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Abstract— This work presents a novel cooperative path plan-
ning for formation keeping robots traversing along a road with
obstacles and possible narrow passages. A unique challenge
in this problem is a requirement for spatial and temporal
coordination between vehicles while ensuring collision and
obstacle avoidance. A two-step approach is used for fast real-
time planning. The first step uses the A* search on a spatio-
temporally extended graph to generate an obstacle-free path
for the agent while the second step refines this path through
local optimization to comply with dynamic and other vehicle
constraints. This approach keeps robots close to their intended
formation while giving them flexibility to negotiate narrow
passages and obstacles, adhering to any given constraints.

I. INTRODUCTION

The concept of formation control has received much atten-
tion in multi-vehicle systems as it requires tight coupling of
vehicle motion while vehicles use local knowledge to achieve
a collective outcome, e.g. [1, 2]. Much of the work has
been on the development of local control laws which allow
vehicles to move into static or moving rigid configurations in
wide open areas, e.g. [1-5]. This paper presents a different
type of formation control approach which is coupled to a
tightly constrained route to be followed. Instead of rigid
constraints with respect to the current position of other
vehicles, spatial constraints are defined with respect to the
progression along the road and the paths taken by other
vehicles, much like lanes are spatially defined with respect to
the center of the road. The approach has applications ranging
from urban roads where lanes are well defined to offroad
situations where a desired spatial constraint on the paths of
the vehicles should be maintained.

The coordinated traversal of roads is not a new concept,
work done on autonomous platooning dates back to the mid-
nineties or earlier [6]. The idea behind platooning, however,
is to define the longitudinal and lateral motions of the
vehicles to move in a coordinated fashion along a well
marked road [7]. Most techniques deal with the longitudinal
spacing between vehicles moving in single file and require
lanes or other reactive approaches to account for lateral
spacing when the road is not straight [8]. They are not well
suited for taking uncertainties such as ill-defined roads or
obstacles into account.
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Needs other than longitudinal spacing also arise for more
complex formations. Take, for example, the three-vehicle
snow removal team illustrated in Figure 1. The first two
vehicles have snowplows and their objective is to clear a path
as wide as possible, but maintain overlap in paths to ensure
the passage is cleared. The third vehicle dispenses salt and
must stay within the cleared path, while staying close enough
to the front vehicles. The vehicles have to flexibly adapt the
formation in order to safely follow the road. For example,
they may have to deviate from the ideal formation in order
to avoid obstacles or to go through a narrow passage.
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Fig. 1: A snowplowing scenario where two front vehicles
clear the road while the third vehicle stays in the cleared
path and dispenses salt.

Such a road-following formation control problem poses
three challenges: a) formation control with obstacle and
collision avoidance, b) tractable solving of non-convex op-
timization, and c) handling of spatially and temporally co-
ordinated formations. Details of these challenges as well as
our approach to overcome them are described below.

A. Formation control with obstacle and collision avoidance

The vehicles must intelligently balance adherence to a
specified formation with safety (ie obstacle and inter-vehicle
collision avoidance). The majority of existing research on
formation control have focused on the convergence to the
desired formation, while deliberative deviation from it is
often not considered. We employ a receding horizon control
(RHC)-based formation control approach [9], which enables
deliberative formation control and obstacle/collision avoid-
ance by solving a constrained optimization problem in real-
time.

B. Tractable non-convex optimization

The constrained optimization problem to be solved in real-
time includes obstacle and collision avoidance constraints
which make the problem non-convex. These non-convexities
combined with vehicle dynamic considerations raise a seri-
ous computational challenge.



While global optimization techniques exist, there is dif-
ficulty in keeping the problem tractable. For example, an
existing approach to globally optimize a similar problem is
to encode it as a mixed-integer programming problem where
obstacles are represented as arithmetic inequality constraints,
e.g. [10]. However, such a representation for obstacles is
not directly applicable to the more common occupancy grid
approach and the computation grows exponentially with the
number of obstacles.

