
SMART: a Propositional Logic-Based Trade Analysis
and Risk Assessment Tool for a Complex Mission

Masahiro Ono, Austin Nicholas, Farah Alibay, and Joseph Parrish
Jet Propulsion Laboratory, California Institute of Technology

Pasadena, CA 91109
{Masahiro.Ono, Austin.K.Nicholas, Farah.Alibay, Joseph.C.Parrish}@jpl.nasa.gov

Abstract—This paper introduces a new trade analysis software
called the Space Mission Architecture and Risk Analysis Tool
(SMART). This tool supports a high-level system trade study
on a complex mission, such as a potential Mars Sample Return
(MSR) mission, in an intuitive and quantitative manner. In a
complex mission, a common approach to increase the proba-
bility of success is to have redundancy and prepare backups.
Quantitatively evaluating the utility of adding redundancy to a
system is important but not straightforward, particularly when
the failure of parallel subsystems are correlated. SMART offers
the unique capability of handling correlated redundancies and
accurately evaluating the probability of mission success as well
as its sensitivity to the reliability of mission components. It
can also perform Monte-Carlo analysis to find the confidence
interval of the success probability, total mission cost, and total
mass. Additionally, SMART provides a GUI interface based on
Matlab/Simulink that allows users to graphically define mission
architecture as well as the logical relationship between mission
components and outcomes. These analysis capabilities enable
to answer questions such as: “for a given upper bound on total
cost and mass, on which subsystem should we implement redun-
dancy to maximize the chance of mission success?” Although the
focus of SMART is high-level trade analysis, it also provides an
interface to detailed models of mission components, allowing to
perform an integrated analysis that covers from low-level details
to high-level architecture. The analysis capabilities are enabled
by our unique propositional logic-based approach. SMART
translates the graphical mission model to a propositional logic
representation through symbolic computation. We demonstrate
SMART’s analysis capabilities on a MSR model as well as a
model of a fictional mission.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 SMART’S ANALYSIS CAPABILITIES 2
3 SMART MODEL . 4
4 SMART ALGORITHMS . 5
5 DEMONSTRATION THROUGH A FICTIONAL

EXAMPLE . 8
6 DEMONSTRATION ON THE MSR MISSION 11
7 CONCLUSIONS . 14

ACKNOWLEDGMENTS . 14
REFERENCES . 14
BIOGRAPHY . 14

1. INTRODUCTION
As we push the frontier of space exploration, goals become
increasingly challenging, and systems required to achieve
the goals inevitably become highly complex. For example,
NASA’s Planetary Science Decadal Survey [1] in 2010 rec-

978-1-4799-5380-6/15/$31.00 c©2015 IEEE.

ommends to take “the first critical steps toward returning
carefully selected samples from the surface of Mars.” The
goal of returning samples from Mars could be achieved by
three missions, as illustrated in Figure 1. The first is a
Sample Caching Rover (SCR) mission, which would collect
samples and cache them. The second is a Sample Retrieval
and Launch (SRL) mission, which would retrieve the cached
samples and launch them into a Mars orbit. Finally, the
third is a Sample Return Orbiter (SRO) mission, which would
bring the samples back from the Mars orbit to the Earth. It is
to be noted that SRL and SRO missions could be launched in
either order.

This mission architecture also poses a unique system engi-
neering challenge because this three-mission configuration
opens up a huge trade space. The challenge is not only due to
the increased complexity, but also to the existence of multiple
options to implement redundancy, such as carrying multiple
cache containers in the SCR mission. We need to address the
problem of optimally choosing the mission architecture that
maximizes the chance of achieving a challenging goal while
meeting various requirements such as cost and launch mass.

For this purpose, we developed a new trade analysis software
called the Space Mission Architecture and Risk Analysis
Tool (SMART), which supports a high-level system trade
analysis in an intuitive and quantitative manner. SMART
provides a GUI interface that allows users to graphically
define mission architectures as well as the logical relationship
between mission components and outcomes (e.g., if landing
is successful and the rover works properly, then samples
are collected). SMART translates the graphical model to a
propositional logic formula, which encodes the conditions for
success. It then uses the formula to perform various analyses
including the evaluation of mission success probability, sensi-
tivity analysis, Monte-Carlo analysis, and resource allocation
optimization. It also provides an interface to detailed models
of mission components, allowing an integrated analysis that
covers from low-level details to high-level architecture.

