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Abstract—This paper introduces a new trade analysis software
called the Space Mission Architecture and Risk Analysis Tool
(SMART). This tool supports a high-level system trade study
on a complex mission, such as a potential Mars Sample Return
(MSR) mission, in an intuitive and quantitative manner. In a
complex mission, a common approach to increase the proba-
bility of success is to have redundancy and prepare backups.
Quantitatively evaluating the utility of adding redundancy to a
system is important but not straightforward, particularly when
the failure of parallel subsystems are correlated. SMART offers
the unique capability of handling correlated redundancies and
accurately evaluating the probability of mission success as well
as its sensitivity to the reliability of mission components. It
can also perform Monte-Carlo analysis to find the confidence
interval of the success probability, total mission cost, and total
mass. Additionally, SMART provides a GUI interface based on
Matlab/Simulink that allows users to graphically define mission
architecture as well as the logical relationship between mission
components and outcomes. These analysis capabilities enable
to answer questions such as: “for a given upper bound on total
cost and mass, on which subsystem should we implement redun-
dancy to maximize the chance of mission success?”’ Although the
focus of SMART is high-level trade analysis, it also provides an
interface to detailed models of mission components, allowing to
perform an integrated analysis that covers from low-level details
to high-level architecture. The analysis capabilities are enabled
by our unique propositional logic-based approach. SMART
translates the graphical mission model to a propositional logic
representation through symbolic computation. We demonstrate
SMART’s analysis capabilities on a MSR model as well as a
model of a fictional mission.
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1. INTRODUCTION

As we push the frontier of space exploration, goals become
increasingly challenging, and systems required to achieve
the goals inevitably become highly complex. For example,
NASA’s Planetary Science Decadal Survey [1] in 2010 rec-
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ommends to take “the first critical steps toward returning
carefully selected samples from the surface of Mars.” The
goal of returning samples from Mars could be achieved by
three missions, as illustrated in Figure 1. The first is a
Sample Caching Rover (SCR) mission, which would collect
samples and cache them. The second is a Sample Retrieval
and Launch (SRL) mission, which would retrieve the cached
samples and launch them into a Mars orbit. Finally, the
third is a Sample Return Orbiter (SRO) mission, which would
bring the samples back from the Mars orbit to the Earth. It is
to be noted that SRL and SRO missions could be launched in
either order.

This mission architecture also poses a unique system engi-
neering challenge because this three-mission configuration
opens up a huge trade space. The challenge is not only due to
the increased complexity, but also to the existence of multiple
options to implement redundancy, such as carrying multiple
cache containers in the SCR mission. We need to address the
problem of optimally choosing the mission architecture that
maximizes the chance of achieving a challenging goal while
meeting various requirements such as cost and launch mass.

For this purpose, we developed a new trade analysis software
called the Space Mission Architecture and Risk Analysis
Tool (SMART), which supports a high-level system trade
analysis in an intuitive and quantitative manner. SMART
provides a GUI interface that allows users to graphically
define mission architectures as well as the logical relationship
between mission components and outcomes (e.g., if landing
is successful and the rover works properly, then samples
are collected). SMART translates the graphical model to a
propositional logic formula, which encodes the conditions for
success. It then uses the formula to perform various analyses
including the evaluation of mission success probability, sensi-
tivity analysis, Monte-Carlo analysis, and resource allocation
optimization. It also provides an interface to detailed models
of mission components, allowing an integrated analysis that
covers from low-level details to high-level architecture.

SMART’s GUI modeling tool is based on MATLAB/Simulink.
It provides custom Simulink blocks representing a mission, a
goal, an outcome, an asset and logical operators. A mission
(such as an MSR mission) is defined as a sequence of sub-

missions' (such as SCR, SRL, and SRO). A sub-mission
is defined as a set of capabilities, and each capability has
multiple implementation options (e.g., solar panel or RTG).
Users also define mission goals, such as returning a sample to
Earth. The condition for each goal is defined by connecting
the mission component blocks to the goal blocks through
logical operators. Outcome and asset blocks are used to
represent intermediate states of a mission. An outcome block

n order to avoid confusion, we define the term “sub-mission” to mean
a mission within a mission. However, whenever the meaning is clear, we
simply refer to it a mission.
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Figure 1. A concept chart of a Mars Sample Return mission.

represents a one-time event, such as the successful retrieval
of cached samples. An asset represents a thing or knowledge
that is over a certain extension of time, such as a relay orbiter.
This framework allows a rich and intuitive expression of a
complicated mission architecture.

SMART translates the graphical model into a propositional
logic representation. Each signal in the model internally
represents a logical proposition in the disjunctive normal
form (DNF). Each logical operator block performs symbolic
computation on the DNFs. As a result, the condition for
achieving a goal is derived as a logical expression in a closed-
form, where each primitive symbol represents the successful
operation of a mission component.

SMART provides a rich set of analysis capabilities by using
the propositional logic representation. For example, the
probability of achieving a goal is computed from the relia-
bility of mission components through the inclusion-exclusion
principle. The sensitivity from the reliability of a mission
component to the probability of achieving a goal is obtained
by computing the partial derivative. By representing the
reliability of each mission components as a function of a
resource (e.g., development cost), the resource allocation can
be optimized to maximize the mission success probability
with an upper bound on the total resource usage. SMART
also allows the primitive symbols to be substituted by detailed
component models, which represent the reliability, cost, and
mass as a function of design variables. Such an integration
enables quantitative analysis of the sensitivity from low-level
design variables to high-level goals.

The rest of the paper is organized as follows. In Section
2, we introduce the analyses capabilities of SMART using
an example. We then explain how to build a SMART
model in Section 3. Section 4 gives a detailed technical
description on the algorithms SMART uses. Readers may

skip this section without losing the scope. In Section 5, we
demonstrate SMART through a fictional mission to destroy
a space station named Death Star. Finally, in Section 6, we
demonstrate SMART through the MSR mission. We note that
the analysis results presented in this section are based on a
model with multiple simplifying assumptions, hence they do
not necessarily reflect the reality. The focus of this paper is
not to present the analysis results of an MSR mission, but to
demonstrate the analysis capabilities of SMART.