A more tractable approach is to use local optimization
techniques as in [11]. While such a gradient-based method
can directly handle occupancy maps and converges very
quickly, it is sensitive to the initial solution. As in [11],
there are often techniques for introducing smarter initial
conditions. However, these techniques may not always be
extensible to the high dimensional state space of a multi-
vehicle system.

We marry solution efficiency and tractability by employing
a two-layer architecture, consisting of a graph-based planner
and a local optimizer. First, a graph planner quickly generates
an obstacle-free path using an A* search on a discretized
state lattice with a simplified vehicle dynamics. This path is
then used as an initial solution for a local optimizer, which
refines the paths. Although this approach does not provide
a guarantee of global optimality, practically it is capable of
generating a near-optimal path very quickly.

C. Spatially- and temporally-coordinated for
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Fig. 2: Examples of spatially- and temporally-coordinated
formations.

A practical road-following formation control problem is
usually a hybrid of the two. For example, purely spatial
coordination does not prohibit a follower vehicle to go ahead
of the leader. To prohibit such a behavior, we need to impose

a temporal coordination constraint that, at any given point of
time, the positions of the followers are behind the leader.

Planning with spatio-temporal constraints has been studied
in the Al planning community, represented by a classical
example of STRIPS (Stanford Research Institute Problem
Solver) [12] and a more recent example of PDDL (Planning
Domain Definition Language)-based planners [13]. However,
their capability to handle a problem with continuous dynam-
ics such as path planning is limited.

Existing research in formation control has mostly focused
on the temporal coordination. A main contribution of this
work is a framework that can handle a hybrid of spatially
and temporally coordinated formations.

The rest of the paper is organized as follows: In Section II
we formally define key concepts, such as spatial and temporal
coordination constraints, and formulate the problem. Section
Il presents our solution approach, which consists of a
graph planner and a local path optimizer. Finally Section
IV presents simulation results.

II. PROBLEM FORMULATION

A. Coordinate System

We first define the sr coordinate system, which we use
for planning. As shown in Figure 3, the s axis is laid along
the road, typically corresponding to the center of the road.
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Fig. 3: The s-r coodinate system that we use for planning.

B. Definition of Desired Vehicle Position

We separate the planning problem into two parts. The first
part is to plan the desired position for each vehicle, while
the second part is to control each vehicle to converge to the
desired position while avoiding obstacles and satisfying var-
ious constraints. The first part is described in this subsection
while the second part is described in Section II-C.

We specify the desired position of each vehicle in the
sr coordinate, as shown in Figure 3. We first specify s;,
the s coordinate for the 7’th vehicle, as a function of time,
denoted by s;(¢). An underlying assumption is that s; is
monotonically increasing with ¢, meaning that vehicles do
not back up. This limitation can be removed but it is beyond
the scope of this paper. Then we specify r; for a given s,



denoted by r;(s). Spatial and Temporal coordination can be
realized by imposing the following constraints on s; and r;.
« Spatial coordination between vehicle ¢ and j is real-
ized by specifying the lateral offset, c?;-, between the

two vehicle at given s, as follows:

ri(s) —r;(s) = cfj, Vs > 0. (1)

« Temporal coordination between vehicle 7 and j is

realized by specifying the lateral offset, cz;, between
the two vehicle at given ¢, as follows:

ri(si(t)) = ri(s;(t) = cj,
C. Path Planning

We allow vehicles to deviate from the desired position
in order to avoid obstacles and satisfy various coordination
constraints. As shown in Figure 3, the deviation of the ¢’th
vehicle is represented in the sr coordinate by (9;,~;). We
parameterize J; and ~; by s;. This means that, when a given
desired position is at (s;,7;(s;)), the deviation from it is
given by (di(s:),7i(si))-

The control objective is to minimize the deviation. Letting
S be a finite set of s over a planning horizon, the objective

function is:
minz [[(0:(5),7i(s))]l-
ses

Vit > to. )

Note that the above objective function can also be parame-
terized by ¢ by replacing s with s;(t).
We also impose the following constraints:
o Obstacle avoidance constraint is imposed on each
vehicle as follows:

(s 4+ 6:(s), ri(s) +7i(s)) € R,

where R is the obstacle-free space.
« Spatial coordination constraint betwee:
j is generally represented as follows:

fs(ri(s) +7i(s), mi(s) +7;(s)) <0,

where fg is a real-valued function.
o Temporal coordination constraint bety
and j is generally represented as follow

Jr(si(t) +0i(si(t)), s;(t) +0;(s;(t)),
ri(si(t)) +vi(si(t)), 75(s5(t)) +-

where fr is a real-valued function.