SMART’s GUI modeling tool is based on MATLAB/Simulink.
It provides custom Simulink blocks representing a mission, a
goal, an outcome, an asset and logical operators. A mission
(such as an MSR mission) is defined as a sequence of sub-
missions1 (such as SCR, SRL, and SRO). A sub-mission
is defined as a set of capabilities, and each capability has
multiple implementation options (e.g., solar panel or RTG).
Users also define mission goals, such as returning a sample to
Earth. The condition for each goal is defined by connecting
the mission component blocks to the goal blocks through
logical operators. Outcome and asset blocks are used to
represent intermediate states of a mission. An outcome block

1In order to avoid confusion, we define the term “sub-mission” to mean
a mission within a mission. However, whenever the meaning is clear, we
simply refer to it a mission.

1

Table 1. List of SMART blocks

Category Block Description
Architecture Mission These blocks define a hierarchical mission structure, as shown in Figure 5. A SMART

model must have one Mission block as it acts as the root of the model. The hierarchy
between components are represented intuitively by connecting blocks.

Sub-mission
Capability

Option Allows users to specify the reliability, mass, and cost of an option. Additionally, they
can also specify the level of uncertainty in reliability, mass, and cost by choosing the
maximum percentage error from the nominal values.

Option Params Defines an option whose reliability, cost, and mass are given by a callback function,
which describes a detailed model of the technology option. This functionality of
SMART is described in Section 2.

Consequence Goal Represents a goal of the mission. A mission may have multiple goals. As we explain
in Section 2, SMART evaluates the probability of achieving the goals, as well as the
sensitivity of the probability to the reliability of mission components.

Failure Represents a failure mode of an mission. This block is algorithmically equivalent to
the Goal block, but SMART provides separate blocks for user’s convenience.

State Outcome Represents an outcome in a SMART model.
Asset Creation Represents an event where asset was created. The two parameters of Weibull

distribution as well as the year of asset creation is specified in this block.
Asset Evaluation Evaluates if an asset is functional at a specified point of time.

Operator And Represents logical operators.
Or
Not

Combination Represents a logical operator whose output is true if k or more inputs out of N are
true.

Setting Sim Settings Specifies evaluation method and running mode.

estimated to have a 100 kg mass, but with ±10% uncertainty.
SMART uses a triangular distribution centered at 100 kg and
ranging from 90 kg to 110 kg for the mass of this component.
As for the reliability, we use the probability of failure as the
base of the percentage error. For example, if a component
has a 99% reliability with ±10% uncertainty in failure rate,
then SMART assumes a distribution ranging from 98.9% to
99.1%.

Outcome and Asset

An outcome in SMART is an event that occurs at a single
point of time. It is typically used to represent intermediate
milestones of a mission. Examples of possible outcome in
an MSR mission includes a successful retrieval of a cache
or successful launch of OS to a Mars orbit. An outcome is
defined by an Outcome block.

An asset is an object or information that is created in a
mission and used in a later mission. Examples include an
orbiter, a cache, OS, and the information of the terrain of
the landing site. SMART can model the decay of an asset.
Specifically, it represents the failure probability of an asset
over time as a Weibull distribution. A Weibull distribution is
specified by two parameters. Roughly speaking, one of the
parameters corresponds to the mean lifetime while the other
one tells us how fast the failure rate increase (or decreases)
over time. This lifetime models is presented in detail in the
next section. An asset is defined by Asset Creation and Asset
Evaluation blocks.

Mission Flow

Once mission components and goals are defined, the user
must define the logical condition for achieving the goals.
An example of a logical condition is as follows: a goal of

a Mars rover mission is achieved if EDL is successful and
the mobility system works. And, Or, Not and Combination
operator blocks are used to represent logical relationships.

Simulation Settings

A SMART model also has to have one Sim Settings block,
which is not connected to any other blocks.

This block allows users to choose from two evaluation meth-
ods: analytic and numeric. The analytic method is the
baseline. The details of the method are described in Section 4.
The numeric method is scalable to more complex models than
the analytic method, but provides limited analysis capability.

This block also allows users to specify the running mode.
Specifically, with the analytic mode, the users can choose to
perform a Monte-Carlo analysis to vary the reliability, cost,
and mass of each mission components with a given probabil-
ity distribution in order obtain the probability distribution of
the total cost, mass, and probability of achieving goals.

