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Abstract—Identifying and avoiding terrain hazards (e.g., soft soil
and pointy embedded rocks) are crucial for the safety of plan-
etary rovers. This paper presents a newly developed ground-
based Mars rover operation tool that mitigates risks from ter-
rain by automatically identifying hazards on the terrain, eval-
uating their risks, and suggesting operators safe paths options
that avoids potential risks while achieving specified goals. The
tool will bring benefits to rover operations by reducing oper-
ation cost, by reducing cognitive load of rover operators, by
preventing human errors, and most importantly, by significantly
reducing the risk of the loss of rovers.

The risk-aware rover operation tool is built upon two tech-
nologies. The first technology is a machine learning-based
terrain classification that is capable of identifying potential
hazards, such as pointy rocks and soft terrains, from images.
The second technology is a risk-aware path planner based on
rapidly-exploring random graph (RRG) and the A* search al-
gorithms, which is capable of avoiding hazards identified by the
terrain classifier with explicitly considering wheel placement.
We demonstrate the integrated capability of the proposed risk-
aware rover operation tool by using the images taken by the
Curiosity rover.
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1. INTRODUCTION
The greatest single source of risk for Mars rovers is terrain.
For example, the Spirit rover ended its mission because it got
stuck in a soft terrain as in the left picture in Figure 1. For
another example, the Mars Science Laboratory (MSL) rover
Curiosity has experienced unexpectedly high damage rate of
wheels, particularly on Sols 450-515. The right picture in
Figure 1 shows a puncture on a wheel. The MSL Wheel
Wear Tiger Team identified that the period of highest damage
accrual occurred when the rover was driving over angular,
embedded rocks; it also found that rocks on hard terrain are
more likely to cause damages on the wheels. Such terrain
hazards can only be identified visually; existing on-board
geometric hazard detection method cannot tell terrain type
and embeddedness of a rock. Currently, risks are managed by
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Figure 1. Left: MER rover Spirit’s wheel embedded in soft
soil. Right: a puncture on a wheel of MSL rover Curiosity.
As shown in this examples, major risks to planetary rovers
come from terrain.

a labor-intensive process in which rover operators carefully
examine the terrain and plan a path to avoid any potential
hazards. This poses a challenge, particularly for the operation
of an MSL-class rover, because, on one hand it must be very
risk-averse in order not to lose the precious rover, while on
the other hand it already requires a significant amount of labor
due to its complexity.

In order to overcome this challenge, we develop a ground-
based software tool, namely the Risk-aware Mars Rover Op-
eration Tool, which collaboratively works with rover planners
during operation to help detecting and avoiding risks more
efficiently and reliably. To achieve this objective, we identify
that the Tool must have following two capabilities:

• Vision-based terrain classification capability to reliably
identify terrain types as well as characteristics of rocks, such
as pointiness and embeddeness
• Risk-aware path planning capability to suggest safe paths
in consideration of terrain types, slopes, and positive and
negative obstacles.

We note that these capabilities can also be used for the future
enhancement of on-board autonomous navigation software in
order to enable Mars rovers to traverse more difficult terrain
types. This paper reports the successful development of the
two capabilities as well as the prototype of the Tool.

Figure 2 gives an overview of the Risk-aware Mars Rover
Operation Tool. The inputs to the Tool are raw camera images
and a digital elevation map (DEM). On the images, the terrain
classifier visually identifies terrain types and characteristics
(e.g., sand, bedrock, embedded pointy rock, etc.). From
the DEM, positive and negative obstacles are geometrically
identified. It is also used to generate a slope map, which
is used as a part of the cost function in the path planning.
Finally, the terrain types, the obstacles, and the cost map are
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pairs of panorama images using its cameras. These images
are used in two ways. First, the RPs collaborate with Surface
Properties Scientists (SPSs) to visually identify hazards in the
images. Second, the images are used to produce a digital
elevation map (DEM), a 3D reconstruction of the terrain,
through stereo image processing. The DEM is used by RPs
to identify obstacles.

RPs then plan a traverse path. A path consists of a sequence of
arcs and turns. An arc can be either a straight line or a curve.
Often a path is required to go through multiple waypoints to
perform scientific observations or to ensure safety. Figure 4
shows an example of a planned path projected on a DEM.

There are various safety requirements that must be respected
when planning a path. The rover must avoid driving over any
potential hazards to its wheels, particularly angular embedded
rocks. The rover has the ability to drive over large obstacles,
but in the interest of rover safety, rocks larger than 30cm are
avoided, and rocks larger than 10-15cm are usually avoided
as well. To protect the wheels, the amount of turning during
a drive is minimized and the rover is driven either forwards
or backwards to keep the number of turns low. The rover
planners also consider the slope of the terrain and keep within
the distance limits of the current navigation imagery.