We note that the spatial and temporal «
be imposed between any two vehicles, reg
dependency tree. By specifying the constrait
nated path planning problem is formulated a
optimization problem, where vehicles are c«
spatial and temporal coordination constraints.
tion problem is solved by a combination o
and local optimization, which will be explaii
Section III.

Examples: An example of spatial coordination constraint
is to require that Vehicle 2 is always on the left of Vehicle
I’s trajectory. Such a constraint is prescribed as:

(r1(s) +m(s)) = (rj(s) +7;(s)) = 0,

An example of temporal coordination constraint is collision
avoidance, which requires that the distance between Vehicles
1 and 2 is always greater than d. Such a constraint is
prescribed as:

(s4(t) + 0i(si(1) — 55(1) — 8;(55(1)))”
+ (rilsi(8) +7i(si(t) — 75(55(8)) = 75(s5(1)))* = d?,
vVt > tp.

Vs > 0.

Practical applications usually have both types of constraints.

III. COOPERATIVE PATH PLANNING
A. Receding Horizon Planning

We employ a receding horizon planning approach, where
the planner plans over a finite horizon and only the first
control input is executed for each vehicle, as illustrated
in Figure 4. More specifically, planning is performed by
repeating the followings for each vehicle at every planing
cycle:

1) Specify the desired position relative to the reference

vehicle

2) Plan an obstacle-free path over the planning horizon

using the graph planner

3) Use the path from the graph planner as an initial

solution, plan a locally-optimal, dynamically-feasible

------ Path planned by graph planner

Path planned by path optimizer

_/

Fig. 4: Tllustration of Receding horizon control.

B. Sequentially Distributed, Asynchronous Planning

In our approach, computation is distributed over vehicles
sequentially. We define a dependency tree, where all the
vehicle except the leader has a reference vehicle. For this
work we assume that the dependency tree is acyclic and built
in a centralized manner. Each vehicle computes its own plan
asynchronously. More specifically, when each vehicle fin-
ishes computing a plan, it publishes the plan to the followers;
the followers plan by using the latest plan of the reference



vehicle as an input. In this way, even though the in
flow is sequential, the computation does not ne¢
sequential. While such a sequentially distributed
approach does not result in a globally optimal s
general, it has a practical advantage in that it «
instability issues due to the existence of feedback I«
Moreover, unlike formation control of homogeneou
in a free space, in many practical road-following
control applications there is an obvious dependency
between vehicles, as in the snowplow scenario de;
Section 1.

The path of the leader vehicle is obtained b
a path planning problem without coordination c(
The desired position of all other vehicles are ob
propagating (1) or (2) down the dependency tree. L
7 be the reference vehicle of Vehicle 7. Given the
planned path of Vehicle j as 7;(s;(t)), the desired f
Vehicle 4 is computed from (1) or (2). Note that t.c .cuue.
vehicle can be replaced by a virtual leader, an imaginary
vehicle that works as a reference point (such as the center
of the road, i.e., ryp = 0,Vs > 0).

C. Graph Planner

Our approach to handle spatial and temporal coordination
constraints is to perform search on a spatio-temporally ex-
tended graph for each vehicle. Intuitively, a spatio-temporally
extended graph is a discrete representation of spacetime. As
shown in Figure 5, it consists of nodes on multiple “slices” of
time, where each slice is a two dimensional space. The flow
of time is unidirectional. Hence, nodes on slices at adjacent
time steps are connected by uni-directional edges pointing
from the past slice to the future slice. Nodes on the same
slice are not connected because a vehicle cannot jump to
a different location momentarily. On each slice, nodes are
populated in the §;-; space, or in other words, the deviation

k k+1 k+H-1 S;

Fig. 5: Spatio-temporally extended graph used for path

planning.

