 0

]
xs(t)

,

dxr
ds

(s) = Axr(s) +Bur(s)

r(s) =
[
1 0

]
xr(s)

,

(11)

where

A =

[
0 1
0 0

]
, B =

[
0
1

]
. (12)

Also note that dsdt = Dxs and dr
ds = Dxr where D =

[
0 1

]
.

Allowing the reference position (whether it be another ve-
hicle or a virtual vehicle) be denoted as ql(s), the orthogonal
and tangential unit vectors for motion be written as hO(s)
and hT (s), and the relations dhO

ds (s) = −ω(s)hT (s) and
dhT

ds (s) = ωhO(s), the desired position and its derivatives

1Note that optimizing over the desired values, α, instead of the scaling
parameters, τ , is a design choice. It is done as the spatial and temporal
constraints can be expressed naturally over the desired values and in many
cases simply be upper and lower bounds.

2Note that for sake of brevity, we do not give an analytic solution, but
(7)-(10) and (12) can be combined to form an analytic solution to avoid the
need for integration.

can be expressed in cartesian coordinates as:

qd(t) =ql(s) + r(s)hO(s)

dqd
dt

(t) =
(dql
ds

(s) +Dxr(s)hO(s)

− ω(s)r(s)hT (s)
)
Dxs(t)

d2qd
dt2

(t) =
(d2ql
ds2

(s) + ur(s)hO(s)− 2ω(s)Dxr(s)hT (s)−

r(s)α(s)hT (s)− r(s)ω2(s)hO(s)
)

(Dxs(t))
2

+
(dql
ds

(s) +Dxr(s)hO(s)

− ω(s)r(s)hT (s)
)
us(t)

(13)

where α(s) = dω
ds (s), and for readability we have denoted

s(t) as s.
3) Optimal Control Problem: By maintaining the notation

in terms of the sr coordinate system, the spatial and temporal
constraints can be expressed naturally. As a matter of imple-
mentation the spatial constraints correspond to upper and
lower bounds on the optimization. Moreover, as the splines
are semi-parametric, the continuous path can be optimized
through the optimization of a number of parameters and the
spatial constraints as upper and lower bounds.

As the cost is the means of collaboration with the other
vehicles, a subscript i denotes the vehicle performing the
optimization and subscript j denotes the variables from
another vehicle. Also, for shorthand we define xi(t) =[
xsi(t) xri(si(t))

]
and q̄i =

[
qdi(t)

dqdi
dt (t)

d2qdi
dt2 (t)

]
The following generalized form of the cost can be used for
the optimization of the continuous path:

min
αs,αr

∫ tf

t0

(
L(xi(t), qi(t), sj(t), rj(t)

)
dt+ Φ(xi(tf )) (14)

s.t. Spatial and temporal constraints
Spline dynamics: (11)

where again αs and αr are the desired values of the spline,
as defined generally in (10).

Two notes are in order on aspects of implementation



Fig. 8: The simulated environment including the paths taken
by the vehicles (top); Each vehicle generates and uses its
own costmap using simulated laser rangefinders (bottom).

1) The values of αs and αr can be initialize using the
values passed in from the graph planner.

2) To maintain consistency with the route that the graph
planner takes through obstacles, a terminal constraint
can be added to not allow the final α values to deviate
much from the input (or simply fix them to not be
included in the optimization).

IV. SIMULATION RESULTS

In order to validate the proposed approach, it was imple-
mented in simulation and demonstrated in a multi-vehicle
road-following scenario.

A. Implementation

The graph planner and the local path optimizer were
implemented in C++, building upon the Robot Operating
System (ROS) framework. The planner for each vehicle is
run as a separate process (i.e., ROS node) but on the same
machine. The planners were integrated with the ROS Stage
simulator, an off-the-shelf mobile robot simulator, which
simulates vehicle kinematics. The integrated simulation was
run on a machine with Intel Xeon CPU clocked at 3.10 GHz
and 16 GB RAM.