2. SMART’S ANALYSIS CAPABILITIES

In this section, we describe SMART’s analysis capabilities
using an example. Consider a simplified model of an SRL
mission, as shown in Figure 2. There are two caches of
samples left by a preceding SCR mission, but their acces-
sibility is uncertain. A fetch rover’s goal is to retrieve at
least one of them. Whether the rover works properly is
also uncertain. The rover’s reliability can be improved by
technical enhancements, but this comes at additional cost and
mass.

Note that this system has a redundancy. Since there are two
caches, a failure to retrieve one of them does not immediately
result in a mission failure. One of SMART’s unique capabil-
ities is to handle such a redundant system. We first explain
the challenge in analyzing a redundant system, namely the
correlated redundancy problem. We then explain SMART’s
three major analysis capabilities: risk analysis, sensitivity
analysis, and Monte-Carlo analysis.

Correlated Redundancy Problem

Consider a redundant system consisting of two parallel sub-
systems, A and B, whose failure occur independently. Let
pa and pp be their reliability. Then, the probability that both



fail can simply be calculated by the product of the failure
probabilities of the two subsystems: p_ar—5 = (1—pa)(1—
pp). The redundant system works if either of the subsystems
work. Therefore, the probability of success of the system is
simply given by:

pavB =1 —p-an-B
=1-(1-pa)(l—pB)
=PA + DB — PAPB-

However, if there is correlated redundancy, this relationship
does not hold. In general terms, correlated redundancy is a
set of parallel subsystems whose failure is probabilistically
correlated. Correlated redundancy is very commonly ob-
served since, even though subsystem components are inde-
pendent, their failure is often dependent on common factors.
In particular, when the failure of subsystems are positively
correlated, the independence assumption results in significant
underestimation of the risk of failure.

The simplified SRL mission model in Figure 2 is an example
of a system with correlated redundancy. Let X be the event
where the rover is functional; let Y and Z be the events that
the first and second caches are accessible, respectively. We
assume that px, py, and pz are all 90%. (These numbers are
likely to be significantly underestimated, but our intention is
to make the example simple.)

As shown in Figure 2, the first cache is retrieved if it is
accessible and the rover is functional; since X and Y are
independent, the chance of successful retrieval of the first
cache is 0.9 x 0.9 = 0.81. Likewise, the chance of successful
retrieval of the second cache is 0.81. The mission goal is
achieved if either of the caches are retrieved. However, it is
not correct to compute the probability of achieving the goal
by 1 — (1 —0.81) x (1 —0.81) = 0.964. This is because the
two cache retrievals are not independent, since they share the
same factor, X. To compute the probability correctly, we use
the distributive law as follows:

PGoal = P(XAY)V(XAZ)

=PXA(YVZ)
=px{1—(1—-py)(1—pz)}

=px(py +pz —pyD2) )
= 0.891.

Note that this probability of success (89%) is significantly
smaller than the one assuming independence (96%). In
general, the benefit of redundancy decreases if the failure of
duplicated components are positively correlated. Correlated
redundancy is very commonly observed in systems where a
condition for achieving a goal is given by complex combina-
tions of many factors.

Risk Analysis

Given a model of a mission such as Figure 2, SMART
performs an exact computation of the probability of achieving
mission goals (i.e., the risk of failure to achieve the goals).
It first conducts a symbolic computation to derive a formula
such as (1) automatically from the given model. It then
substitutes the reliability values to obtain the probability of
success. The detailed computation process is described in
Section 4.
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Figure 2. A simple example of a mission that involves

correlated redundancy.

Sensitivity Analysis

Once we obtain a formula like (1), we can derive the sensitiv-
ity by differentiating it as follows:

8 oa
9 — py +pz ~ pypz = 0.99 2)
PX
8pGoal
= 1-— =0.09 3
. px(1—pz) 3)
apG’oal
IPGoal _ 1, (1~ py) = 0.09 4
o0, px (1 —py) 4)

For example, (2) means that, by increasing the reliability of
the fetch rover by 1%, then the probability of achieving the
goal increases by 0.99%. On the other hand, (3) means that,
by increasing the probability that the first cache is accessible
by 1%, the probability of achieving the goal increases only by
0.09%. This result agrees with intuition; since the fetch rover
is a single point of failure, its reliability has significant im-
pact. On the other hand, since the two caches are redundant,
its reliability is not very critical.

SMART can automatically perform such sensitivity analysis
even for a complex model.

Monte Carlo Analysis

In practice, the reliability of components (e.g., px, py, and
pz) are difficult to determine. Therefore, it would make
more sense to perform a Monte Carlo analysis to evaluate
the variation of the probability of achieving a goal due to the
uncertainty in reliability.

Once a closed formula like (1) is obtained, it is easy to
perform such a Monte-Carlo analysis. SMART randomly
samples the reliability of components from a prespecified
probability distribution. This analysis is useful to find a
confidence interval of the probability of achieving a goal.
SMART also computes the distribution of total cost and mass
of a mission through a Monte Carlo simulation.

Figure 3 shows sample input and output of the SMART
Monte Carlo analysis using the SRL rover example. The
reliability of each of the three components are sampled from
the triangular centered at 90% and ranges from 85% to 95%.
The distribution of the resulting probability of achieving the
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Figure 3. Monte-Carlo analysis of mission success probabil-
ity on the illustrative example in Figure 2.

goal is shown on the right. Note that this is not a probability
distribution; it is a probability distribution of probability,
which shows how much the probability of achieving a goal
changes with uncertainty in reliability.

Integration with Detailed Models

Assume that we have a detailed model of the fetch rover in
Figure 2. The model takes as inputs the design parameters of
the rover, denoted by di, - - - , dy, and outputs the reliability
as a function of the design parameters:

px = f(dy, -

By substituting this model to the logical formula such as 1,
the probability of mission success is obtained as a function of
the design parameters.

7dN)

Moreover, we can obtain the sensitivity from the design pa-
rameters to the probability of mission success. For example,
if the design parameters include the battery capacity of the
rover, then the sensitivity analysis computes how much the
probability of mission success increases by increasing the
battery capacity of the rover by 1 Wh. The sensitivity from
design parameters are obtained as follows:
apGoal o

_ 8pGoal af
8di 8pX 8dL’

where is given by (2). This sensitivity analysis
capability allows mission designers to compare the impact of
investments between different mission components.