4. SMART ALGORITHMS
SMART takes as an input a mission model described in
Section 3, and performs the analyses described in Section
2. All the analysis capabilities rely upon the closed-form
expression of success probability such as (1). Obtaining
such a closed-form solution requires a symbolic computation,
which is non-trivial in a general case.

We overcome this challenge in two steps. First, we repre-
sent propositions in a unified format called the disjunctive
normal form (DNF). Second, we use the inclusion-exclusion
principle to obtain the closed-form expression of probability

5

Figure 5. Hierarchical structure of a SMART mission model.

of success. The first two subsections of this section explain
these two steps.

Existence of assets requires modification to this approach
since propositional variables become dependent. We also de-
scribe a method to simplify DNF in order to save computation
time. Finally, we briefly describe the approximate methods
SMART employs when the model is too complex to use the
inclusion-exclusion principle.

DNF Representation

A SMART model includes multiple components, each of
which is represented by an Option block. For each compo-
nent, a propositional variable is assigned, which is true if it
works properly and false if it fails. In the example in Figure
2, X , Y , and Z are the propositional variables. Any outcome
and goal is represented as a proposition of these propositional
variables. For example, the outcome of ”Cache 1 retrieved” is
X∧Y and the goal of ”Cache retrieved” is (X∧Y)∨(X∧Z),
or X ∧ (Y ∨Z). Automatically obtaining these propositional
formula requires symbolic computation, which is non-trivial.

Our approach to perform symbolic computation is to rep-
resent all propositional formulae in DNF. A propositional
formula is in DNF if it is a disjunction of conjunctions of
propositional variables. Below is an example of a DNF
formula:

(A ∧B ∧ ¬C) ∨ (A ∧D ∧ E) ∨ (¬B ∧ C ∧ F) ∨ ...

In the above example, (X ∧ Y) ∨ (X ∧ Z) is in DNF but
X ∧ (Y ∨ Z) is not.

In general, a proposition in DNF is represented as follows:

∨
i∈I

∧
j∈Ji

Xij

Importantly, any logical formula can be represented in DNF.
SMART internally represents all formulae in DNF. As a
result, any logical operation can be performed by repeatedly
applying only three rules as follows:

AND:∨
i∈I

∧
j∈Ji

Xj

 ∧
∨
i∈I′

∧
j∈Ji

Xij

 =
∨

(i,i′)∈I×I′

∧
j∈Ji∪J′

i′

Xj

OR:∨
i∈I

∧
j∈Ji

Xj

 ∧
∨
i∈I′

∧
j∈Ji

Xij

 =
∨

i∈I∪I′

∧
j∈Ji

Xj

NOT: ∨
i∈I

∧
j∈Ji

Xij

 ∧
∨
i∈I′

∧
j∈Ji

Xij

=

∨
(j1···j|I|)∈

∏
i∈I Ji

(Xj1 ∧ · · · ∧Xj|I|).

SMART employs an efficient matrix representation of a DNF
formula. Each column corresponds to each propositional
variables, while each row represents each conjunctive clause.
If a propositional variable is included in a conjunctive clause,
the corresponding entry is one, Otherwise it is zero. For
example, a DNF proposition:

A ∧ (B ∧ C) ∨ (A ∧ ¬B ∧ ¬C)

is represented as:(
1 0 0 0 0 0
0 1 1 0 0 0
1 0 0 0 1 1

)
,

where the six columns correspond to A, B, C, ¬A, ¬B, and
¬C, respectively.

Computation of Probability using Inclusion-Exclusion Prin-
ciple

By propagating DNF propositions to a goal, SMART obtains
a logical condition to achieve the goal. The next challenge is

6

obtaining the probability of success out of the logical formula
in the DNF form.

We use the well-known inclusion-exclusion principle to ob-
tain the probability. For example, consider a very simple case
where the condition to achieve a goal is given by X ∨ Y .
Using the inclusion-exclusion principle, the probability of
achieving the goal is computed as follows:

pA∨B = pA + pB − pA∧B . (5)

This equation can be intuitively understood by Figure 6.

Then, going back to the fetch rover example in Figure 2, the
condition to achieve the goal of retrieving a cache in DNF is:

(X ∧ Y) ∨ (X ∧ Z).

