Ground Data System Analysis Tools To Track Flight System
State Parameters for the Mars Science Laboratory (MSL)
and Beyond

Dan Allard' and Lloyd Deforrest?
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

Flight software parameters enable space mission operators fine-tuned control over flight
system configurations, enabling rapid and dynamic changes to ongoing science activities in a
much more flexible manner than can be accomplished with (otherwise broadly used)
configuration file based approaches. The Mars Science Laboratory (MSL), Curiosity, makes
extensive use of parameters to support complex, daily activities via commanded changes to
said parameters in memory. However, as the loss of Mars Global Surveyor (MGS) in 2006
demonstrated, flight system management by parameters brings with it risks, including the
possibility of losing track of the flight system configuration and the threat of invalid
command executions. To mitigate this risk a growing number of missions have funded
efforts to implement parameter tracking parameter state software tools and services
including MSL and the Soil Moisture Active Passive (SMAP) mission. This paper will
discuss the engineering challenges and resulting software architecture of MSL’s onboard
parameter state tracking software and discuss the road forward to make parameter
management tools suitable for use on multiple missions.

I. Introduction

he Mars Global Surveyor (MGS) spacecraft was lost in early November of 2006 following ten years of

successful operations. The root cause of the failure was found to be a flight software parameter change that had
corrupted two parameters at the same time. Both parameters manage behavior of the High Gain Antenna (HGA). !
The incorrect parameter change and resulting parameter corruption was not identified until loss of MGS, some five
months later. When a later flight command referenced the corrupted parameters, a complex, anomalous chain of
events occurred resulting in the HGA pointing away from the Earth, which exposed its batteries to the sun. This
caused the batteries to quickly overheat and drain. From that point on, the spacecraft was never contacted again.
The fact that such a corruption could linger unnoticed for five months ahead of the eventual spacecraft loss
highlighted a major discrepancy in the flight/ground systems in the area of flight state tracking, and in particular in
the area of in-memory flight system parameters.

In-memory flight system parameters are relied upon by flight software to configure and manage a wide range of
space vehicle behaviors. Understanding the state of these parameters is critical for flight mission operators to safely
manage science activities and engineering operations.

Flight system operators need to track parameter state for a variety of purposes. During standard daily operations,
when parameters are “set” onboard it is important to validate that the updated state is correct before continuing
science activities; otherwise there is a risk that systems and instruments will be commanded to an unsafe
configuration. During periods of transition, such as major flight software (FSW) upgrades, all of the mission flight
software parameter settings must be evaluated before the full transition can be completed. Another area of
parameter use is in the initialization of flight software testbeds, where science-planning scenarios are exercised.
This ensures the software testbed is in exactly the same state as the flight system for the science scenario test
execution. And of course a complete and correct understanding of state is critical during anomaly investigation.

On the MSL project, late in the preparations for launch, a need was identified to manage MSL’s growing
numbers of parameters in some sort of tool that would enable automated tracking and provide reports of onboard
parameter state. Three months prior to launch the project authorized development of the Parameter Management

"' MGSS Ground Software Engineer, Mission Control Systems, 4800 Oak Grove Drive, M/S: 301-480.
2 Technical Group Supervisor, Mission Control Systems, 4800 Oak Grove Drive, M/S: 301-480.
1
American Institute of Aeronautics and Astronautics

Toolkit (PMT) to satisfy this need. The resulting tool took the form of a centralized web service with a back-end
database, with the initial version deployed to MSL operations just ahead of the November 2011 launch and further
versions deployed for cruise and surface operations. Despite all of the challenges inherent in the MSL software
implementation, the PMT development team made every effort to provide as “multi-mission” a tool as possible, by
making use of proper abstraction layers and componentization. An adaptation has just been delivered for the Soil
Moisture Active Passive (SMAP) earth-orbiting mission, and future mission versions look likely.

This paper will discuss the Parameter Tracking problem in more detail, our approach to solving the parameter
management and tracking problem through development of the PMT, the use of PMT during the cruise and surface
phases of the MSL mission and will finish up with some conclusions about the future of the PMT.

II. Definitions

It is helpful to define a number of terms related to the problem of parameter tracking:

Term Definition

Parameter A collection of tools including a server application providing the functionality to track
Management mission parameters.

Toolkit (PMT)

Telemetry Data delivered from the spacecraft to the ground systems, in a variety of formats.
Channels, Refers to the sensor values sent down by the Flight Software (FSW). Each flight

Channelized Data

component’s sensor is allocated a “channel” with a unique ID, usually in the form of a
[stem]-[number]. The [stem] could be a letter representing a flight module or an
abbreviated flight module name, such as T-0001 or THRM-0001, respectively. Channel
data are collected by the FSW and packaged as packet payload for transport.

Event Record (EVR)

Event records are messages from the FSW indicating the occurrence of a certain event.
Events are identified by a unique (to the mission) event ID, which is defined in an EVR
dictionary. Event records are associated with a criticality level (e.g. ACTIVITY HI,
WARNING LO, FATAL, etc.) and may contain additional metadata to further describe
the event. Event records are collected by the FSW and are packaged as packet payload
for transport.

Data Product

Any collection of data generated onboard the spacecraft. Data products are “files” in the
FSW and may contain anything from channelized data to science data from specific
instruments. They are packaged as packet payload for transport and may be processed by
AMPCS or a tool downstream from AMPCS, depending on the packet contents.

Flight Software

System control and configuration values that reside in flight system memory. This refers

(FSW) Parameter both to values in “volatile” and “non-volatile” memory. FSW parameter values are
typically modified by uplinked commands.
MPCS The Mission data Processing and Control System, a new ground system developed in

support of MSL.

Spacecraft Event

The time that an event has occurred on the spacecraft.

Time (SCET)

Volatile Volatile memory, specifically the memory for parameter values.
Non Volatile Non-volatile memory for parameters.