9PGoal
Ipx

3. SMART MODEL

A SMART model is created by placing and connecting the
blocks defined in the SMART Block Library, as shown in
Figure 4. The Library provides various blocks that enable
rich expression of a complex mission.

A SMART model consists of three parts: mission architec-
ture, mission goals, and mission flow. The mission composi-
tion part of the model defines the architecture of the mission
in a hierarchical manner. The goals literately defines the
goals of the mission. The mission flow defines the logical
conditions to achieve the goals.

In this section, we explain the concepts behind a SMART
model, as well as each of the blocks in the Library. A concept
is introduced by an ifalic fonts, while a block is introduced in
a bold fonts. The list of the blocks are given in Table 1.
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Figure 4. The SMART Block Library

Mission composition

A space exploration mission typically has a hierarchical
architecture with several levels. For example, in a Mars
Sample Return mission, we identify four levels: mission, sub-
mission, capability, and option. These mission components
are defined by Mission, Sub-mission, Capability, Option,
and Option Params blocks.

o A mission consists of multiple sub-missions. For example,
a Mars Sample Return mission could consist of three sub-
missions: a sample collecting rover sub-mission, a sample
retrieval and launch (SRL) sub-mission, and a sample return
orbiter (SRO) sub-mission.

o A sub-mission must have a set of required capabilities. For
example, in order to complete an SRL sub-mission, a space-
craft must provide EDL (entry, descent, and landing), surface
mobility, sample retrieval, and sample launch capabilities.

o A capability can be implemented by multiple options. For
example, a surface mobility and sample retrieval capabilities
of an SRL sub-mission can be implemented by either a
mobile MAV (a rover that carries MAV) or a combination of
a fetch rover and an immobile MAV.

o Each option has a different probability of success (which
we simply call reliability) and requires a certain cost and
mass.

In the Option block, users specify the level of uncertainty in
failure rate, cost, and mass. The information on uncertainty
is used in the Monte Carlo analysis described in Section 2.
A triangular probability distribution is assumed in the Monte
Carlo analysis. For example, consider a component that is



Table 1. List of SMART blocks

Category Block Description
Architecture Mission These blocks define a hierarchical mission structure, as shown in Figure 5. A SMART
Sub-mission model must have one Mission block as it acts as the root of the model. The hierarchy
Capability between components are represented intuitively by connecting blocks.

Option Allows users to specify the reliability, mass, and cost of an option. Additionally, they
can also specify the level of uncertainty in reliability, mass, and cost by choosing the
maximum percentage error from the nominal values.

Option Params | Defines an option whose reliability, cost, and mass are given by a callback function,
which describes a detailed model of the technology option. This functionality of
SMART is described in Section 2.

Consequence Goal Represents a goal of the mission. A mission may have multiple goals. As we explain
in Section 2, SMART evaluates the probability of achieving the goals, as well as the
sensitivity of the probability to the reliability of mission components.

Failure Represents a failure mode of an mission. This block is algorithmically equivalent to
the Goal block, but SMART provides separate blocks for user’s convenience.

State Outcome Represents an outcome in a SMART model.
Asset Creation | Represents an event where asset was created. The two parameters of Weibull
distribution as well as the year of asset creation is specified in this block.
Asset Evaluation | Evaluates if an asset is functional at a specified point of time.
Operator And Represents logical operators.
Or
Not
Combination Represents a logical operator whose output is true if £ or more inputs out of /N are
true.
Setting Sim Settings Specifies evaluation method and running mode.

estimated to have a 100 kg mass, but with +10% uncertainty.
SMART uses a triangular distribution centered at 100 kg and
ranging from 90 kg to 110 kg for the mass of this component.
As for the reliability, we use the probability of failure as the
base of the percentage error. For example, if a component
has a 99% reliability with £10% uncertainty in failure rate,
then SMART assumes a distribution ranging from 98.9% to
99.1%.

Outcome and Asset

An outcome in SMART is an event that occurs at a single
point of time. It is typically used to represent intermediate
milestones of a mission. Examples of possible outcome in
an MSR mission includes a successful retrieval of a cache
or successful launch of OS to a Mars orbit. An outcome is
defined by an Qutcome block.

An asset is an object or information that is created in a
mission and used in a later mission. Examples include an
orbiter, a cache, OS, and the information of the terrain of
the landing site. SMART can model the decay of an asset.
Specifically, it represents the failure probability of an asset
over time as a Weibull distribution. A Weibull distribution is
specified by two parameters. Roughly speaking, one of the
parameters corresponds to the mean lifetime while the other
one tells us how fast the failure rate increase (or decreases)
over time. This lifetime models is presented in detail in the
next section. An asset is defined by Asset Creation and Asset
Evaluation blocks.

Mission Flow

Once mission components and goals are defined, the user
must define the logical condition for achieving the goals.
An example of a logical condition is as follows: a goal of

a Mars rover mission is achieved if EDL is successful and
the mobility system works. And, Or, Not and Combination
operator blocks are used to represent logical relationships.

Simulation Settings

A SMART model also has to have one Sim Settings block,
which is not connected to any other blocks.

This block allows users to choose from two evaluation meth-
ods: analytic and numeric. The analytic method is the
baseline. The details of the method are described in Section 4.
The numeric method is scalable to more complex models than
the analytic method, but provides limited analysis capability.

This block also allows users to specify the running mode.
Specifically, with the analytic mode, the users can choose to
perform a Monte-Carlo analysis to vary the reliability, cost,
and mass of each mission components with a given probabil-
ity distribution in order obtain the probability distribution of
the total cost, mass, and probability of achieving goals.

4. SMART ALGORITHMS

SMART takes as an input a mission model described in
Section 3, and performs the analyses described in Section
2. All the analysis capabilities rely upon the closed-form
expression of success probability such as (1). Obtaining
such a closed-form solution requires a symbolic computation,
which is non-trivial in a general case.

We overcome this challenge in two steps. First, we repre-
sent propositions in a unified format called the disjunctive
normal form (DNF). Second, we use the inclusion-exclusion
principle to obtain the closed-form expression of probability
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Figure 5. Hierarchical structure of a SMART mission model.

of success. The first two subsections of this section explain
these two steps.