By substituting A = X ∧ Y and B = X ∧ Z to (5), we can
compute the probability of achieving the goal as follows:

p(X∧Y)∨(X∧Z) = pX∧Y + pX∧Z − pX∧Y ∧Z
As explained earlier, the probability (reliability) of each
individual components, e.g., pX , pY , and pZ , is specified by
the Option blocks. Since we assume that X , Y , and Z are
independent, pX∧Y , pX∧Z , and pX∧Y ∧Z can be obtained by
multiplying their reliabilities. However, when there are assets
in a model, the independence assumption does not necessarily
hold. We will discuss the treatment of asset later in this
section.

When there are three clauses, the computation can be carried
out in the same manner, but the equation becomes much more
complex:

pA∨B∨C = pA+pB+pC−pA∧B−pB∧C−pC∧A+pA∧B∧C .

In general, the inclusion-exclusion principle is written as:

p∨n
i=1 Ai

=

n∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤n

pAi1∧···∧Aik

(6)

Note that Ai is a clause consisting of a conjunction of
propositional variables:

Ai =
∧
j∈Ji

Xj

A conjunction of Ai involves the union of the sets of the
propositional variables of all clauses:

Ai ∧Ai′ =
∧

j∈(Ji∪Ji′)

Xj

Since we assume that atomic propositional variables are
independent, its probability can be computed simply by mul-
tiplying their reliabilities:

p∧
j∈J Xj

=
∏
j∈J

pXj (7)

Note that, although we assume the independence of atomic
propositional variables, we do not assume the independence
of intermediate outcomes. Therefore, this framework allows
the correlated redundancy problem to be handled. Moreover,
the closed-loop formula can be used not only to evaluate
the probability but also to perform sensitivity analysis and
Monte-Carlo analysis very efficiently.

Figure 6. Inclusion-Exclusion principle with two sets.

Figure 7. Cumulative distribution function of Weibull
distributions with λ = 1.

Modeling of Asset Lifetime

Until now, we have assumed a SMART model without assets.
A model that includes asset requires a slightly different
treatment since it has a decaying reliability over time.

As was previously mentioned, we model the asset lifetime
using a Weibull distribution, which is specified by two pa-
rameters: λ and k. λ is a scale parameter that, very roughly
speaking, specifies the mean lifetime of an asset. (Strictly
speaking, the mean lifetime is given by λΓ(1 + 1/k)). k is
the shape parameter. If k > 1, the failure rate increases over
time, approximating the aging process of an asset; if k = 1,
the failure rate is constant, and hence the distribution becomes
equivalent to the exponential distribution; if k < 1, the failure
rate decreases over time.

A Weibull distribution is defined on t ≥ 0 and its cumulative
distribution function (CDF) is given by:

F (t) = 1− e−(t/λ)k . (8)

Intuitively, the CDF gives the probability that the asset has
been failed at a given point of time. Figure 7 shows the
Weibull distributions with λ = 1 and k = 0.2, 1, and 5.
As can be seen from the figure, when k < 1, failure quickly
accumulates at the beginning but then slows down afterwards.
When k > 1, the failure rate is low at the beginning but
increases over time. Finally, when k = 1, the failure rate
is constant, and hence it is equivalent to the exponential
distribution.

Each Asset Evaluation block evaluates the probability that the
asset is functional at a given point of time using (8). An
propositional variable is assigned to each Asset Evaluation
block.

One issue is that, the probability that an asset is alive at a
given time is not independent from the probability that the

7

same asset is alive at another point of time. For example,
if a car is broken in 2020, the car is definitely broken in
2021. Therefore, the probabilities of asset survival cannot be
simply multiplied as in (7) when computing the probability
of a conjunctive clause in the inclusion-exclusion principle.

Let Xt be an event that an asset is functional at time t. Then,
the following holds:

∀t < t′, Xt′ =⇒ Xt.

Intuitively, this means that if an asset is alive at present, then
it has been alive at any point of time in the past.

From this implication, the following simple laws are ob-
tained. For t < t′,

pXt∧Xt′ = pXt′

pXt∧¬Xt′ = pXt
− pXt′

p¬Xt∧Xt′ = 0

p¬Xt∧¬Xt′ = 1− pXt

SMART uses these rules in place of (7) when involving
assets.

Simplifying DNF

An issue of using the DNF representation for all propositions
is that their size tends to become very large particularly
when repeatedly applying the not operations. Resulting DNF
formulae often contains redundant clauses. We mitigate
this issue by removing redundant clauses to simplify the
representation in two ways.

First, the empty clauses are removed. If a clause contains a
propositional variable and its own negation, i.e., X ∧ ¬X , it
is empty. Such a clause can be removed from the DNF. For
example, an event that “rover works and does not work” never
happens.