Memory (NVM)

Context or Context
Revision

A PMT database structure that includes all of the information required to query all of the
parameter state at any given time where parameter samples have been collected. The two
terms will be used interchangeably.

Module A component of the flight software organized around a flight subsystem, e.g. Arm,
controlling the spacecraft arm behavior, Thermal, controlling spacecraft temperatures,
etc. Every parameter is associated with a single FSW module.

Group An organizational construct that encapsulates a subset of a FSW module’s parameters.

Group Copy A parameter index structure within a group.

Parameter Name A name of a parameter. Note that this is not the value of the parameter.

Snapshot A parameter state report of the most recent values as of a given SCET.

2
American Institute of Aeronautics and Astronautics

PMT Related SET Update a set of values in volatile parameter memory

Spacecraft
Commands
SETSAV Update a set of values in volatile memory and save updated values to
NVM
DMP Dump a file containing a sample of parameter state for a FSW

module or group.

SETSAVDMP As in SETSAV but complete with a dump file of the values changed.

III. Context for Development

The need for a new software application that manages MSL’s flight software parameters had been discussed for
several years prior to MSL launch, but was only green-lighted 3 months prior to launch. Many factors contributed to
the delay in the decision to begin implementation of PMT including pressure to finalize the launch version of the
flight software, availability of ground software engineers to work on such a tool and the late realization that such a
tool was even needed.

In preparation for the MSL mission launch, a team of developers was formed to implement the PMT service in
support of cruise and eventual surface operations. PMT originated with lessons learned from the Mars Exploration
Rover (MER) mission’s parameter tracking, which was largely performed by loading ground-identified parameter
state values into a spreadsheet tailored for tracking purposes. While MER tracked around 3,000 parameters, MSL
would track over 54,000 distinct parameters and would see a great deal more change activity than MER, and so
clearly a spreadsheet based solution would not be feasible. The development team built a database-backed web
service which would automatically collect and store parameter information following the completion of a data
downlink pass. This new service provided ‘“snapshots” of parameter values across different flight software
subsystems (also called modules), as well as parameter state histories.

The MSL implementation of PMT faced many engineering challenges. A primary issue was that by the time the
PMT implementation started, the flight software was years into development and largely “locked down” from
further changes. Detailed end-to-end engineering of the parameter tracking problem was not performed until the
PMT implementation began, so any issues or inconsistencies identified in the flight software arena had to be dealt
with by architectural workarounds that fell squarely on the PMT implementation. For example, parameter
dictionaries were developed for human readability as HTML web documents as opposed to machine readable
structures such as XML and so a good deal of work was required by the ground system engineers to identify the set
of parameters to track.

Approximately 18 months prior to launch, work was underway in earnest on a similar tool, called the Data
Management Toolkit (DMT). DMT is a Web-based tool that tracks the state of on-board spacecraft products,
determines if the product has been received on the ground and if not, re-requests the product for later transmission to
the ground. If the product is determined to be on the ground, DMT makes a request to the flight software for that
product’s deletion from the spacecraft’s product cache. The DMT accomplishes this task by ingesting data product
summary reports into a local database and then provides visualization of the data product’s state and tools to either
delete the product from the spacecraft’s product cache or re-request the product’s transmission to the ground. DMT
was developed in conjunction with MSL’s next generation command and telemetry management system, called the
Mission data Processing and Control System (MPCS), which for the first time at JPL, makes all of a mission’s
telemetry products (Channels, EVRs and Data Products) available through a set of well-defined database APIs. In
this way, DMT makes simple database queries to receive the latest, or earlier, data product summary reports.
When PMT was green lighted, it seemed that the DMT had a similar design to what the PMT needed and that PMT
could inherit significantly from the DMT work, whose launch version was completed 3 months prior to MSL’s
launch. One ongoing challenge to the PMT work was that the DMT was always considered much higher criticality,
and needed DMT improvements continuously trumped ongoing PMT development

Another challenge to developing the PMT at such a late stage in MSL’s lifecycle was the complete lack of
documented parameter management concept of operations, and design and interface specifications. Since the flight
system’s parameter management approach evolved at a quickened pace as time drew nearer to the launch date, very
little was documented to guide Ground Data System (GDS) engineers in the development of tools to handle MSL’s
large and exceedingly complex parameter situation. By the time the PMT development started it was far too late to
negotiate flight software changes that would lessen MSL’s parameter management complexity on the ground.

3
American Institute of Aeronautics and Astronautics

Implementation of the PMT began approximately 3 months prior to MSL launch at a fevered pace. The PMT
implementation and test team consisted of three half-time developers, most of which continued to support the DMT
after its initial release, concurrent with PMT development.

IV. Parameter Tracking Problem Space

To understand the considerations for the architecture of the service we need to review the problem space as a
whole. Following are key concerns that drive the PMT design:

A. About Flight System Configuration by In-Memory Parameters

Configuring flight system behavior involves more than simply commanding specific actions or even activities.
There are far too many individual flight system “control knobs” to command at once to the proper setting (using up
valuable activity time and uplink bandwidth), so flight systems are “pre-configured” to be in the right state for the
ongoing flight system activity.

One typical approach to spacecraft configuration is a table-driven approach, which involves specification of
configuration settings in an onboard persistent table structure such as a file. There may be multiple tables onboard
the spacecraft with a single table specified as “prime” so to speak, and the others ready to take over as prime via
ground commands. For example, Command Behavior Module (CBM) tables contain a collection of configuration
information defining and specifying uplink and downlink behavior (e.g. specification of data rates between the
lander and orbiters).