Existence of assets requires modification to this approach
since propositional variables become dependent. We also de-
scribe a method to simplify DNF in order to save computation
time. Finally, we briefly describe the approximate methods
SMART employs when the model is too complex to use the
inclusion-exclusion principle.

DNF Representation

A SMART model includes multiple components, each of
which is represented by an Option block. For each compo-
nent, a propositional variable is assigned, which is true if it
works properly and false if it fails. In the example in Figure
2, X,Y, and Z are the propositional variables. Any outcome
and goal is represented as a proposition of these propositional
variables. For example, the outcome of "Cache 1 retrieved” is
X AY and the goal of ”Cache retrieved” is (X AY)V (X AZ),
or X A (Y Vv Z). Automatically obtaining these propositional
formula requires symbolic computation, which is non-trivial.

Our approach to perform symbolic computation is to rep-
resent all propositional formulae in DNF. A propositional
formula is in DNF if it is a disjunction of conjunctions of
propositional variables. Below is an example of a DNF
formula:

(ANBA-C)V(AANDANE)V(-BACAF)V ..

In the above example, (X AY) V (X A Z) is in DNF but
X AN (Y V Z)isnot.

In general, a proposition in DNF is represented as follows:

VA X

i€l jeJ;

Importantly, any logical formula can be represented in DNF.
SMART internally represents all formulae in DNF. As a
result, any logical operation can be performed by repeatedly
applying only three rules as follows:

AND:
VAX|IAIVAX =V AR.E
i€l jeJ; i€l jeJ; (i, EIxI' jEJUJ!,
OR:

VAX|IAVAX =V AX

iel jeJ; i€l jeJ; i€IUl’ j€J;

NOT:

\/ /\ Xig | A \/ /\ Xij
el jed; iel’ jeJ;
= \/ (le/\.../\ij).
Gr--gyr)€llier Ji

SMART employs an efficient matrix representation of a DNF
formula. Each column corresponds to each propositional
variables, while each row represents each conjunctive clause.
If a propositional variable is included in a conjunctive clause,
the corresponding entry is one, Otherwise it is zero. For
example, a DNF proposition:

AN(BAC)V(AN-BA-C)

is represented as:

100000
011000 ],
1000 1 1

where the six columns correspond to A, B, C, - A, =B, and
-, respectively.

Computation of Probability using Inclusion-Exclusion Prin-
ciple

By propagating DNF propositions to a goal, SMART obtains
a logical condition to achieve the goal. The next challenge is



obtaining the probability of success out of the logical formula
in the DNF form.

We use the well-known inclusion-exclusion principle to ob-
tain the probability. For example, consider a very simple case
where the condition to achieve a goal is given by X V Y.
Using the inclusion-exclusion principle, the probability of
achieving the goal is computed as follows:

PAVB = PA + DB — DAAB- 5)

This equation can be intuitively understood by Figure 6.

Then, going back to the fetch rover example in Figure 2, the
condition to achieve the goal of retrieving a cache in DNF is:

(XAY)V (X A Z).

By substituting A = X AY and B = X A Z to (5), we can
compute the probability of achieving the goal as follows:

D(XAY)V(XAZ) = PXAY T+ DXAZ — PXAYAZ

As explained earlier, the probability (reliability) of each
individual components, e.g., px, py, and pz, is specified by
the Option blocks. Since we assume that X, Y, and Z are
independent, px vy, Pxnrz, and pxay Az can be obtained by
multiplying their reliabilities. However, when there are assets
in a model, the independence assumption does not necessarily
hold. We will discuss the treatment of asset later in this
section.

When there are three clauses, the computation can be carried
out in the same manner, but the equation becomes much more
complex:

PAVBVC = PA+TDPB+DC—PAAB —PBAC —PCAATPAABAC-

In general, the inclusion-exclusion principle is written as:

n

Py, A= (FD)F >

k=1 1<iy < <ir<n

PAA-NAG,

(6)
Note that A; is a clause consisting of a conjunction of
propositional variables:

A; = /\ X;
J€J;

A conjunction of A; involves the union of the sets of the
propositional variables of all clauses:

A X

Je(J;Ud;r)

AiNAy =

Since we assume that atomic propositional variables are
independent, its probability can be computed simply by mul-
tiplying their reliabilities:

P, x = [ px, (7
jeJ

Note that, although we assume the independence of atomic
propositional variables, we do not assume the independence
of intermediate outcomes. Therefore, this framework allows
the correlated redundancy problem to be handled. Moreover,
the closed-loop formula can be used not only to evaluate
the probability but also to perform sensitivity analysis and
Monte-Carlo analysis very efficiently.

@00

Figure 6. Inclusion-Exclusion principle with two sets.
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Modeling of Asset Lifetime

Until now, we have assumed a SMART model without assets.
A model that includes asset requires a slightly different
treatment since it has a decaying reliability over time.

As was previously mentioned, we model the asset lifetime
using a Weibull distribution, which is specified by two pa-
rameters: A and k. A is a scale parameter that, very roughly
speaking, specifies the mean lifetime of an asset. (Strictly
speaking, the mean lifetime is given by A\I'(1 + 1/k)). k is
the shape parameter. If &£ > 1, the failure rate increases over
time, approximating the aging process of an asset; if £ = 1,
the failure rate is constant, and hence the distribution becomes
equivalent to the exponential distribution; if £ < 1, the failure
rate decreases over time.

A Weibull distribution is defined on ¢ > 0 and its cumulative
distribution function (CDF) is given by:

F(t)=1—e @N" (8)

Intuitively, the CDF gives the probability that the asset has
been failed at a given point of time. Figure 7 shows the
Weibull distributions with A = 1 and £ = 0.2,1, and 5.
As can be seen from the figure, when k& < 1, failure quickly
accumulates at the beginning but then slows down afterwards.
When k£ > 1, the failure rate is low at the beginning but
increases over time. Finally, when k£ = 1, the failure rate
is constant, and hence it is equivalent to the exponential
distribution.

Each Asset Evaluation block evaluates the probability that the
asset is functional at a given point of time using (8). An
propositional variable is assigned to each Asset Evaluation
block.