Second, the absorption law is used:

X ∨ (X ∧ Y) = X

For example, a statement “Alice is here, or both Alice and
Bob are here” is true if and only if just Alice is present.

SMART obtains the minimal DNF expression by eliminating
redundant rows through repeated application of these two
rules.

Approximate Inclusion-Exclusion methods

Even with the minimal DNF expression, the computation of
the inclusion-exclusion principle becomes intractable when
the model is highly complex. More specifically, if a DNF
formula has n conjunctive clauses, it requires adding (2n −
1) terms to compute the probability using the inclusion-
exclusion principle. The exponential growth in computational
complexity is the primary challenge of our approach.

When the model is too complex, we approximate the solu-
tion in two ways. The first one is to employ approximate
inclusion-exclusion methods[2], [3], [4], which are discussed
in this subsection. For more complicated models that cannot
be handled even by the approximate methods, we employ a
numerical approximation.

All the approximate inclusion-exclusion methods obtain ap-
proximates the probability by a linear combination of a subset
of the terms used by the exact inclusion-exclusion. More
specifically, with m ≤ n, (6) is approximated by:

p∨n
i=1 Ai

∼
m∑
k=1

(−1)k+1λk,m,n

 ∑
1≤i1<···<ik≤n

pAi1∧···∧Aik

 ,

where λk,m,n is a constant. The three approximate inclusion-
exclusion methods differ in λk,m,n. We employ the method
by [2], which gives a good approximation for m ≥

√
n.

(More specifically, it gives the approximation to within a
multiplicative factor of 1± e−Ω(m/

√
n).)

This approximation gives a significant saving in computation
time. For example, if n = 30, the number of terms in the
exact inclusion-exclusion is 1,073,741,823. An approxima-
tion with m = 6 only involves 768,211 terms. Although the
theoretical error bound with m =

√
n is 36.7%, empirically

the error is within a few percent.

The approximate inclusion-exclusion gives a closed-form
expression of the success probability. Therefore, the result
can be also used by the sensitivity and Monte-Carlo analyses.

Numerical Computation of Success Probability

In a highly complicated model for which even the approx-
imate inclusion-exclusion methods are intractable, we can
approximate the probability by a numerical method. (This
is essentially a Monte-Carlo simulation, but we do not refer
it to as a Monte-Carlo simulation in this paper in order to
avoid the confusion with the Monte-Carlo analysis described
in Section 2.)

Intuitively, the numerical method repeats the simulation of a
mission n times, and records the number of the simulations
in which the goals is achieved, which is denoted by k. Then,
k/n gives an approximation of the success probability if n
is large enough. For each simulation, each Option block
randomly outputs a binary value, where 1 indicates success
and 0 indicates failure. The binary output is randomized
based on the specified reliability value. Likewise, each Asset
Evaluation block randomly generates a binary output based
on the probability of survival at the given point of time.
Regular logical operations are performed at operator blocks.
If a goal block results in 1, it was achieved. Figure 8
shows the convergence of the numerical method on two MSR
models.

5. DEMONSTRATION THROUGH A FICTIONAL
EXAMPLE

In order to give readers an intuitive understanding of the
capabilities of SMART, we first demonstrate on a relatively
small fictional example. We then present the analysis results
of an MSR model in the next section.

Senario

We consider a mission performed by the Rebels to defunc-
tionalize the Empire’s space station named Death Star, as
shown in Figure 9. The mission consists of two sub-missions.
The first sub-mission, performed in year 3001, is to discover
the weakness of Death Star. Achieving this goal requires two
capabilities: one is to obtain the technical information of the
space station, while the other is to transport the information

8

Figure 8. Numerical evaluation of the success capability. With increased number of samples (simulations), it converges to the
exact solution, typically within a few percent of error.

Figure 9. SMART model of the fictional mission of defunctionalizing Death Star.

to the Rebel’s base. The first capability is implemented
either by sending the Princess to steal the data on the way
of her diplomatic travel, or by sending a spy satellite to Death
Star. In the former case, the stolen plan must be transported
by a robot named R2D2. The weakness of Death Star is
discovered if R2D2 successfully delivers the plan or the spy
satellite successfully acquire technical information.