In order to meet all the safety requirements, rover operation is
inevitably a labor-intensive process; in order to plan a path for
a sol, which is often 30 m - 70 m long, it typically takes three
people working for 8-10 hours. The new Risk-aware Rover
Operation Tool will bring benefits to Mars rover missions by
reducing operation cost, by reducing cognitive load of rover
operators, by preventing human errors, and most importantly,
by significantly reducing the risk of the loss of rovers.

3. TERRAIN TYPES
As shown in Figure 5, we identified the following five terrain
classes that need to be distinguished in order to operate a
rover safely: sand, bedrock, loose rock, embedded pointy
rock and embedded round rock.

These five categories encompass a majority of the terrain
seen during the rover drives. The embedded pointy rock
was the primary terrain during the period of highest damage
accrual on Curiositys wheels (Sol 450-515). This type of
rock cannot move as the rover drives over it, applying a
point load high enough to puncture the skin sections of the
wheels. The embedded round rock does not apply as high
of a point load, but can stress the grousers and cause crack
propagation. The loose rock, especially when sitting amongst
sand, can be pushed into the sand or out of the drive path by
the wheels when the rover drives over the rock, making it a
less hazardous terrain. When sitting on bedrock, the loose
rock cannot be pushed into the ground, which can induce
wheel damage, depending on the size and geometry of the
rock. The hardness of the bedrock can also induce stress
concentration cracking at the chevrons of the grousers. Sand
has been considered the most benign of the terrain types for
Curiosity, and testing proved that even the pressure of the
sand is not great enough to cause crack growth. On the
other hand, for MER-class rovers, sand can be the greatest
danger, as is evident from the fact that Spirit ended its mission
because it was immobilized by sand.

When planning a path for a Mars rover, one or multiple of
these terrain classes are carefully assessed to determine the

drive path. Therefore, the capability to classify these five
types of terrain is essential to achieve our project goal.

4. TERRAIN CLASSIFICATION
Overview

The role of the terrain classifier is to take an image as input,
and classify every pixel in the image into one of the five
categories defined above. Figure 7 shows sample outputs
from the classifier. In this project we use MSL NAVCAM
images; however, by retraining the classifier, the same system
can be applied to learn models for any form of image type,
including the ones from HAZCAM and MASTCAM, as well
as HiRISE imagery.

Training Data

Recall that our approach for training a reliable terrain classi-
fier is to learn from human experts using a machine learning
algorithm (which is described in detail in the next subsection).
The training data is a set of NAVCAM images from MSL
which were labeled manually using a web-based annotation
tool tailored for Martian imagery. A domain expert used the
labeling tool to label pixels with one of five terrain categories
defined in the previous subsection. In total a set of 66 images
were labeled by Co-I Steffy, who is a member of the MSL
Operations team as well as the MSL Wheel Wear Tiger Team.
In the Tiger Team, she has collaborated on a surface terrain
classification scheme for wheel hazards, the development of
a terrain-simulated wheel test track, and has been involved in
drive planning and MSL rover operation. Figure 6 shows a
subset of the training data.

Technical Approach

We formulated the task of terrain understanding as semantic
segmentation problem. To this end we train a random forest
classifier [2], [3] based on manually labeled training data
which then is used to predict the class label of every pixel
in an image and as such differentiates between various terrain
types in an image.

Feature Descriptors— The gray-scale intensity of a single
pixel in a NAVCAM image is not enough to classify it into
one of the five classes of interest. To overcome this limitation
each pixel is not only described by its own intensity but also
by features of its local surrounding. This provides texture
information and allows the system to capture statistical prop-
erties of the local context. Specifically we generate a set of
channels derived from the original NAVCAM images as basis
for feature extraction. Besides gray intensity we use image
gradients and range information, which was derived from the
NAVCAM stereo pair and is available as image product in
NASA’s planetary data system (PDS). From these channels a
variety of features can be extracted for describing a pixel of
interest: channel intensity, intensity at an x and y offset from
the pixel [6] and averages of rectangles at random positions
in the local context of the point interest. The classifier is
then able to learn thresholds on the evaluated responses of
these features or on the difference of features. In addition
we implemented a strategy from computational pathology [7]
which allows to generate Boolean responses by computing
only the relation between features [8]. This results in very
fast training of diverse trees which can improve the power
of an ensemble. The classifier described in the next section is
able to choose meaningful combinations of channels, features
and evaluation methods to predict the class of pixels.
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Figure 4. Example of a path planned for Curiosity on Sol 780.