One issue is that, the probability that an asset is alive at a
given time is not independent from the probability that the



same asset is alive at another point of time. For example,
if a car is broken in 2020, the car is definitely broken in
2021. Therefore, the probabilities of asset survival cannot be
simply multiplied as in (7) when computing the probability
of a conjunctive clause in the inclusion-exclusion principle.

Let X; be an event that an asset is functional at time ¢. Then,
the following holds:

Vt < t/7 Xt/ - Xt.
Intuitively, this means that if an asset is alive at present, then
it has been alive at any point of time in the past.

From this implication, the following simple laws are ob-
tained. Fort < ¢/,

pr,/\Xt/ = pXt/

Pxin-X, = PX: — DX,

p“Xf,/\Xt/ = O
P-x,n-x, = 1 —px,

SMART uses these rules in place of (7) when involving
assets.

Simplifying DNF

An issue of using the DNF representation for all propositions
is that their size tends to become very large particularly
when repeatedly applying the not operations. Resulting DNF
formulae often contains redundant clauses. We mitigate
this issue by removing redundant clauses to simplify the
representation in two ways.

First, the empty clauses are removed. If a clause contains a
propositional variable and its own negation, i.e., X A =X, it
is empty. Such a clause can be removed from the DNF. For
example, an event that “rover works and does not work™ never
happens.

Second, the absorption law is used:
XVXAY)=X

For example, a statement “Alice is here, or both Alice and
Bob are here” is true if and only if just Alice is present.

SMART obtains the minimal DNF expression by eliminating
redundant rows through repeated application of these two
rules.

Approximate Inclusion-Exclusion methods

Even with the minimal DNF expression, the computation of
the inclusion-exclusion principle becomes intractable when
the model is highly complex. More specifically, if a DNF
formula has n conjunctive clauses, it requires adding (2" —
1) terms to compute the probability using the inclusion-
exclusion principle. The exponential growth in computational
complexity is the primary challenge of our approach.

When the model is too complex, we approximate the solu-
tion in two ways. The first one is to employ approximate
inclusion-exclusion methods[2], [3], [4], which are discussed
in this subsection. For more complicated models that cannot
be handled even by the approximate methods, we employ a
numerical approximation.

All the approximate inclusion-exclusion methods obtain ap-
proximates the probability by a linear combination of a subset
of the terms used by the exact inclusion-exclusion. More
specifically, with m < n, (6) is approximated by:

by, A ™~ Z(_l)k+1)‘k,mm, Z
k=1

1<i1 < <ip<n

DA A-NAG,

where \i . is a constant. The three approximate inclusion-
exclusion methods differ in Ay ,,, ,. We employ the method
by [2], which gives a good approximation for m > /n.
(More specifically, it gives the approximation to within a

multiplicative factor of 1 4+ ¢~ ®(m/vn) )

This approximation gives a significant saving in computation
time. For example, if n = 30, the number of terms in the
exact inclusion-exclusion is 1,073,741,823. An approxima-
tion with m = 6 only involves 768,211 terms. Although the
theoretical error bound with m = /n is 36.7%, empirically
the error is within a few percent.

The approximate inclusion-exclusion gives a closed-form
expression of the success probability. Therefore, the result
can be also used by the sensitivity and Monte-Carlo analyses.

Numerical Computation of Success Probability

In a highly complicated model for which even the approx-
imate inclusion-exclusion methods are intractable, we can
approximate the probability by a numerical method. (This
is essentially a Monte-Carlo simulation, but we do not refer
it to as a Monte-Carlo simulation in this paper in order to
avoid the confusion with the Monte-Carlo analysis described
in Section 2.)

Intuitively, the numerical method repeats the simulation of a
mission n times, and records the number of the simulations
in which the goals is achieved, which is denoted by k. Then,
k/n gives an approximation of the success probability if n
is large enough. For each simulation, each Option block
randomly outputs a binary value, where 1 indicates success
and O indicates failure. The binary output is randomized
based on the specified reliability value. Likewise, each Asset
Evaluation block randomly generates a binary output based
on the probability of survival at the given point of time.
Regular logical operations are performed at operator blocks.
If a goal block results in 1, it was achieved. Figure 8
shows the convergence of the numerical method on two MSR
models.

5. DEMONSTRATION THROUGH A FICTIONAL
EXAMPLE

In order to give readers an intuitive understanding of the
capabilities of SMART, we first demonstrate on a relatively
small fictional example. We then present the analysis results
of an MSR model in the next section.

Senario

We consider a mission performed by the Rebels to defunc-
tionalize the Empire’s space station named Death Star, as
shown in Figure 9. The mission consists of two sub-missions.
The first sub-mission, performed in year 3001, is to discover
the weakness of Death Star. Achieving this goal requires two
capabilities: one is to obtain the technical information of the
space station, while the other is to transport the information
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Figure 8. Numerical evaluation of the success capability. With increased number of samples (simulations), it converges to the

exact solution, typically within a few percent of error.
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Figure 9. SMART model of the fictional mission of defunctionalizing Death Star.

to the Rebel’s base. The first capability is implemented
either by sending the Princess to steal the data on the way
of her diplomatic travel, or by sending a spy satellite to Death
Star. In the former case, the stolen plan must be transported
by a robot named R2D2. The weakness of Death Star is
discovered if R2D2 successfully delivers the plan or the spy
satellite successfully acquire technical information.

The second sub-mission, performed in the following year, is
to destroy Death Star. Achieving this goal also requires two
capabilities: attack and targeting. Attack is performed by a
Jedi Knight and/or a regular pilot. The regular pilot requires
a targeting computer in order to hit the target. The Jedi Knight
does not require the computer. If either of them successfully
hit the target, the attack is successful.

Since Death Star is a mechanical device, it is prone to failure.
It is modeled as an asset, whose expected life time is assumed
to be 100 years and k = 1 (constant failure rate). If the attack
is successful or Death Star fails by itself, the mission goal is
achieved.

Table 2 shows the reliability and cost in a fuctional monetary
unit used for the model.

Although this model is relatively simple, it contains all com-
ponents of SMART. It also contains two correlated redundan-
cies: one is the plan of Death Star stolen by the Princess and
technical info acquired by spy satellite; the other is attacks by
the Jedi knight and a regular pilot.