The second sub-mission, performed in the following year, is
to destroy Death Star. Achieving this goal also requires two
capabilities: attack and targeting. Attack is performed by a
Jedi Knight and/or a regular pilot. The regular pilot requires
a targeting computer in order to hit the target. The Jedi Knight
does not require the computer. If either of them successfully
hit the target, the attack is successful.

Since Death Star is a mechanical device, it is prone to failure.
It is modeled as an asset, whose expected life time is assumed
to be 100 years and k = 1 (constant failure rate). If the attack
is successful or Death Star fails by itself, the mission goal is
achieved.

Table 2 shows the reliability and cost in a fuctional monetary
unit used for the model.

Although this model is relatively simple, it contains all com-
ponents of SMART. It also contains two correlated redundan-
cies: one is the plan of Death Star stolen by the Princess and
technical info acquired by spy satellite; the other is attacks by
the Jedi knight and a regular pilot.

Assume a situation where the Rebel leader is faced to make
the decision of whether they should launch the regular pilot.
Since the reliability of the Jedi Knight is so high, the regular
pilot may seem unnecessary. However, since it is still possible
that the Jedi Knight fails, it would be valuable to have a
backup. We use SMART to help the Rebel leader make this
decision.

Probability of Success

Although the model may seem straightforward, computing
the mission success probability is not simple. Figure 10

9

Table 2. Parameter setting for the SMART model of a
fictional mission of defunctionalizing Death Star shown in
Figure 9. The cost is in a fictional monetary unit. The table

misses the reliability value for “DS functional in 3002” since
it is an asset and hence its probability is computed by the

Weibull distribution.

Option Abbrev. Reliability Cost
Steal DS plan SDSP 0.8 1000
Spy satellite SS 0.1 500

R2D2 R2D2 0.6 200
Jedi knight JK 0.95 2000

Regular pilot RP 0.6 100
Targeting computer TC 0.8 20

DS functional in 3002 DS3002 - -

Figure 10. The closed-form expression of the probability of
achieving the goal of mission shown in Figure 9 computed by
SMART.

shows the closed-form expression of the probability com-
puted by SMART. By substituting the atomic probabilities
with the values in Table 2, we obtain the probability of
success with and without the regular pilot, as shown in Table
3. The difference between the two options is only 1.2%. This
result makes sense because the reliability of the Jedi Knight
is so high that having a back up does not result in a significant
increase in the success probability. However, as we show in
the next subsection, it does greatly affect sensitivity.

Sensitivity

Table 4 shows the results of sensitivity analysis produced by
SMART, with and without the regular pilot. Intuitively, it
represents the increase in the probability of mission success
in percent as the reliability of each component is increased
by 1%. Another intuitive interpretation is that the sensitivity
is a difference in the probability of success between the case
where the reliability of the component is 0% and 100%.

In both scenarios, the R2D2 robot, which is in charge of
delivering Death Star’s plan, has the highest sensitivity. It
is mainly because the reliability of the spy satellite is so
low that R2D2 is almost a single point of failure. It has
higher sensitivity than “Steal DS plan” because the reliability
of R2D2 is relatively low. Also note that the sensitivity of
“Regular pilot” is very low. This can be explained by the very
high reliability of the Jedi Knight. A remarkable result is that

Table 3. Probability of successful defunctionalization of
Death Star

Option Prob. of mission success
Jedi and regular pilot 52.7%

Jedi only 51.5%

Table 4. Sensitivity analysis result on the Death Star
example. The value shown below means how much percent
the mission success probability increases by increasing the

reliability of each component by 1%.

Option/Asset Sensitivity
With RP No RP

Steal DS plan 0.510 0.498
Spy Satellite 0.492 0.479

R2D2 0.681 0.664
Jedi Knight 0.269 0.516

Regular pilot 0.021 N/A
Targeting computer 0.015 0

Death Star functional in 3002 -0.487 -0.500

the sensitivity of “Death Star functional in 3002” is negative.
This is because the mission is successful if Death Star fails
by itself. Therefore, improvement in the reliability of Death
Star results in decreased mission success probability.

The sensitivity values do not change significantly the between
two options, except for the Jedi Knight. Without the regular
pilot, the sensitivity of the Jedi becomes significantly higher
since his failure almost immediately leads to the mission
failure (except for a rare case where Death Star fails by
itself). Since the reliability is typically uncertain, such a
high sensitivity is not desirable. Therefore, we conclude
that, although launching the regular pilot does not result in
the increase in nominal success probability, it does make the
mission more robust to the uncertainty in the reliability of the
Jedi Knight.