In contrast to the table-driven configuration approach, use of flight software parameters represents a more recent
trend to set and save configuration values by managing values in flight system memory. For example, the thermal
team, responsible for keeping the spacecraft within temperature tolerances, will set parameters to specify the “target
temperature” of thermal components to drive heating behavior. Typically, “live” parameters are in RAM (often
referred to as “volatile” memory). These RAM values can be modified by command sequences over the course of
daily activities. Persistent store is typically referred to as “Non Volatile Memory” or NVM. NVM parameter values
typically represent a “baseline” of parameter state. For a flight system with a sleep/wake cycle, as with MSL,
volatile parameter memory is instantiated from NVM upon vehicle wake-up. Another way to look at it, when the
spacecraft goes to sleep, Volatile memory disappears, and any changes to Volatile that are not made to NVM will
not be present on the next wakeup.

B. Parameter Tracking End Use Cases
There are a number of use cases for ground tracking parameter services:

1) Validating Commanded State - On any given day, the system operators needs to validate that parameters
are set to the correct values before proceeding with activities dependent upon those parameter settings.

2) Identifying Anomalous States — The system needs a method for identifying anomalous states.

3) Trending Parameter Changes Over Time — The system needs to provide a method to identify
expected/unexpected patterns of usage over long periods of time, including life-of-mission.

4) Testbed Instantiation — The system needs to enable instantiation of testbeds with parameter states at all
points of a mission, including over the course of operations, so as to properly simulate flight activities.

5) FSW Transition/“Toe-Dip” - The system needs to support transitions from one FSW version to another,
including a “toe-dip” step, where the spacecraft is commanded to wake up with the new version, downlink
a number of configuration states including all parameter values, and then transition back to the original
FSW version while engineers analyze the recently downlinked results ahead of a full FSW version
transition.

4
American Institute of Aeronautics and Astronautics

C. Defining and Identifying Parameters

FSW modules define parameters. Legacy missions tended to define parameters completely in exclusion from
each other, with no standards in terms of how values would be commanded or monitored. As missions like MER
began to take advantage of automated code generation, standards have been introduced, such as command
formatting (e.g. common command stem formats) and monitoring (e.g. common dump file formats of parameter
state changes). The MER-inherited MSL auto-code FSW generation includes the creation of a parameter dictionary,
albeit in HTML and CSV form for human readability rather than, say, XML. In contrast, the SMAP mission defined
parameters directly in XML and delivered a parameter dictionary in addition to the other core flight dictionaries
such as frame, packet and channel definition dictionaries.

Parameter organization and meta-data also varies across missions. MSL flight software organizes by the
following:

- Flight software modules (also called subsystems, e.g. Thermal, Power, Arm, etc.)

- Groups within a software module (e.g. Arm groups Frame, Stow, Fault Protection, etc.)

- Parameters in a group. Many of MSL’s modules are indexed, either numerically or by string, by a “group
copy”, such that a group of X parameters with Y group copies identifies X * Y distinct parameter values.

The following diagram is a screenshot of the HTML output of an MSL auto-coded parameter dictionary for the
group Monitor (MON) of the Battery Control Board (BCB) Module:

MON Parameter Group

Parameters specifying fault monitor configuration

There are 5 versions of this group, with the following enumerated indices (from FSW type
BebFaultMonitor; ILLEGAL;BCB_NUM_MONITORS):

batt_offline_at_boot_bch1, batt_offline_at_boot_bch2, batt_offline_imminent_bchl, batt_offline_imminent_bch2,
fail_to_communicate_with_both_bcbs

Parameter | Type lDefluh |L'nils I Range | Description
detection_enabled Bool (m TRUE |none [FALSE : TRUE Whether or not detection is enabled for this monitor
gbl/gbl_pub.h) |

— Bool (in | P S—— \ i
response_enabled gbl/gbl_pub.h) | »TRUE none [FALSE : TRUE |Whether or not response is enabled for this monitor

. l: ‘ y :

132 n shir !

error_persistence U3z 1 |none OXFFFFFFFF \Error count at which monitor becomes YELLOW

" y 1§ T o :
fault_persistence U3z 1 |none OXFFFFFFFF ?f:rmr count at which monitor becomes RED

Figure 1: A sample of an auto-coded FSW dictionary entry for the Battery Control Board (BCB) parameters.
The entry is for the Monitor group, responsible for detecting BCB errors. The 5 “versions” (or “group copies”)
refer to different components or properties of the BCB that are to be monitored. Listed are the group copy index
names, and the definitions of all the parameters associated with each index.

Expanding the group definition into a table shows that there is a distinct parameter value for each combination of
Parameter Name and Group Copy:

5
American Institute of Aeronautics and Astronautics

Group batt_offline_at_ | batt_offline_at | batt_offline batt_offline fail_to_
Copy boot_bcb1 boot_bcb_2 imminent_ imminent_ communicate

Param beb_1 beb_2 with_both_bcbs
Name
Detection enabled | False True True True False
Response enabled | False True True False False
Error persistence | 10 5 1 1 1
Fault persistence | 20 5 5 1 1

The given group would have a total of 20 parameter values, one for each pair of version (group copy) and
parameter, defined by the combination of each. For example, “batt_offline_at boot bcbl_detection enabled” is one
parameter value, and “batt_offline at boot bcb2 detection enabled” is another.

One key difference between MSL’s parameter definitions and SMAP’s is in how parameters are identified in the
dictionary and in the downlink stream. For MSL, parameters are defined by their meta-data, and the identifier has to
essentially be derived from a union of “module name + group copy + parameter name”. The identifier is not called
out explicitly in the dictionary. For SMAP, each parameter in the dictionary has a unique identifier, along with
some additional meta-data such as the module (which still features in the parameter identifier) and “operational
category”. Note that the MSL construct-an-identifier scheme would be the source of integration problems as will be
discussed under section V, Implementation, below.