Figure 5. The Five Terrain Types. Top: Sand, Loose Rock, Bedrock. Bottom: Angular Embedded Rock, Round Embedded
Rock.

Model Training—Random forests have a number of properties
which make them a suitable choice for this task: (i) They
can model non-linear interactions between features and hence
are able to construct complex models necessary for highly
accurate terrain classification. (ii) Random forests implicitly
perform feature selection and thus can deal with a large
number of statistical features while being robust against noisy
or non-informative variables. (iii) The ensemble structure
favors parallel training of the decision trees in a distributed
manner which allows handling of large amounts of training
data in a reasonable time frame. (iv) Random forests can not
only be learned but also tested in parallel which results in fast
execution speed. Besides graphical processing unit (GPU)
implementations [9], field-programmable gate array (FPGA)

implementations are already available for space exploration
[10] and hence make random forests an ideal choice for the
robotic exploration of Mars.

Specifically we train a random forest model comprising 50
binary decision trees. Each tree is learned from a bootstrap
[11] of the training data. At every split node the best feature
out of 500 randomly sampled features is chosen by maxi-
mized the information gain [?] over all possible thresholds
on a feature. The trees are grown until a predefined depth
of 9 and at each leaf node the class histogram of samples
reaching this node is stored in the model. During test time,
the final prediction is achieved by taking the average of the
approximated posteriors, represented as the class histograms
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hazardous rocks, as in the right two figures in Figure 7. In
such a situation, the existing path planner often fails to find
a feasible path because nearly the whole surface becomes
untraversable, as in Figure 3-(a). Therefore, we developed a
new path planning capability that explicitly considers wheel
placement, instead of dilating obstacles, as in Figure 3-(b).

The path planner performs planning in two steps, one of
which is off-line while the other is online. The first step is
to pre-compute graphs by using the rapidly-exploring ran-
dom graph (RRG) algorithm [5], a graph extension of the
celebrated rapidly-exploring random tree (RRT) algorithm. A
graph is a representation of safe transitions in a map, given a
set of acceptable terrain classes. Hence, we construct graphs
for all combinations of terrain classes. RRG is an incremental
algorithm, where in each iteration a randomly generated
node is added to a graph and obstacle-free arcs are added to
the node from its neighboring nodes. Figure 12 shows the
RRG algorithm extending a graph throughout a state space.
Although it is a randomized algorithm, the probability that the
shortest path between any given two locations are included
in the graph converges to one as the number of nodes goes
infinity. In practice, it is known that the convergence is very
quick even for a high-dimensional space. RRT, RRG and their
extensions are often used for practical applications such as
a ground vehicle for the DARPA Grand Challenge [12] and
micro aerial vehicles [13].

RRG adds a node to the graph only if there is an obstacle-free
arc from a nearby node. In a regular implementation, obstacle
freeness of an arc is checked by representing the rover as a
point in a space with dilated obstacles. In our implementa-
tion, as we discussed previously, instead of dilating obstacles,
we explicitly consider wheel placement. More specifically, as
shown in Figure 3-(b), for each arc, we consider two parallel
trajectories representing the left and right wheel tracks, and
check if both of them do not intersect with untraversable cells.

The second step of path planning is A* search, which is
performed on-line during the interaction with a user through
the GUI. A* search is a standard graph search algorithm
that is very frequently used for path planning. In our path
planner, after user makes choices about which terrain classes
to be avoided, the path planner loads the corresponding graph
generated in the previous step. Then, once a waypoint is
picked, the search algorithm runs on the graph to find the
path from the previous waypoint to the new waypoint that
minimizes a given cost function. The search is repeated for
each of the cost functions to produce multiple suggestions.

The algorithm does not require any assumption on the cost
function. For example, it can be a function of terrain types,
path length, number of turns, slope, or any combination of
them. Figure 13 shows optimal paths for two cost functions:
path length (shown in green) and a weighted sum of path
length and number of turns (shown in blue).

User Interface

The path planner works collaboratively with a rover planner
through the GUI shown in Figure 13. The followings are the
typical workflow to find the optimal path.

1. The user specifies which terrain classes must be avoided
by checking the boxes on the top left
2. The user specifies waypoints by clicking on the map
3. The path planner generates multiple path options that
achieve the waypoints while respecting constraints. The
property of each path (e.g., path length, number of arcs, and

Figure 14. Convergence of RRG. This graph shows the
length of the path shown in pink in Figure 12 as a function
of the number of RRG iterations. As the graph grows, shorter
paths become available. It is guaranteed that, as the number
of iterations goes to infinity, the probability that the shortest
path between two points is included in the graph converges to
one.

maximum tilt) is shown on the right.
4. The user checks the validity of the paths by flipping
through different views, such as terrain classes, DEM, slope
map, traversability map, and NAVCAM image overlay.
5. If the result is unsatisfactory, the user clears the result and
start over.
6. If a satisfactory path is obtained, the user export the result
to RSVP HyperDrive by clicking the button on the bottom
right.