SMART can also compute the sensitivity of the expected
lifetime (or, more in general, the Weibull parameters) of an
asset to the mission success probability. In our example,
the sensitivity from the expected lifetime of Death Star to
the mission success probability is −9.54 × 10−5 per year.
This means that if the expected lifetime is extended by one
year, the success probability decreases by 0.00954%. The
sensitivity is very low since the expected lifetime is set to
be 100 years. Change in the expected lifetime causes only
a marginal change in the failure rate in the first two years.
It becomes greater if the expected lifetime is shorter. For
example, if the expected life time is 3 years, for example,
the sensitivity is 0.0556.

Monte Carlo Analysis

Finally, we perform a Monte-Carlo analysis using SMART.
As we described in Section 2, we use triangular distributions
for both reliability (probability of failure) and cost to generate
samples. We assume 50% and 10% uncertainty in the prob-
ability of failure and cost, respectively. Figure 11 shows the
results. Note that, even though the distributions of reliability
of all the mission components are symmetric, the resulting
distribution of the probability of success is not symmetric. It
has a longer tail towards the lower end. This is a typical result
in a system with relatively high nominal success probability.
The challenge is then how to improve the worst case. SMART
computes the 5th and 95th percentiles of the distribution for
a given architecture. These values can be used to bound the
confidence interval.

10

Table 5. Mission components, parameter settings, and the result of sensitivity analysis on the MSR model. Note that the
assumptions on reliability are artificial, hence the analysis results do not reflect the reality.

Sub-mission Capability/Asset Option Abbreviation Reliability Sensitivity
Single Cache Double Cache

SCR Launch/cruise Baseline LV/CR LV/CR1 0.99 0.811 0.866
EDL Baseline EDL EDL1 0.99 0.811 0.866

Mobility RTG-powered* RTG1 0.99 0.811 0.866
Solar-powered SOL1 0.99 0.811 0.866

Cache 1st cache* C11 0.99 0.811 0.054
2nd cache* C21 0.99 N/A 0.054

1st Cache (Asset) Available in 2026 CA11 0.942 0.853 0.058
2nd Cache (Asset) Available in 2026 CA21 0.942 N/A 0.058

SRL Launch/cruise Baseline LV/CR LV/CR2 0.99 0.811 0.866
EDL Baseline EDL EDL2 0.99 0.811 0.866

Mobility Fetch rover FR2 0.99 0.811 0.866
Mobile MAV* MM2 0.99 0.811 0.866

MAV Fixed MAV FM2 0.99 0.811 0.866
Mobilie MAV* MM2 0.99 0.811 0.866

OS Baseline OS OS2 0.99 0.811 0.866
SRO Launch/cruise Baseline LV/CR LV/CR3 0.99 0.811 0.866

Propulsion Chemical CHM3 0.99 0.811 0.866
SEP* SEP3 0.99 0.811 0.866

Orbiter (Asset) Alive in 2026 ORB2 0.992 0.810 0.865
OS Capture Baseline CAP3 0.99 0.811 0.866
Earth Entry EEV EEV3 0.99 0.811 0.866

PP Planetary protection PP at EEV PPEEV 0.99 0.811 0.866
PP at TEI PPTEI 0.99 0.811 0.866

Figure 14. Results of Monte-Carlo analysis on the MSR
mission example. The distribution of the mission success
probability is evaluated with single and double cache config-
urations. Note that this result does not reflect the reality due
to simplifying assumptions.

decision maker to compare the cost of putting another cache
container on SCR and the cost of technology development to
increase the reliability of EDL by 3.4%. We also note that the
increase in reliability of EDL, for example, does not reduce
sensitivity because the reduction in sensitivity only comes
from redundancy.

Integration with Detailed Component Models

Although SMART gives a focus on high-level trades, it also
has a capability to integrate detailed model of mission compo-
nents, as we explained in Section 2. In order to demonstrate
this capability, we developed models of the SRL rover and
the MAV in the SRL sub-mission, which are implemented
as callback functions. The functions take design parameters
as inputs and outputs reliability, cost, and mass, which are
passed to the corresponding Option blocks in a SMART
model.

SRL Rover Model—The SRL rover model predicts the surface
traverse performance of the SRL vehicle as a function of
design input parameters. While the model has over a hundred
inputs, a few of the most critical parameters are exposed to
SMART for mission-level analysis.