D. Command and Control

Flight parameters are normally set in one of two ways: either as the default value for a given flight software
version/module, or else “commanded” to various states via a ground-commanded sequence execution. It is possible
that a given parameter is not modified at all from the default over the lifetime of a mission. This suggests, however,
that perhaps that parameter should not be a true “configurable” parameter in the first place.

MSL parameters can be commanded in a few specific ways:

- Values in Volatile memory can be “set” to a specific value with a SET command.

- Values in Volatile and NVM memory can be set with a SET_SAVE command.

- All of the parameters in a group or a module can be saved from Volatile to NVM by way of a

GROUP_SAVE and MODULE SAVE command.

One characteristic of MSL parameter changes is that changes can only be made to parameters in groups. It is not
possible to actually modify a single parameter in a module or group.

There are other commands associated with parameters that are associated only with monitoring, which will be
discussed in the next sub-section.

E. Parameter State Monitoring

To understand the challenges of parameter state monitoring, one must keep in mind that there is no way to have
100% assurance (or confidence) of any given onboard state value as of current Earth time “now”. It is important to
remember that, as with any other flight system state, parameter values are only “known” on the ground as of the
time of data receipt. At best any state knowledge is already at least as old as the delivery time from the remote asset
to the local GDS, and unless there is a continuous stream of reported onboard state samples being delivered by the
spacecraft, it is likely that state knowledge is quite a bit older than that. And since it isn’t feasible to downlink a
constant stream of parameter states, the knowledge of state “ages” over time. As parameter state knowledge grows
old, so does the risk from unexpected/unmonitored value changes increase.

Actual monitoring of parameter values and value changes can be accomplished in a number of different ways.
The most simple is to request a sampled “memory dump” of Volatile and/or NVM state, which itself can be
delivered via any of the available telemetry types (Channel, Event Record and Data Product). However the lion’s
share of parameter value samples are delivered via products.

6
American Institute of Aeronautics and Astronautics

The downside of the monitor-by-sample data approach to monitoring is that it utilizes a significant percentage of
both available onboard CPU activity time and downlink bandwidth. It uses activity time in the production and
downlink of dump files, and of course the dump files eat up valuable downlink. As it happens, MSL does not have
the tight constraints on downlink volume due to the high lander-to-orbiter data transfer rate that largely results from
the Adaptive Data Radio (ADR) utilized on the Mars Reconnaissance Orbiter (MRO). MSL has a bit more
flexibility on the choice of downlink as compared with legacy lander missions such as MER. Still, downlink
capacity remains a carefully monitored resource. Also, it is possible that a parameter dump may not be available to
the GDS due to data loss in transit.

There are other ways of tracking parameter changes besides monitor-via-dump-files. Value changes can be
inferred through validated sequence execution. When parameter change commands execute successfully (or not)
onboard the vehicle, a record of command execution is reported, typically in an EVR.

Besides file dump and EVR based parameter value state change tracking, the flight system provides a few more
ways that parameter evidence can be validated, if not identified outright. Checksums of parameter memory are
downlinked regularly, and can be used to validate whether or not parameter values across modules and groups have
changed. Command “set” counters can be used to identify missed command executions. While these “secondary”
sources of parameter change evidence may not be useful to actually identify parameter values, they can be used to
identify where known parameter values have been changed.

One significant MSL flight system discrepancy is the inability of flight software to downlink the NVM state
directly, despite the NVM being the information that is most important to track. Volatile-only updates only last until
the next sleep/wake cycle and are thus transient. MSL NVM state can be inferred in a couple of different ways. For
example, if there have been no changes to parameter state for a given module since the time the spacecraft woke up,
then a Volatile module dump will also represent the state of NVM. The same is the case if there are no Set
commands between a MODULE SAVE and a dump file, then the dump file state represents both Volatile and
NVM.

V. Early Design and Implementation

A. Requirements and Concepts

The PMT implementation team began work by sitting down with mission customers and reviewing use cases,
identifying requirements, and laying out the parameter identification and tracking interfaces. Early on it was
conceived that a “software service” with a back-end persistent store would best encapsulate the overall problem.

Key requirements on this software service identified early on included:

- Track all parameter values over the lifetime of the mission

- Track parameter evidence at the Module and Group/Group Copy level

- Track secondary sources of evidence such as checksums and counters

- Provide access to parameter data via command line tools as well as broadly accessible graphical user
interfaces (e.g. web interfaces)

- Can be used in a wide range of “venues” in support of testing, analysis and operations

- Be capable of “triggered” automated updates of the database on a pass-by-pass basis

- Provide a query of a “snapshot” of latest available known state, up to and including a snapshot of “all
known parameter state as of time X”

- Provide a query of a “history” of parameter updates over a time range

- Provide data in a variety of formats, ideally modifiable by end-users

- Can be used to initialize a testbed to a known parameter state

In support of these requirements, the PMT team identified a set of “information concepts” to represent the
different types of information the system would need to manage. Most of these concepts are eventually represented
as “information objects” by the software service. The following table lists the primary concepts:

Concept Description

Venue A means of organizing parameter data within the server. All parameter data tracked by
the service is associated with one Venue or another, and once associated with a Venue, is

7
American Institute of Aeronautics and Astronautics

distinct from any data in any other Venue. A server may support a single Venue, such as
the “Surface Operations Venue”, or may support N venues such as “testbed]1, testbed2...”

Dictionary A representation of the definition of parameters. The dictionary includes all the
information derived from the MSL auto-coded dictionary, including the parameter name,
module, group, group copies, units, description, default values, and ranges.

Evidence A specific source of parameter knowledge. For example, if the parameter values are
reported in a data product file, then the Evidence will be a “product”.

Trigger A representation of the act of automated data collection. A trigger may be a directive such
as “collect all the new parameter data found between time A and time B”.

Snapshot A latest-available-data view of parameter values. Snapshots can be filtered down to the
module, group, group copy and parameter levels, or may be queried for “latest available
state for all tracked parameters”.