Details are now presented on the construction and search
of the graph:

Fig. 6: Mapping of the spatio-temporally extended graph in
Figure 5 to the s-r coordinate.

1) Construction of a graph: The construction of a spatio-
temporally extended graph typically requires non-trivial com-
putation time due to its relatively large number of nodes.
Our approach is to shift most of the computation off-line
by employing a decremental graph construction method.
More specifically, a graph that connects all approximately
dynamically feasible edges without considering constraints
is constructed a priori. This unconstrained graph is invariant
in time. Then, in real time, at each time step, the planner
checks constraints for each node, and removes edges that
are connected to nodes violating a constraint.

The off-line, unconstrained graph for the ¢’th vehicle is a
tuple < V;, E; >, where V; and FE; are the set of nodes and
edges, respectively. Let S; be the set of s; in the planning
horizon. For each s; € S;, we populate a finite number of
points in a rectangular lattice in the J-y space, as in Figure 5.
In the § direction nodes are populated within [Omin, Imax] at a
constant interval, where d.,;,, and d,,,, are given parameters.
We denote by A the set of all the § of the nodes. In
the ~ direction nodes are populated so that they cover the
maximum width of the road. We denote by I the set of all
the y of the nodes. The set of all nodes in the spatio-temporal
graph is given by:

V=5, x AxT.

Unidirectional edges connect two nodes at adjacent slides,
pointing forward in time. Ideally E; should include only
dynamically feasible transitions. However, since the graph
represents only a subset of the vehicle’s state (e.g., it does
not include velocity), it cannot fully account for vehicle
dynamics. As a result, the graph planner uses approximate
dynamical constraints, where a transition between nodes is
allowed only when its magnitude in the J space is below a
threshold:

[(s?7§k77k) - (Sﬁvélvvl)} € E;
iff sl—sF=As; A (0" =LA =Y <,

where [(s¥, 0%, +%) — (st,6',~4)] is the edge from node
(s¥ 8% A% to (s, 8% 4*), As, is the interval of s; in S; and
c is a threshold. The detailed vehicle dynamics is taken into
account by the local path optimizer. The above computation
is performed off-line, and the resulting graph is stored in
each vehicle’s memory.



On-line computation is required to evaluate obstacle
avoidance, spatial coordination, and temporal coordination
constraints. For each nodes v € V', the planner checks
the satisfaction of the constraints (3)-(5). If one or more
constraints are violated at a node, all the edges connected
to the nodes are removed from the graph. The obstacle
avoidance constraints (3) are check at all the nodes on all
the slices in the graph. We note that the spatio-temporally
extended graph allows for the handling of moving obstacles.

The spatio-temporal graph representation fully accounts
for both spatial and temporal coordination constraints, (4)
and (5). Let s* and t¥ be the s coordinate and the time at the
kth slice of the spatio-temporal graph. (Hence s;(t¥) = s¥.)
Assuming that Vehicle j is the reference vehicle of Vehicle
i, let 7;(s;(t)) be the past and planned path of Vehicle j.
Then, for all nodes on the kth slice of the graph, the spatial
coordination constraint (4) is checked against 7; (sé‘“‘) while
the temporal coordination constraint (5) is checked against
(s5(s; (), 75 (55 (tF)))). Note that si # s;(tF).

2) Search: The A* algorithm is used to find the optimal
path on the spatio-temporally extended graph. The initial
node is the one that is closest to the current position of the
vehicle at the first slice of the graph; the search terminates
once it reaches one of the nodes in the last slice of the graph.

The control objective is to keep vehicles as close as pos-
sible to the desired position. Therefore the planner penalizes
the aggregated deviation from (d;,;) = 0 over the planning
horizon. In a typical formulation of A*, cost is associated to
edges; we use a variant cost is associated with nodes. More
specifically, we use the following cost function:

H
(6:(s) +7i(s8)?)
k=1
where H is the number of time steps in the horizon.