Assume a situation where the Rebel leader is faced to make
the decision of whether they should launch the regular pilot.
Since the reliability of the Jedi Knight is so high, the regular
pilot may seem unnecessary. However, since it is still possible
that the Jedi Knight fails, it would be valuable to have a
backup. We use SMART to help the Rebel leader make this
decision.

Probability of Success

Although the model may seem straightforward, computing
the mission success probability is not simple. Figure 10



Table 2. Parameter setting for the SMART model of a
fictional mission of defunctionalizing Death Star shown in
Figure 9. The cost is in a fictional monetary unit. The table

misses the reliability value for “DS functional in 3002” since
it is an asset and hence its probability is computed by the
Weibull distribution.

Option Abbrev. | Reliability | Cost

Steal DS plan SDSP 0.8 1000
Spy satellite SS 0.1 500
R2D2 R2D2 0.6 200

Jedi knight JK 0.95 2000
Regular pilot RP 0.6 100

Targeting computer TC 0.8 20
DS functional in 3002 | DS30p2 - -

(1-pD5_3002) + pRZDZ¥pSDSP*pDS_3002%pJK + pSSxpDS_-
3002%pJK + pTC*¥pRP*pRZDZxp3D3P*pDS_3002 + pTC*pRP*
p33xp0S5_3002 - (1-pDS_3002) - pSS*pRZDZ*p3DSP*pDS_
3002xpJK - pTC*pRP*pRZDZxpS0SPxp0S_3002%pJK - pTCx
PRP#pSExpR20Z%p305P%p0S _3002%pJK - pTC*pRP*p3S#pRZ
02%p303P*p0S_3002%pJK - pTC*pRP#p3S*p0S_3002%pJK -
pTCHpRP*xpSS#pR207#pSDSP#p0S 3002 + pTC*pRP*pSS*eR
202xps0SPxpD5_3002%pJK + pTC*pRP*pSE%pR2ZDZ%pSDEP*p
03_3002#%pJK + pTCxpRP*p33%pR2D24p30SP*xplS_3002%pJK
+ pTCxpRP*p3SxpRZ0Z2%pSOSPxp0S S0072%pJK - pTCxpRP%
pSS*pRZ0Z*pSDSP*pDS 3002#pJK[EDF ]

Figure 10. The closed-form expression of the probability of
achieving the goal of mission shown in Figure 9 computed by
SMART.

shows the closed-form expression of the probability com-
puted by SMART. By substituting the atomic probabilities
with the values in Table 2, we obtain the probability of
success with and without the regular pilot, as shown in Table
3. The difference between the two options is only 1.2%. This
result makes sense because the reliability of the Jedi Knight
is so high that having a back up does not result in a significant
increase in the success probability. However, as we show in
the next subsection, it does greatly affect sensitivity.

Sensitivity

Table 4 shows the results of sensitivity analysis produced by
SMART, with and without the regular pilot. Intuitively, it
represents the increase in the probability of mission success
in percent as the reliability of each component is increased
by 1%. Another intuitive interpretation is that the sensitivity
is a difference in the probability of success between the case
where the reliability of the component is 0% and 100%.

In both scenarios, the R2D2 robot, which is in charge of
delivering Death Star’s plan, has the highest sensitivity. It
is mainly because the reliability of the spy satellite is so
low that R2D2 is almost a single point of failure. It has
higher sensitivity than “Steal DS plan” because the reliability
of R2D2 is relatively low. Also note that the sensitivity of
“Regular pilot” is very low. This can be explained by the very
high reliability of the Jedi Knight. A remarkable result is that

Table 3. Probability of successful defunctionalization of

Death Star
Option Prob. of mission success
Jedi and regular pilot 52.7%
Jedi only 51.5%
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Table 4. Sensitivity analysis result on the Death Star
example. The value shown below means how much percent
the mission success probability increases by increasing the

reliability of each component by 1%.

Option/Asset Sensitivity

With RP | No RP

Steal DS plan 0.510 0.498

Spy Satellite 0.492 0.479

R2D2 0.681 0.664

Jedi Knight 0.269 0.516

Regular pilot 0.021 N/A

Targeting computer 0.015 0

Death Star functional in 3002 | -0.487 | -0.500

the sensitivity of “Death Star functional in 3002” is negative.
This is because the mission is successful if Death Star fails
by itself. Therefore, improvement in the reliability of Death
Star results in decreased mission success probability.

The sensitivity values do not change significantly the between
two options, except for the Jedi Knight. Without the regular
pilot, the sensitivity of the Jedi becomes significantly higher
since his failure almost immediately leads to the mission
failure (except for a rare case where Death Star fails by
itself). Since the reliability is typically uncertain, such a
high sensitivity is not desirable. Therefore, we conclude
that, although launching the regular pilot does not result in
the increase in nominal success probability, it does make the
mission more robust to the uncertainty in the reliability of the
Jedi Knight.

SMART can also compute the sensitivity of the expected
lifetime (or, more in general, the Weibull parameters) of an
asset to the mission success probability. In our example,
the sensitivity from the expected lifetime of Death Star to
the mission success probability is —9.54 x 107> per year.
This means that if the expected lifetime is extended by one
year, the success probability decreases by 0.00954%. The
sensitivity is very low since the expected lifetime is set to
be 100 years. Change in the expected lifetime causes only
a marginal change in the failure rate in the first two years.
It becomes greater if the expected lifetime is shorter. For
example, if the expected life time is 3 years, for example,
the sensitivity is 0.0556.

Monte Carlo Analysis

Finally, we perform a Monte-Carlo analysis using SMART.
As we described in Section 2, we use triangular distributions
for both reliability (probability of failure) and cost to generate
samples. We assume 50% and 10% uncertainty in the prob-
ability of failure and cost, respectively. Figure 11 shows the
results. Note that, even though the distributions of reliability
of all the mission components are symmetric, the resulting
distribution of the probability of success is not symmetric. It
has a longer tail towards the lower end. This is a typical result
in a system with relatively high nominal success probability.
The challenge is then how to improve the worst case. SMART
computes the 5th and 95th percentiles of the distribution for
a given architecture. These values can be used to bound the
confidence interval.
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Figure 11. Results of Monte-Carlo analysis on the cost and
the probability of success of the fictional mission shown in
Figure 9. Red, yellow, and blue vertical lines represent the Sth
percentile,the median, and the 95th percentile, respectively.