History A view of parameter value changes over time, filtered in the same way as a Snapshot.

Template A means to format data.

The resultant design involves a set of tools built around a layered service and database architecture. A ReST
service layer fully encapsulates a back-end database. The following diagram depicts the components of the service
and the key exernal interfaces:

@

Telemetry

Parameter
State at time X

Parameter
Tracker
Database

Parameter Parameter
Dump Structure,
Products Definition, Default

Values

Parameter
Dictionaries

Parameter

Query for Service
parameter dump
products
MPCS PMT - Manage Venues
Database Report - Trigger data collection

| - Load dump products

Parameter
Reports (snapshots,
history, commands)

8
American Institute of Aeronautics and Astronautics

Figure 2: Component view of the architecture of the PMT. A centralized service encapsulates all interactions
with the persistent store. Administration tools manage the service and drive the data collection, and reporting
tools provide snapshot and history queries. The MPCS database and MPCS processed dump files provide the
prime source of parameter evidence.

In this architecture, the Parameter Service is the “hub” for all inbound and outbound information (thus, the PMT
should be considered to be compliant with a “Service Oriented Architecture” (SOA)). It completely encapsulates a
Parameter Tracker Database, which stores all service-related information. External tools include the administration
reporting scripts. The administration tool is used for everything related to service setup and data collection;
basically everything except for the queries of parameter data. Additional snapshot and history scripts are provided
as separate tools.

B. Application Design

As mentioned, the chosen architecture was a service model completely encapsulating a persistent store database.
In particular, the interface to the server was chosen to be Representational State Transfer (ReST), such that all
interactions with the server were HTTP GET and POST calls meeting the ReSTful specification. Essentially, to all
outside sources, the server would look just like any other ReST-ful web server.

One characteristic of the ReST is that information is provided as “resources”. Ideally, resources are nouns
identifying information. For example, a resource providing a snapshot of information might be called “Snapshot”,
as opposed to a resource that provides “GetSnapshot” and another “PublishSnapshot”. You would GET and POST
to the Snapshot resource instead.

Besides the intrinsic values of utilizing the ReST pattern, the ReST pattern itself has been seeing broadening use
across JPL mission systems and underlies communication interfaces across a growing number of mission tools.

As for the implementation language, Java was chosen for a few reasons. For one, all team members were
primarily Java developers, so there would not be an up-front cost in learning a new language. Another reason is the
availability of a broad suite of Java libraries, both core and 3™ party including a great deal of high quality open
source. Additionally, PMT developers were pulled in from other implementation tasks to meet the short
development timeframe, and had in hand a number of already implemented components including time support and
XML manipulation in particular.

To implement the web service layer, the team chose ReSTlet. This open source Java provides a framework for
running an application as a ReST server. With ReSTlet, certain classes are identified as providing ReST resources,
with the framework handling the translation of the input POST and GET into one or more accept() methods in the
class.

The server was implemented to provide the following ReST resources:

Resources POST Behavior GET Behavior
Venue Create a new Venue List available venues
Dictionary Load a new dictionary List available dictionaries or retrieve a dictionary
Evidence Load data evidence from a source file | List evidence sources files loaded to the server.
to the server
Trigger Kick off automated data collection | List history of triggers executed
according to the parameter specified in
the trigger.
Snapshot None Retrieve a snapshot of latest available parameter values
as of a specified input time
History None Retrieve a history of parameter updates from specified
time A to time B
Template Load a new template to the server Retrieve a list of templates from a server or retrieve a
single template from a server according to input
parameters

9

American Institute of Aeronautics and Astronautics

To manage persistent data, the team chose to utilize the “Hibernate” persistent data framework, rather than
interact with a database directly. Hibernate solves a problem of object-relational mapping, in that it allows an
application developer to implement persistence as “objects”, whereas the database representation is relational.

In Hibernate, a class represents each persistent data type, and each persistent class is specified in a persistence
definition file. Each class in the definition file will have at least one database table representing that object
information. Specifically, each “get” method of an object maps to a column in the table. For example, the object
type “Venue” has a a “getDescription()” method, therefore it will have a Description field in the database.

One benefit of the Hibernate is that it manages its own database schema. When properly configured and
executed, Hibernate automatically instantiates the entire schema from the persistence definition in persistence.xml.
Relations between objects are automatically handled in index-mapping tables, relating the unique index of each
object to the other. If the persistent object definitions are modified, the database tables are automatically updated to
reflect the changes.

Note that the persistent types line up fairly closely with the ReST resources, although what is persisted is not
necessarily what is being delivered by POSTs or returned from GETs. For example, when the user POSTs a
Trigger, this kicks off an automated data collection. But what is persisted is a record of the Trigger event.

Rather than pre-define how data would be displayed to the user, the team chose to take advantage of a template
engine called Velocity to transform raw queried data into useful user forms. Velocity is a lightweight templating
language that allows for specification of data transforms via a template in a scripted, programmable manner. Basic
Velocity templates provided have included HTML and Comma Separated Value (CSV) with a range of selected data
columns.

C. Query Design

A key feature of PMT is its ability to query parameter states from any point in time. To understand the context
for query design we need to take a look at the patterns of data retrieval as well as the desired query results. The
following diagram shows how groupings of parameter value samples arrive over time forming a “sparse” matrix of
results:

Module Parameter

. - Cross-Module
Evidence (Dump File,

Group Copy

Evidence Snapshot
Checksum, etc).
(—=
| | | | ,, | | | |
[=y ! [
- | | | |
| | | | |
L = |
o ey (g
| |
= |
— |
L |
= |
SCET
>
Snapshot times
I:I A parameter value over time

Figure 3: A conceptual view showing how samples of collected evidence arrive in structures of modules and
groups, and how snapshots may be taken at various times over the time range of collected data. The reported
data in each snapshot needs to be the most recent samples of evidence on or before the snapshot time. As the

10
American Institute of Aeronautics and Astronautics

above suggest, actual data evidence in a snapshot may be derived from a large number of evidence samples
across the whole parameter data set.