In order to guarantee the optimality of the A* search,
heuristics must be admissible, meaning that it must not
overestimate the cost-to-go from every node. For the leader
vehicle we use the cost of unconstrained optimal path from
each node as the heuristic. This heuristic is pre-computed by
optimizing the path without constraints from each node. It
is easy to show that the cost of unconstrained optimal path
always underestimate the cost of constrained optimal path.
Since the leader vehicle has already found an obstacle-free
path and the desired position of the followers are specified
relative to the leader, the solution typically lies very close
to the desired position. Hence, for the follower vehicles, we
do not use heuristics, but instead use a greedy search to find
the optimal solution very quickly.

D. Local Path Optimizer

The output of the graph planner is a series of discrete
points which take into account the spatial and temporal
constraints imposed on the system. The nature of the graph-
based search forces the chosen parameters to be conservative
as the state of the vehicle is abstracted to allow for a low
dimensional search for the optimization. The purpose of

the local planner is to generate a continuous path which
satisfies both the temporal and spatial constraints imposed on
the vehicles while considering path smoothness and vehicle
parameters along the path, such as vehicle dimensions,
orientation, velocities, and accelerations.

To make a continous transition from the output of the
graph planner to continuous space, we utilize a control
theoretic spline, [15], for each of the sr variables. Such
splines allow for a perfect interpolation of the input points
with the least amount of curvature. The points can then be
adjusted, as shown in Figure 7, using an optimal control
framework to optimize the desired parameters. As the splines
are semi-parametric, the optimization of the trajectory is
greatly simplified as it can be done using parameter opti-
mization techniques.

We now briefly describe the concept of control theoretic
splines, define the splines for the sr coordinates, and formu-
late the optimal control problem.

1) Control Theoretic Splines Background: The notation
and development in this section follows closely the work
in [15]. Control theoretic splines are defined in terms of the
output, y € R, of a linear system with state x € R™ and input
u € R. The differential equations defining the relationship
between these variables can be expressed as

T = Az + Bu
; (6)

y=Cx
where A € R"*" B € R™*! and C € RI*",
The fundamental idea behind control theoretic splines is
that the solution for y can be expressed in terms of a basis
function, I;(s), as:

t

y(t) = Cetlay —|—/ li(s)u(s)ds. (7
0

where the basis function is parameterized by ¢ and is a

function of s. It is expressed in terms of the linear system

variables as:

lt(s) = ®)

CeAlt=9)B ¢t >
0 otherwise

The spline can then be formulated by defining the input
as a weighted summation over a number of basis functions
with differing values of ¢. Specifically, defining a number of
points in time, t1,%s,...,tN, as well as the same number of
scaling values, 71,72, ..., Ty the input can be written as

N
u(s) = ZT,;lti(s). )

Finally, given a vector of points, o € R, to interpolate
between, i.e. y(t;) = «;, the scaling factors, 7 = [r1, ...7x]%,
can be defined to achieve the least amount of control effort,

this corresponds to minimizing curvature as follows:

T
r=a’G™!, G :/ 1(s)(s)Tds (10)
0
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Fig. 7: This figure shows the result of using the optimization to smooth the inputs given by the graph planner. The arrows
illustrate the movement of a few of the points. The far right image shows the resulting trajectory.

where I(s) = [lt,(8),11,(8), s Ly (5)]T. Note that G—!
exists assuming ¢; # t; for ¢ # j. Also, as long as the
number of points being interpolated and the spacing between
them stays the same, G~! need only be calculate one time
at initialization. Equation (10) is used to interpolate both
the inputs from the graph planner and then the values for
« are optimized' through optimal control based parameter
optimization.