Performance evaluation

Figure 12 visualizes the process of RRG exploring a map.
The graph is initialized with a single node at the initial
position of the rover and quickly grows to cover the feasible
state space. As can be seen in Figure 14, the best path in the
graph it quickly converges to the optimal solution. In our path
planner, we use graphs generated by 1000 iterations of RRG.
Computation time of a graph with 1000 nodes are typically
2-3 minutes. Remind that the graphs are pre-computed,
hence computation time is not critical. We also note that
the computation of RRG can be easily parallelized, although
we have not implemented parallel computing capability yet.
The average computation time of the A* search to find the
optimal path between two randomly chosen points was 1.41
seconds, with the standard deviation 0.73 seconds. This is
quick enough to allow collaborative interaction with users.
The algorithms are prototyped in Matlab. Computation time
is evaluated by a machine with Intel Xenon CPU clocked at
3.10 GHz with 16GB of RAM.

6. CONCLUSION
We presented the Risk-aware Mars Rover Operation Tool,
which is capable of 1) autonomously identifying hazardous
terrain and 2) suggesting safe paths that avoid the hazards.
The hazard detection capability was built upon a vision-
based terrain classifier using a machine learning algorithm,
Random Forest. The classifier was trained by a training
data set consisting of on-board images labeled by a human
expert. The trained classifier classifies each pixel of an image
into five terrain types: sand, loose rock, bedrock, embedded
pointy rock, and embedded round rock. The path planning
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capability was built on the rapidly-exploring random graph
(RRG) algorithm with an extension to explicitly consider
wheel placement. The resulting graph is used to generate
multiple path suggestions by running the A* algorithm mul-
tiple times with different objective functions. The developed
capabilities were demonstrated using the real data from the
MSL rover Curiosity.

ACKNOWLEDGMENTS
This research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.
We thank Nicholas Toole, Paolo Bellutta, Fred Calef, Matt
Heverly, Mihail Petkov, and Bob Deen for their help and
advice.

REFERENCES
[1] J. R. Wright, F. Hartman, S. Maxwell, B. Cooper, and

J. Yen, “Updates to the rover driving tools for curiosity,”
in Proceedings of the 8th International Conference on
System of Systems Engineering, May 2013, pp. 147–
152.

[2] Y. Amit and D. Geman, “Shape quantization and recog-
nition with randomized trees,” Neural Computation,
vol. 9, pp. 1545–1588, 1997.

[3] L. Breiman, “Random forests,” Machine learning,
vol. 45, no. 1, pp. 5–32, 2001.

[4] J. J. Biesiadecki and M. Maimone, “The mars explo-
ration rover surface mobility flight software: Driving
ambition,” in 2006 IEEE Aerospace Conference Pro-
ceedings, 2006.

[5] S. Karaman and E. Frazzoli, “Sampling-based algo-
rithms for optimal motion planning,” The International
Journal of Robotics, vol. 30, no. 7, 2011.

[6] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-
chio, R. Moore, A. Kipman, and A. Blake, “Real-
time human pose recognition in parts from single depth
images,” in 2011 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2011, pp. 1297–
1304.

[7] T. J. Fuchs and J. M. Buhmann, “Computational pathol-
ogy: Challenges and promises for tissue analysis,” Jour-
nal of Computerized Medical Imaging and Graphics,
vol. 35, no. 7, pp. 515–530, April 2011.

[8] T. J. Fuchs, P. J. Wild, H. Moch, and J. M. Buhmann,
“Computational pathology analysis of tissue microar-
rays predicts survival of renal clear cell carcinoma pa-
tients,” in Medical Image Computing and Computer-
Assisted Intervention - MICCAI 2008, ser. Lecture
Notes in Computer Science, D. Metaxas, L. Axel,
G. Fichtinger, and G. Szekely, Eds. Berlin, Heidelberg:
Springer-Verlag, 2008, vol. 5242, pp. 1–8.

[9] T. Sharp, “Implementing decision trees and forests on
a GPU,” Computer VisionECCV 2008, pp. 595–608,
2008.

[10] D. Thompson, A. Allwood, D. Bekker, N. Cabrol,
T. Fuchs, and K. Wagstaff, “Texturecam: Autonomous
image analysis for astrobiology survey,” in Lunar
and Planetary Institute Science Conference Abstracts,
vol. 43, 2012, p. 1659.