A History query of the data above is relatively straightforward to implement; essentially, query all results for
parameter changes from time A to time B. However, a query for a Snapshot of data, especially a high performance
snapshot over a large range of data, is more complex. To enable a high performance snapshot query, the team
designed a “revision” based approach, structured around the format of the parameter dictionary.

With the revision based approach, all the evidence data received at a certain time is associated with a “context
revision”, which is itself a type of object saved in the database. The context revision contains all information related
to the new evidence, but also information from the previous context revisions as well. The logic works like this:

- When new evidence is received, generate a new context revision

- Generate module, group, group copy and parameter revisions for all new data received and associated with
the new context revision

- Query for and relate any module revisions from the previous context revision and associate with the new
context revision

The following diagram depicts how the context, module, group, group copy, and parameter revision structure
looks:

.

Context

L Parameter
Revision

~———
)
Parameter

|

——

Parameter

|

Parameter

Figure 4: Shows the relationships between a Context Revision and the module, group, group copy and
parameter data associated with it. Note that each box represents a revision of the shown type.

As the above diagram shows, a single “context” is related to multiple modules (in fact, all of the modules)
including the modules related to groups, groups to group copies, and so on, all at one specific time.

To manage the relationships in the database, the Hibernate automatically instantiates “reference tables”, whose
sole purpose is to manage the relationships between separate objects. For example, a Context-Modules table
provides object relationships between a Context Revision and associated Module Revisions where the columns
include the unique ID (typically auto-generated) of the Context Revision and the ID of the associated Module
Revisions. The following diagram shows the full set of tables thus generated in support of parameter tracking:

11
American Institute of Aeronautics and Astronautics

ID 1123

Context
Revisions

ID 1123

ID 4532

ID 4532... Module
Revisions

Group-
Group Copies

Group
Revisions

AN

Module-
Groups

Group
Copy
Revisions

~N

Group
Copy-
Parameters

N

Parameter
Revisions

Figure 5: Relationship between the Revision tables in the database. Relationships between revision types (e.g.
context and module revisions) are managed in mapping tables, enabling n...n mappings between those objects.
Mapping tables are managed automatically by Hibernate according to tags in-line with the object definition code
for those data types. A side effect is that tracking a single parameter update requires an update to 10 separate

tables in the database.

The following diagram shows an example of typical revision management:

12

American Institute of Aeronautics and Astronautics

llliiiilll' lIHHIHHHIII |1|HHIHHHIII

Module 1

Group Copy

Parameter

Module 1

Group

Group Copy

Parameter

Parameter

Parameter

Module 2

Group

Group Copy

Parameter

Parameter Parameter

SCET
Time

oActual Revision o Rewvision Pointer to past evidence

Figure 6: Shows how revisions consist of “actual” revision data as well as pointers back to earlier actual
evidence.

\ 4

The above example shows that evidence is tracked as part of Context 1, including a Module, with its associated
Group and Parameters. A Context 2 was created for a Module 2 worth of data, however since there is already a
Module 1 in Context 1, that Module 1 revision is associated with Context 2. Furthermore when a Context 3 is
provided for Module 1, a back-pointer is created for Module 2 back to the information from Context 2.

The reason for all of this pointer tracking is query performance. With this data architecture, a snapshot query
can be executed for any point in time, including between revisions, and all the server needs to do is find the most
recent context revision before the snapshot time. That context revision will contain both data from that revision, and
a set of pointers back to the most recent context revision for every other available parameter value.

Implementation of the History query was much more straightforward; that was a simple matter of querying for
all the context revisions from time A to time B.

The revision architecture enabled the software to meet performance requirements, with snapshot queries taking
only a few seconds in the worst case, even for queries of all parameters in the dictionary. However, the architecture
proved very problematic in other areas, and issues associated with the revision approach would lead to later
unanticipated challenges, as will be discussed in Section VII.

D. Graphical User Interfaces
Besides some straightforward command line tools to POST and GET data to and from the server, some simple

web user interfaces were implemented for ease of browsing the data set. The following is a screenshot of the web
user “portal” interface for the Snapshot query in particular:

13
American Institute of Aeronautics and Astronautics

Parameter History Report - CBM Report&History

Parameter Management Toolkit

Snapshot Report

SCET now
Venue | surface 4 |
RCE | OA @B
Persistence =Memory () Saved
Template [snapshot.htmi

Filter Category
L #]
- Or -
FSW Module Group Group Copy Parameter
bch
| Get Snapshot Report | | Reset |

Figure 7: A screen shot of the snapshot portion of the PMT web interface.

The above shows the user ability to specify a snapshot time (e.g. “2014-001T00:00:00” or “now”), select a
venue, select an MSL spacecraft side (MSL has 2 separate flight computers, referred to as “sides”), retrieve
parameters from Volatile (Memory) or NVM (Saved), specify templates, and also filter by the module, group, group

copy and parameter name.
An example (partial) HTML snapshot of the BCB module is included as the following:

14

American Institute of Aeronautics and Astronautics

Home - Venues - Parameter Dictionaries - Report Templates - Parameter Categories

Parameter Snapshot Report

Venue: Surface

RCE: B

Module: beh

SCET: 2014-105T19:12:16 UTC
Report Time: 2014-105T19:12:16 UTC

- - o owom [e l | e gL e
batt_offline_imminent_bch1 detection_enabled (2}8141103 -48:04 435 ia‘fh?rks 1333?111 ;;4495 95466-

beb mon batt_offline_imminent bcbl response_enabled || True (2]31%03 48:04.435 i:h‘(:,crks ?gggﬁn ;;?4495 95466-

beb mon || bat_offline_imminent_bcbl eror_persisience || 1 531%3:48:04.435 iafhicrks ﬁgggﬁn 55?44 e

beh mon bart_offline_imminent_bcb1 fault_persistence || 1 (2}8141103 48:04.435 ia‘fhicrks 1333?111 ;5?4495 95466-

beb mon batt_offline_imminent_bcb2 detection_enabled || True (2]31%03 48:04.435 i:h‘(:,crks ?gggﬁn ;;?4495 95466-

beb mon batt_offline_imminent bcb2 response_enabled || True (2}(;}#‘03 48:04 435 i:hicrks ggggﬁn ;;?4495 93466-

beb mon || batt_offline_imminent_bch2 error_persistence || 1 (2}(9]}41163:48:04.435 iafh?rks ?ggé)?aﬂn 55?44 e

beb mon batt_offline imminent bcb2 fault persistence || 1 (2]31%03 48:04.435 i:h‘(:,crks ?gggﬁn ;;?4495 95466-

Figure 8: A screenshot of the BCB Monitor parameters for two group copies.

E. Design Lessons Learned

Overall, the ReSTlet and Hibernate frameworks were strongly complimentary. It was easy to add and modify
resources, and by default separate resources are well encapsulated from each other (although it did require the
implementation of Abstract class layers to avoid some duplicate functionality). Hibernate demonstrated
considerable ability to facilitate on-the-fly database modifications, since the only thing required to modify is to add
get methods to a class. Hibernate may even be useful for schema prototyping, even if Java and Hibernate are not the
eventual technologies to be used. The framework resulting from the integration of the ReSTlet and Hibernate
libraries proved useful as the baseline for other recent mission system prototyping efforts and was used in support of
the SMAP PMT version.

In contrast, the revision infrastructure proved problematic in a number of areas. For one, it was particularly
complex and time consuming to debug, as it often required “walking the tree” from the parameter table to the
context table and back, with a given issue hiding possibly anywhere across nine related tables. Another issue is that
the approach requires a large amount of meta-data for each actual parameter data point, such that the database over
time grows disproportionately considering the amount of “actual” parameter data being stored. A third issue relates
to handling of out-of-order data; this will be discussed in detail in section VII, Supporting MSL Surface.

VI. Supporting MSL Cruise

The first version of the tool that was available just ahead of MSL launch, and following Launch/Cruise
Operational Readiness Test (ORTs), was first utilized to operationally track actual cruise data about a month after
launch following validation on MSL testbeds. It included a basic set of capabilities to create venues, load
dictionaries, collect data from parameter dumps, and provide snapshots and histories via command line and the web
tool.

Relative to eventual surface operations, the number of parameter changes was very low during cruise. The
approach was also very consistent in that every change to a cruise parameter utilized a “set/save/dump” approach,
such that every parameter change was updated in volatile and NVM memory at the same time, and a dump file

15
American Institute of Aeronautics and Astronautics

produced for the ground PMT to ingest. This approach proved to be robust over the course of cruise, where few
issues of note arose.

Through much of the cruise timeframe, the PMT team was diverted back to work on a series of upgrades to the
Data Management tool in preparation for the much more complex Surface data management problem, and PMT
implementation saw minimal progress over this time through early Surface operations.

VII. Supporting MSL Surface

A. Overview

A new version of the PMT tool was ready ahead of Surface operations and executed over consecutive Surface
ORTs. However, it was clear fairly early on that the tool’s usability would be fairly limited in the face of actual
surface parameter usage, as surface operations brought very different usage characteristics from cruise that the tool
could not support.

Parameter changes were much more frequent during the surface mission. Updates to parameters in memory were
more common, and in particular, a pattern of “set parameter, set parameter, save parameters” saw use. The
exclusive use of Set/Save/Dump during Cruise was much easier to track, but used up more downlink capacity and
greater impact on machine “save” resources. However, the PMT version at this time was not capable of tracking
any evidence not in a dump. With the “set-set-save” pattern, changes are made to volatile and NVM memory
without any dump evidence being downlinked at all.

It was here that the FSW issue with NVM reporting in the module dump became a major issue. Since the
module level dump did not contain NVM state, that state would need to be inferred by other means, such as the
history of successful parameter commanding. However that version of the tool was not coded to include tracking by
anything but module dumps. The unfortunate result was that there were a substantial number of updates to Volatile
and NVM memory that this version of the software was unable to track. As a result, the Spacecraft Engineering
Operations (EO) teams implemented operational workarounds taking advantage of other MPCS tools. In response,
the PMT team began designing updates to include other sources of parameter evidence including sequencing results
in particular.

For a subset of modules that used set/save/dump commanding, PMT was able to perform basic tracking
functions. However, a few months into surface operations, an operator found an issue with the snapshot tool
exposing what would turn out to be a major architectural flaw in the revision approach.

B. Ordering Trouble Found

A few months after landing on Mars, an issue was reported that a snapshot did not include a commanded and
dumped parameter change. Upon investigation, the PMT team found that the parameter update had been recorded in
the tool, as it was present in the database and the History report, however for some reason it was not seen in the
snapshot.

The issue had to do with PMT’s revisioning approach. What had happened was that operationally, a “group
dump” product had been downlinked out of order from other parameter dump files due to lost data during downlink
and subsequent product retransmission. A “context revision” was generated in between two existing sets of data, for
which the later context contained pointers back to modules in the earlier context, as in the following diagram.

16
American Institute of Aeronautics and Astronautics

Context 2

Module 1

Group Copy

Parameter

Cecntext 3

Modulz 1

Parameter
Parameter

Context 1
Module 1
Group Copy

Parameter
Parameter

New group dump
arrives, earlier
SCET than existing
dump

Parameter

Group Copy Later group reference
Not updated with
Parameter Paramater New group pointer
Parameter Paramater
SCET
Time

¥

o Actual Revision o Revision Pornter to past evidence

Figure 9: Ordering Issue. This diagram shows how out of order data is missed in the snapshots without fixing
the back pointer. In this diagram, Context 2 arrives on the Earth after Context 3.