6. DEMONSTRATION ON THE MSR MISSION

In this section, we demonstrate the analysis capabilities of
SMART on a future MSR mission scenario. Although the
model simplifies many aspects of MSR, it is still significantly
more complex than the fictional example presented in the
last section. Figure 12 shows the high-level view of the
model, where each sub-mission is organized in a box. For
example, Figure 13 shows the content of the box representing
the proposed SCR mission. We assume that the SCR, SRO,
and SRL sub-missions would be launched in 2020, 2024,
and 2026, respectively. We note that the model does not
reflect a real MSR architecture. Nonetheless, it includes
all necessary components to demonstrate SMART, such as
correlated redundancies and assets.

The list of sub-missions, capabilities, and options are shown
in Table 5. Since the reliability of the components is
somewhat unknown, it is assumed to be 99% for all the
mission components in this analysis. This is a highly artificial
assumption but helps to make the results intuitive for readers.
In the SRO mission, once the orbiter is successfully inserted
to a Mars orbit, it is modeled as an asset with a 12 year
expected lifetime and £ = 2.5. In order to consider an
event where cache containers is lost, these are also treated as
assets once they are cached, with assumed 100-year expected
lifetime and k£ = 1.

The focus of this analysis is whether to implement redun-
dancy in the cache. More specifically, by allowing the sample
cache rover to carry two cache containers, the rover may fail
to cache one of them without failing the mission. Also, the
sample retrieval rover only has to retrieve one cache in order
to achieve the mission goal. We use SMART to evaluate the
benefit of implementing the redundancy.

Probability of Success

With the single cache configuration, the probability of mis-
sion success is 80.3%, while the double cache configuration
results in 85.8%. We discuss the implication of this result
later in this section. These numbers do not reflect the real
probability of a future MSR mission success, due to the
simplifying assumptions.

Sensitivity Analysis

The right two columns of Table 5 show the result of sensitiv-
ity analysis for single and double configurations, respectively.
Most entries have the same value because all the mission
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components are given the same reliability value except for
assets, whose probability of availability is computed from
Weibull distributions.

Note the significant change in the sensitivity of the first cache.
In the single cache configuration, it has a high sensitivity
because it is a single point of failure. However, in the double
cache configuration, the sensitivity reduces significantly since
its failure can be covered by the second cache. As in
the fictional example we presented in the last section, this
result shows that having redundancy not only increases the
probability of success but also decreases the sensitivity from
the uncertainty in reliability to the probability of success.

Also note that two EDLs would be performed in the mission
(one by SCR and the other by SRL). Their sensitivity is 0.811,
meaning that incrementing the reliability of each of them
by 1% will results in 0.811% increase in the probability of
mission success. If an investment to a technology increases
the chance of success of both EDLs by 1%, the mission
success probability is increased by 1.62%. Likewise, an
investment to a technology that increases the reliability of the
three launches, its benefit is tripled.

Monte-Carlo Analysis

Figure 14 shows the result of Monte-Carlo analysis on the
mission success probability with single and double cache
configurations. The reliability of each mission component is
sampled from a triangular distribution with 50% variation in
the probability of failure.

Note that the distribution becomes sharp in the double cache
configuration. This result reiterates our finding in the sensi-
tivity analysis: having redundancy decreases the sensitivity
to the uncertainty in reliability. The main contributing factor
for this change is the probability of the first cache being
accessible in 2026 (highlighted in red in Table 14). This
component has 5.8% failure rate, while all other components
have 1% failure rate. Also, it has the highest sensitivity in
the single cache configuration. As a result, in this particular
case, the uncertainty in its reliability accounts for a significant
portion of the uncertainty in the mission success probabil-
ity. Its significantly lower sensitivity in the double cache
configuration narrows the distribution of the mission success
probability.

In reality, all components have diverse probability of failure,
some of which might be lower than the first cache accessi-
bility. Therefore, in general, one cannot expect this level of
improvement in the uncertainty in mission success probabil-
ity just by implementing one redundancy. Nevertheless, this
example highlights the benefit of redundancy in a mission in
an intuitive manner.

Discussion

Our results shows that, with all the assumptions given in
Table 5, employing the double cache configuration not only
increase the probability of success by 5.5%, but it also
decreases the sensitivity to the uncertainty in the reliability of
cache. Reduction in sensitivity is particularly important for a
new technology such as a sample cache, since it typically has
higher uncertainty associated with it.

This result can also help to optimize the investment portfolio
when the mission budget is limited. For example, the same
5.5% increase in the probability of success can be achieved
by increasing the reliability of EDL by 3.4%. This allows the



Table 5. Mission components, parameter settings, and the result of sensitivity analysis on the MSR model. Note that the
assumptions on reliability are artificial, hence the analysis results do not reflect the reality.