2) Defining Splines for the sr Variables: A separate spline
is defined for both s and r with the subscripts as and
a, denoting variable a for the s and r spline respectively.
To naturally minimize the curvature of the path, the linear
systems are designed as second order systems so that the
minimization of the input corresponds to minimizing the
curvature of each spline. To allow the parameters to take
on specific roles in the optimization, we allow s to be a
function of time and 7 to be a function of s. This allows the
offset  to shape the path and the spatial index s to shape
the velocities. The dynamics for the systems can thus be
described as’:

dzg
o (t) = Az,(t) + Bus(t)7 s Az, (s) + Bur(s)’

s(t)=1[1 0]zs(t) r(s)=1[1 0]z.(s)

1D
0 1 0
|

Also note that % = Dz, and % = Dz, where D = [0 1].
Allowing the reference position (whether it be another ve-
hicle or a virtual vehicle) be denoted as ¢;(s), the orthogonal
and tangential unit vectors for motion be written as ho(s)
and hp(s), and the relations dg‘—f(s) = —w(s)hp(s) and
dhr (5) = who(s), the desired position and its derivatives

r\
»
L
|

12)

"Note that optimizing over the desired values, c, instead of the scaling
parameters, 7, is a design choice. It is done as the spatial and temporal
constraints can be expressed naturally over the desired values and in many
cases simply be upper and lower bounds.

2Note that for sake of brevity, we do not give an analytic solution, but
(7)-(10) and (12) can be combined to form an analytic solution to avoid the
need for integration.

can be expressed in cartesian coordinates as:

qa(t) =qi(s) +r(s)ho(s)

@(t) - (@(s) + Da,(s)ho(s)

dt ds
- w(s)r(s)hT(s)>st(t)
2 2
T 1) = (T2 (5) + e (5)ho(s) — 2(s) D (5)hr (5) -
r(s)a(s)hr(s) — T(S)WQ(S)hO(S)) (Dz4(t))?
+ (%(s) + Da,(s)ho(s)
— w(s)r()hr(s) )us (1)
(13)
where a(s) = % (s), and for readability we have denoted
s(t) as s.

3) Optimal Control Problem: By maintaining the notation
in terms of the sr coordinate system, the spatial and temporal
constraints can be expressed naturally. As a matter of imple-
mentation the spatial constraints correspond to upper and
lower bounds on the optimization. Moreover, as the splines
are semi-parametric, the continuous path can be optimized
through the optimization of a number of parameters and the
spatial constraints as upper and lower bounds.

As the cost is the means of collaboration with the other
vehicles, a subscript 7 denotes the vehicle performing the
optimization and subscript j denotes the variables from
another vehicle. Also, for shorthand we define z;(t) =

2
[z (t)  r (si(t))] and ¢; = {qdi () Law(py Ly
The following generalized form of the cost can be used for

the optimization of the continuous path:

min/f (ECaa(0), 40) 55(0),7,(0) )t + Dl ) (14)

as,ar Juo

s.t. Spatial and temporal constraints
Spline dynamics: (11)
where again o and «,. are the desired values of the spline,

as defined generally in (10).
Two notes are in order on aspects of implementation



Fig. 8: The simulated environment including the paths taken
by the vehicles (top); Each vehicle generates and uses its
own costmap using simulated laser rangefinders (bottom).

1) The values of o and «, can be initialize using the
values passed in from the graph planner.

2) To maintain consistency with the route that the graph
planner takes through obstacles, a terminal constraint
can be added to not allow the final o values to deviate
much from the input (or simply fix them to not be
included in the optimization).

IV. SIMULATION RESULTS

In order to validate the proposed approach, it was imple-
mented in simulation and demonstrated in a multi-vehicle
road-following scenario.

A. Implementation

The graph planner and the local path optimizer were
implemented in C++, building upon the Robot Operating
System (ROS) framework. The planner for each vehicle is
run as a separate process (i.e., ROS node) but on the same
machine. The planners were integrated with the ROS Stage
simulator, an off-the-shelf mobile robot simulator, which
simulates vehicle kinematics. The integrated simulation was
run on a machine with Intel Xeon CPU clocked at 3.10 GHz
and 16 GB RAM.