The most influential trade in this domain is the high-level
architecture of the SRL. In this example, three potential
architectures have been chosen to demonstrate the capability.
These architectures are Fetch-Solar (the baseline architecture
in the Planetary Decadal Survey [1]), MobileMAV-Solar [5],
and MobileMAV-RTG, a nuclear powered variant of Mobile-
MAV currently under study. Additional parameters exposed
to SMART include:

• Landing site latitude (strong influence on power/thermal)
• Launch year (which corresponds to a landing season)
• Rover mobility system design (number of wheels, type of
suspension)
• Use of Active solar panel cleaning technology
• Required drive distance (function of EDL accuracy and
cache placement)

The output of this model is a traverse distance profile as a
function of time. For a given drive distance, this can be used
to solve for a required rover lifetime. This lifetime is then
input to a Weibull distribution based on the lifetime data of
previous planetary landers/rovers to compute an estimate of
the reliability for the mission.

Figure 15 shows an example of analyses using this model.
It plots the mission success probability against the landing
site latitude for the three rover architectures. The latitude of
the landing site has significant impact on the survivability of
the rover, particularly when it is solor-powered. This result
can be used to nail down candidate landing sites given a
rover architecture, or to choose the rover architecture given

12

Figure 12. A SMART model of the MSR mission used for the demonstration. Each mission is organized as a Simulink
subsystem. Note that this model only captures the high-level architecture built for the demonstration of the SMART software,
and does not represent the real design of an MSR mission.

Figure 13. A SMART model of the Cache Rover mission, corresponding to the first box from the left in Figure 12. Note that
this model only captures the high-level architecture built for the demonstration of the SMART software, and does not represent
the real design of an MSR mission.

a landing site.

MAV Model—For the purposes of this example, a simplified
linear correlation between MAV mass and reliability was de-
rived. Mass was estimated using correlations from published
concept masses [6], [7], [8] and studies conducted at JPLs
concurrent engineering facility Team-X. The reliability was
estimated as follows:

• Assume solid-solid 2 stage system has reliability x (set x =
0.87)
• Additional stage decreases reliability by factor of 0.9

• Single redundancy double probability of failure
• Liquid system has 90% of reliability of solid system
• Gel system has 95% of reliability of solid system
• Hybrids are an average

The correlation between reliability and total wet mass was
then derived. This was done by assuming an architecture with
a static MAV on a lander and a basic fetch rover. The size of
the lander was estimated using a zeroth-order beam analysis.
The total wet mass was then estimated using a basic EDL
sizing tool based on data from MSL. The percentage increase
in mass can be used as a proxy for cost of the system.

13

Austin Nicholas received a B.S. degree
in Aerospace Engineering from Uni-
versity of Illinois at Urbana- Cham-
paign in 2011. He received an S.M. in
Aeronautics and Astronautics from the
Massachusetts Institute of Technology in
2013. He currently works for JPL in the
Pre-Project Systems Engineering group
of the Project Systems Engineering &
Formulation Section. His primary fo-

cus is developing concepts for various aspects of the Mars
Sample Return missions. At MIT, he worked on attitude and
cluster control for a formation-flight CubeSat mission using
electrospray propulsion and architecture exploration for low-
cost human missions to the lunar surface.

Farah Alibay received her Bachelors
and Masters degrees in Aerospace and
Aerothermal Engineering from the Uni-
versity of Cambridge in 2010. She
then received a PhD in Space Sys-
tems Engineering from the Department
of Aeronautics and Astronautics at the
Massachusetts Institute of Technology in
2014. Her primary research focused on
multi-vehicle architectures for planetary

exploration, both in terms of surface and orbital assets. She
is now a systems engineer in the in the mission concept
systems development group at JPL, where she works on small
spacecraft missions and early mission concepts for planetary
missions.

Joe Parrish holds Bachelor’s and Mas-
ter’s degrees in Aeronautics and Astro-
nautics from the Massachusetts Insti-
tute of Technology. He currently serves
as the Deputy Manager, Mars Program
Formulation Office at JPL. Prior to his
current assignment, he performed a va-
riety of roles relating to aerospace sys-
tem development, including serving as
NASAs Deputy Chief Technologist, Vice

President of Research & Development at Aurora Flight Sci-
ences Corp., President of Payload Systems Inc., and Program
Executive for Mars Sample Return, Mars Scouts, and the
Mars Science Laboratory in NASAs Science Mission Direc-
torate.

15