B. Simulation Settings

The simulation is designed in a way that can validate
that the proposed road-following formation control approach
overcomes the three challenges identified in Section I. We
use the snowplow scenario presented in Section I. As shown
in Figure 8, we consider a formation with three vehicles
traversing a unmarked road with obstacles. Their desired
positions are specified both spatially and temporally. In the
lateral direction, the trajectory of Vehicle 2 should be 2.0
meters to the right of Vehicle 1; the trajectory of Vehicle
3 should be 1.0 meters to the left of Vehicle 2. These are
spatial coordination requirement represented by (1). In the
longitudinal direction, the desired position of Vehicle 2 is
10 meters behind Vehicle 1, while that of Vehicle 3 is 10
meters behind Vehicle 2. These are temporal coordination
requirement represented by (2).

Obstacles were placed so the vehicles cannot stay in the
desired formation in order to avoid them. Therefore, the

expected behavior of the vehicles is to maintain the formation
as much as possible but deviate from it in order to pass the
obstacles.

Recall that planners essentially solve a constrained opti-
mization problem. The following spatial and temporal con-
straints are imposed:
• (Spatial) Vehicle 2 must stay within 2.5 meter from the

trajectory of Vehicle 1, in order to maintain overlap in
paths to ensure the passage is cleared

• (Spatial) Vehicle 3 must be between the trajectory of
Vehicles 1 and 2 to stay within the cleared area

• (Temporal) Vehicles must maintain at least 5.0 meter
trailing distance in order to avoid collision

The length of the planning horizon is set to 15 steps.
For each time step, the graph planner populates 87 nodes.
Therefore, the spatio-temporally extended graph has 1305
nodes in total. The local optimizer has two variables to
optimize for each step, which gives a total of 30 variables.

We evaluate the simulation results in two metrics, that
are representative about how well the desired formation is
achieved in terms of spatial and temporal coordination. One
is the lateral distance between the trajectories of Vehicles
1 and 2, while the other is the trailing distance between
Vehicles 1 and 2, and 2 and 3.

C. Simulation Result

Figure 8 is a snapshot from the simulation, showing that
the three vehicles successfully maintain the desired formation
whenever it is possible while deviating from it in order to
avoid obstacles. Figure 9 shows the profile of the two metrics
defined above. The width of cleared path stayed near the
desired value, 2.0 meters, except between s = 35 − 55 and
s = 70−80 when vehicles avoided obstacles. Also note that it
was always below 2.5 meter, indicating that the constraint on
the maximum lateral spread was always satisfied. The trailing
distance between vehicles stayed almost at the desired level
(20 meters between Vehicle 1 and 3, 10 meters between
Vehicle 2 and 3). The dip observed around s = 80 was
because Vehicle 1 reached the end of the road. The constraint
on the minimum trailing distance between vehicles were
always satisfied. The average computation time per vehicle
per planning cycle was 0.0016 sec for the graph planner, and
0.69 sec for the local path optimizer.

Figure 10 shows the behavior of three vehicles in a tri-
angular formation going through a narrow passage. Observe
that the second vehicle waits before the passage to make
way for the first vehicle. The third vehicle also slows down
to avoid collision with the second vehicle. After the vehicles
pass the passage, the formation is quickly restored. Such
an intelligent collective behavior is a result of the fact that
vehicles respect the temporal constraint to avoid collisions
as well as the spacial specification of the formation.

V. CONCLUDING REMARKS

A traceable and efficient trajectory generation algorithm
for spatially and temporally constrained robot formations
traveling along a road is presented.
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Fig. 9: This figure shows various metrics from the simulation shown in Figure 8. From left to right: width of cleared path,
distance from last vehicle to first vehicle, and distance from last vehicle to second vehicle. The x-axis in each plot consists
of the spatial distance, s, along the path.

Fig. 10: Three vehicles in a triangular formation go through
a narrow passage.

Simulations in a ROS based multi-robot environment with
accurate kinematics and simulated sensor readings prove the
viability of this method. We plan on real-world hardware
deployment of this path planning approach.
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