B. Simulation Settings

The simulation is designed in a way that can validate
that the proposed road-following formation control approach
overcomes the three challenges identified in Section I. We
use the snowplow scenario presented in Section I. As shown
in Figure 8, we consider a formation with three vehicles
traversing a unmarked road with obstacles. Their desired
positions are specified both spatially and temporally. In the
lateral direction, the trajectory of Vehicle 2 should be 2.0
meters to the right of Vehicle 1; the trajectory of Vehicle
3 should be 1.0 meters to the left of Vehicle 2. These are
spatial coordination requirement represented by (1). In the
longitudinal direction, the desired position of Vehicle 2 is
10 meters behind Vehicle 1, while that of Vehicle 3 is 10
meters behind Vehicle 2. These are temporal coordination
requirement represented by (2).

Obstacles were placed so the vehicles cannot stay in the
desired formation in order to avoid them. Therefore, the

expected behavior of the vehicles is to maintain the formation
as much as possible but deviate from it in order to pass the
obstacles.

Recall that planners essentially solve a constrained opti-
mization problem. The following spatial and temporal con-
straints are imposed:

o (Spatial) Vehicle 2 must stay within 2.5 meter from the
trajectory of Vehicle 1, in order to maintain overlap in
paths to ensure the passage is cleared

o (Spatial) Vehicle 3 must be between the trajectory of
Vehicles 1 and 2 to stay within the cleared area

o (Temporal) Vehicles must maintain at least 5.0 meter
trailing distance in order to avoid collision

The length of the planning horizon is set to 15 steps.
For each time step, the graph planner populates 87 nodes.
Therefore, the spatio-temporally extended graph has 1305
nodes in total. The local optimizer has two variables to
optimize for each step, which gives a total of 30 variables.

We evaluate the simulation results in two metrics, that
are representative about how well the desired formation is
achieved in terms of spatial and temporal coordination. One
is the lateral distance between the trajectories of Vehicles
1 and 2, while the other is the trailing distance between
Vehicles 1 and 2, and 2 and 3.

C. Simulation Result

Figure 8 is a snapshot from the simulation, showing that
the three vehicles successfully maintain the desired formation
whenever it is possible while deviating from it in order to
avoid obstacles. Figure 9 shows the profile of the two metrics
defined above. The width of cleared path stayed near the
desired value, 2.0 meters, except between s = 35 — 55 and
s = 70—80 when vehicles avoided obstacles. Also note that it
was always below 2.5 meter, indicating that the constraint on
the maximum lateral spread was always satisfied. The trailing
distance between vehicles stayed almost at the desired level
(20 meters between Vehicle 1 and 3, 10 meters between
Vehicle 2 and 3). The dip observed around s = 80 was
because Vehicle 1 reached the end of the road. The constraint
on the minimum trailing distance between vehicles were
always satisfied. The average computation time per vehicle
per planning cycle was 0.0016 sec for the graph planner, and
0.69 sec for the local path optimizer.

Figure 10 shows the behavior of three vehicles in a tri-
angular formation going through a narrow passage. Observe
that the second vehicle waits before the passage to make
way for the first vehicle. The third vehicle also slows down
to avoid collision with the second vehicle. After the vehicles
pass the passage, the formation is quickly restored. Such
an intelligent collective behavior is a result of the fact that
vehicles respect the temporal constraint to avoid collisions
as well as the spacial specification of the formation.

V. CONCLUDING REMARKS

A traceable and efficient trajectory generation algorithm
for spatially and temporally constrained robot formations
traveling along a road is presented.
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Fig. 9: This figure shows various metrics from the simulation shown in Figure 8. From left to right: width of cleared path,
distance from last vehicle to first vehicle, and distance from last vehicle to second vehicle. The x-axis in each plot consists

of the spatial distance, s, along the path.

Fig. 10: Three vehicles in a triangular formation go through
a narrow passage.

Simulations in a ROS based multi-robot environment with
accurate kinematics and simulated sensor readings prove the
viability of this method. We plan on real-world hardware
deployment of this path planning approach.
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