Sub-mission Capability/Asset Option Abbreviation | Reliability Sensitivity
Single Cache | Double Cache
SCR Launch/cruise Baseline LV/CR LV/CR1 0.99 0.811 0.866
EDL Baseline EDL EDLI 0.99 0.811 0.866
Mobility RTG-powered* RTGI1 0.99 0.811 0.866
Solar-powered SOLI 0.99 0.811 0.866
Cache Ist cache* CI1 0.99 0.811 0.054
2nd cache* C21 0.99 N/A 0.054
Ist Cache (Asset) Available in 2026 CAIll 0.942 0.853 0.058
2nd Cache (Asset) | Available in 2026 CA21 0.942 N/A 0.058
SRL Launch/cruise Baseline LV/CR LV/CR2 0.99 0.811 0.866
EDL Baseline EDL EDL2 0.99 0.811 0.866
Mobility Fetch rover FR2 0.99 0.811 0.866
Mobile MAV* MM?2 0.99 0.811 0.866
MAV Fixed MAV FM2 0.99 0.811 0.866
Mobilie MAV* MM?2 0.99 0.811 0.866
oS Baseline OS 082 0.99 0.811 0.866
SRO Launch/cruise Baseline LV/CR LV/CR3 0.99 0.811 0.866
Propulsion Chemical CHM3 0.99 0.811 0.866
SEP* SEP3 0.99 0.811 0.866
Orbiter (Asset) Alive in 2026 ORB2 0.992 0.810 0.865
OS Capture Baseline CAP3 0.99 0.811 0.866
Earth Entry EEV EEV3 0.99 0.8T11 0.866
PP Planetary protection PP at EEV PPEEV 0.99 0.811 0.866
PP at TEI PPTEI 0.99 0.811 0.866
“ - SRL Rover Model—The SRL rover model predicts the surface
S percehtie: 76.6% 500 percentile: 84.6% traverse performance of the SRL vehicle as a function of
jml. Median: B0.4% jpl  Median: 85.8% design input parameters. While the model has over a hundred
95t percentile: 83.7% 95t percentile: 86.9% . .
inputs, a few of the most critical parameters are exposed to
SMART for mission-level analysis.
The most influential trade in this domain is the high-level
architecture of the SRL. In this example, three potential
§7Sro% 076 05 0% 034 5% 5% o9 17 o7 %5 o5 05 o8 o8 om om 09 architectures have been chosen to demonstrate the capability.
e e These architectures are Fetch-Solar (the baseline architecture
Figure 14. Results of Monte-Carlo analysis on the MSR  in the Planetary Decadal Survey [1]), MobileMAV-Solar [5],

mission example. The distribution of the mission success
probability is evaluated with single and double cache config-
urations. Note that this result does not reflect the reality due
to simplifying assumptions.

decision maker to compare the cost of putting another cache
container on SCR and the cost of technology development to
increase the reliability of EDL by 3.4%. We also note that the
increase in reliability of EDL, for example, does not reduce
sensitivity because the reduction in sensitivity only comes
from redundancy.

Integration with Detailed Component Models

Although SMART gives a focus on high-level trades, it also
has a capability to integrate detailed model of mission compo-
nents, as we explained in Section 2. In order to demonstrate
this capability, we developed models of the SRL rover and
the MAV in the SRL sub-mission, which are implemented
as callback functions. The functions take design parameters
as inputs and outputs reliability, cost, and mass, which are
passed to the corresponding Option blocks in a SMART
model.

and MobileMAV-RTG, a nuclear powered variant of Mobile-
MAV currently under study. Additional parameters exposed
to SMART include:

o Landing site latitude (strong influence on power/thermal)

o Launch year (which corresponds to a landing season)

« Rover mobility system design (number of wheels, type of
suspension)

o Use of Active solar panel cleaning technology

o Required drive distance (function of EDL accuracy and
cache placement)

The output of this model is a traverse distance profile as a
function of time. For a given drive distance, this can be used
to solve for a required rover lifetime. This lifetime is then
input to a Weibull distribution based on the lifetime data of
previous planetary landers/rovers to compute an estimate of
the reliability for the mission.

Figure 15 shows an example of analyses using this model.
It plots the mission success probability against the landing
site latitude for the three rover architectures. The latitude of
the landing site has significant impact on the survivability of
the rover, particularly when it is solor-powered. This result
can be used to nail down candidate landing sites given a
rover architecture, or to choose the rover architecture given
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Figure 12. A SMART model of the MSR mission used for the demonstration. Each mission is organized as a Simulink
subsystem. Note that this model only captures the high-level architecture built for the demonstration of the SMART software,
and does not represent the real design of an MSR mission.
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Figure 13. A SMART model of the Cache Rover mission, corresponding to the first box from the left in Figure 12. Note that
this model only captures the high-level architecture built for the demonstration of the SMART software, and does not represent
the real design of an MSR mission.

Single redundancy double probability of failure
Liquid system has 90% of reliability of solid system
Gel system has 95% of reliability of solid system
Hybrids are an average

a landing site.

MAV Model—For the purposes of this example, a simplified
linear correlation between MAV mass and reliability was de-
rived. Mass was estimated using correlations from published
concept masses [6], [7], [8] and studies conducted at JPLs  The correlation between reliability and total wet mass was
concurrent engineering facility Team-X. The reliability was  then derived. This was done by assuming an architecture with

estimated as follows: a static MAV on a lander and a basic fetch rover. The size of

the lander was estimated using a zeroth-order beam analysis.
o Assume solid-solid 2 stage system has reliability x (set x =  The total wet mass was then estimated using a basic EDL
0.87) sizing tool based on data from MSL. The percentage increase
« Additional stage decreases reliability by factor of 0.9 in mass can be used as a proxy for cost of the system.

13




Sample Return Lander - Option w/ params - Latitude v.s. Goal
T T T T

—+— Fetch-Solar 8
MobileMAV-Solar
—*— MobileMAV-RTG -

ok ! L L ! |
-10 0 10

Latitude

vibaaeasaeas

30 30

Figure 15. MSR mission success probability as a function of
the latitude of landing site, obtained from SMART integrated
with a detailed SRL rover model. Three rover architectures
are considered: a solar-powered fetch rover, a solor-powered
mobile MAV, and an RTG-powered mobile MAV. Note that
this result does not reflect the reality due to simplifying
assumptions.
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Figure 16. Correlation between the mission success proba-
bility and the percentage increase in mass of MAV, obtained
from SMART integrated with a MAV model. Note that
this result does not reflect the reality due to simplifying
assumptions.

This correlation is highly simplified and was developed to
provide a basic estimate that could be incorporated into
SMART to demonstrate its capabilities. Figure 16 shows an
output from SMART, which relates the probability of MSR
mission success and the percentage increase in mass of MAV.
Future work includes developing more rigorous mass models
and associated cost correlations.

7. CONCLUSIONS

We presented a newly developed trade analysis tool,
the Space Mission Architecture and Risk Analysis Tool
(SMART), which supports a high-level system trade study on
a complex mission. It offers the unique capability of han-
dling correlated redundancies and accurately evaluating the
probability of mission success as well as its sensitivity to the
reliability of mission components. It can be integrated with
detailed models of mission components. We demonstrated
SMART on a fictional mission to destroy Death Star, as well
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as a future MSR mission scenario.
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