[11] B. Efron, “Bootstrap methods: Another look at the
jackknife,” The Annals of Statistics, vol. 7, no. 1, pp.
1–26, Jan. 1979, mathematical Reviews number (Math-
SciNet): MR515681; Zentralblatt MATH identifier:
0406.62024.

[12] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P.
How, “Motion planning for urban driving using rrt,” in
In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2008, pp. 1681–
1686.

[13] M. Achtelik, S. Weiss, M. Chli, and R. Siegwart,
“Path planning for motion dependent state estimation
on micro aerial vehicles,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on, May
2013, pp. 3926–3932.

BIOGRAPHY[

Masahiro Ono is a Research Technol-
ogist in the Robotic Controls and Esti-
mation Group. He is particularly inter-
ested in risk-sensitive planning/control
that enables unmanned probes to reli-
ably operate in highly uncertain environ-
ments. His technical expertise includes
optimization, path planning, robust and
optimal control, state estimation, and
automated planning and scheduling. Be-

fore joining JPL in 2013, he was an assistant professor
at Keio University. He earned Ph.D. and S.M. degrees
in Aeronautics and Astronautics as well as an S.M. degree
in Technology and Policy from MIT, and a B.S. degree in
Aeronautics and Astronautics from the University of Tokyo.

Thomas J. Fuchs is a Research Tech-
nologist in JPL’s computer vision group.
His research focuses on the development
of new ensemble methods and Bayesian
sampling techniques for large scale ma-
chine learning. His applications range
from space exploration and robotics to
computer vision and cancer research.
Thomas is PI and CoI for several big
data related research efforts at JPL. He

received his Ph.D. from ETH Zurich for his work in the Ma-
chine Learning and his MSc degree in Technical Mathematics
from the Technical University Graz.

Amanda Steffy is a Mission Opera-
tions Engineer in the Flight Systems En-
gineering Group. Amanda extensively
assessed the MSL wheel damage as a
member MSL Wheel Wear Tiger Team,
conducted a terrain analysis tailored to-
ward the wheel wear issue, and tested
wheel life on the Mars-weight mobility
vehicle. She currently works on the
MSL Engineering Operations Team as a

Mobility Chair and Systems Engineer assessing the health
and performance of MSL. She earned her B.S. degree in
Biomedical Engineering from Cornell University, and is cur-
rently working toward her M.S. in Aerospace Engineering at
UCLA.

9



Mark Maimone is a Navigation and
Machine Vision researcher at JPL. Mark
designed and developed the autonomous
vision and navigation software that lets
the MER and MSL Mars Rovers drive
themselves safely, and wrote ground
software that automated the analysis of
Mobility and arm operations on MER.
Mark is now a Rover Driver for Cu-
riosity, and he continues to develop and

enhance the onboard autonomous vision and navigation soft-
ware for the rovers. Mark earned his Ph.D. in Computer Sci-
ence at Carnegie Mellon University in 1996, and completed
a postdoc there in 1997 as Navigation and Software Lead for
the 1997 Atacama Desert Trek. At JPL since 1997, Mark
has also worked on the Long Range Science Rover, Plane-
tary Dexterous Manipulator, and Pioneer Vision System for
Chornobyl Inspection projects, delivering 3D vision systems
for autonomous robotic operations and mapping.

Jeng Yen is the Supervisor of the Robot
Operations Group at JPL. Joined JPL at
1998 as a member of technical staff, he
sucessfully developed rover models and
simulation methods used for MER sur-
face operation and Rover Analysis Mod-
eling and Simulation (ROAMS) software.
Started at 1987, He developed a class of
numerical integration algorithm for the
real-time driving simulator in the Uni-

versity of Iowa, later implemnted the numerical integration
to support the National Advanced Driving Simulator (NADS)
at the university’s research park. After graduating from the
Applied Math. program, he joined Comupter Adied Design
Software Inc. (CADSI), where he implemented and developed
new computational methods for the vehicle system design
and simulation. At 1993, he joined Army High Performance
Computing Research Center (AHPCRC) at the University of
Minnesota at Twin City. His research is focused on the com-
putational methods for highly oscillatory dynamic systems
in the next four years at the center. In the meantime, he
also served as a reserach faculty at the Automotive Research
Center of University of Michigan. From 1996-98, he led the
project to create a simulation of Ford automotive assembling
line. This project was awarded by Engineering Animation
Inc. (EAI) at Ames Iowa. At the same time, he also led
another project for modeling and simulation of Army’s track
vehciles at United Defense, LP in Minneapolis, Minnesota.

10