When the snapshot function is executed for a time later than that of Context 2, the function looks back to find
Context 2, and the references Context 2 has to Context 1, and so the Context 3 results are not included in the
snapshot.

To address the problem, the PMT team worked out an approach involving “fixing” of module and group
references. When a revision is inserted between two other revisions, the pointers in the later reference need to be
re-pointed to the new revision. As in the above example, when Context 3 arrives, the group pointer from
Context 2 has to be modified to point to the group data in Context 3.

The “fixing” logic works out like the following:
- Query for Context revisions later than the new group revision
- Loop through the context revisions, find any module revisions that match the module for the new group
- For each matching module found, loop through the group revisions and find any matching group. If the
SCET of the found group is earlier than the new group, update the module revision with the new group

copy

Furthermore, in the original design, the only pointers in place were module pointers. However, since data can
arrive at the group/group copy level, the pointer structure needed to be in place at the group and group copy level.
This meant that each context revision would need to track a pointer for every module and group/group copy in the
dictionary.

The approach would eventually be made to work, but not after several false starts and validation against some
more robust testing, costing months of schedule time. As a side effect, the database ballooned with thousands of
additional pointer records required for every context in the database.

C. Secondary Evidence: Command Evidence

17
American Institute of Aeronautics and Astronautics

As mentioned previously, it was identified fairly early during Surface operations that the dump file parameter
tracking was not capable of providing the required fidelity of tracking required for operations. The next best source
of parameter state evidence was the record of successful execution of a commanded parameter change. Part of that
evidence was available in the form of Event Records (EVRs) downlinked as telemetry. As activities are performed
onboard the spacecraft, EVRs report events such as wakeup data, changes in spacecraft states, and success or fail of
execution of sequences of commands. With this approach, the actual parameter values are derived from the
command arguments. A flight software tool was provided to retrieve the full sequence information concerning the
parameter command, including all of the necessary command arguments, which are saved as parameter value
“samples” in the database. Unfortunately the flight software tool produced output in human readable format as
opposed to something more machine-readable, so retrieving the key information like boot times and boot info as
well as all of the parameter commands executed required some tricky parsing that took a good deal of time to get
right.

The command evidence tracking approach was eventually completed in mid-2013 and demonstrated to provide a
level of fidelity for parameter tracking to finally make the tool broadly useful for all subsystems.

D. Comparison with Mechanisms Incon, and Further Identification Issues

Along with the development of secondary evidence tracking, the project recommended validation against some
existing EO data sets. This included comparison of the parameter tool against a Mechansims team testbed
configuration file, called an “initial conditions” or “incon” file. This file had been kept up to date by the EO team
with the “best known” NVM state based off of other (non-PMT) inputs, and represented the best “gold standard”
source for parameter knowledge, containing about a third of the overall parameters.

The testing proved that the parameter tool was properly tracking the various sources of evidence, however it
exposed several issues with parameter identification. Identifying parameters from the downlink data had always
been a challenge, as the parameter name “tagging” in the telemetry products was not consistent with the defining
dictionaries, and not consistent across flight software modules, with a number of “special cases” in the transform
from the auto-code dictionary to the PMT dictionary. Furthermore, the parameter identifier in the evidence does not
map directly to the parameter in the dictionary, making mapping a challenge. For example, as derived from the
dictionary a parameter is named “BCB_MON batt offline_at boot bcbl detection enabled”, but might be
identified in the downlinked BCB module Group DMP product as
“batt_offline_at boot bcbl detection enabled dat”. The result is that the mapping required some level of substring
matching to map the two together.

The comparison against the Mechanisms initial conditions file showed that not all of the parameter samples that
were being reported in the incon were present in the Snapshot report. This was a result of a failure in the substring
matching in some cases, where more than one parameter sample was being mapped to a dictionary parameter —
meaning that some parameters ended up with multiple values with all but 1 being incorrect, and other parameters
with no value at all. The PMT team eventually identified a correct set of patterns to map parameter values to the
proper dictionary definitions, however at substantial additional schedule cost.

VIII. Next Steps

As of the time of the writing of this paper, a version of the PMT is being deployed to operations supporting the
full range of secondary evidence tracking, and includes fixes to the ordering and identification issues found in earlier
phases. Looking ahead, the next phase of work will include updates in support of parameter “truth”. Basically,
knowing whether or not any given set of parameter values are valid or not. This work will take into account the
parameter checksums and counters as described in section IV, to validate sampled values and provide feedback to
the end-user that measures need to be taken to fix known parameter state.

IX. Conclusion

Managing flight software parameters is a seemingly simple task. But as flight systems increase in complexity, so
too does the job of ingesting, tracking, storing and retrieving parameter state knowledge with less than optimal
parameter state reporting mechanisms. On MSL, we now have a workable parameter management system that

18
American Institute of Aeronautics and Astronautics

provides reliable parameter state information for now or any time in the past, despite the challenges we have had to
overcome. These challenges have included not being able to know the actual NVM parameter state due to lack of a
dump capability, significantly less frequent parameter dumps during the surface mission (requiring secondary
evidence gathering techniques), an explosion of the number of parameters to track relative to past missions, MSL’s
overly complex parameter naming convention due to the increased use of flight software auto coding, context
revisions received out of sequence, and many more.

The most important lesson that has been learned from development of the PMT has been the increased importance
of a firm understanding between flight and ground engineers on the approach and definition of flight system
parameters. This understanding needs to be gained early in the mission, and not several months before launch, as
was the case with MSL. A strictly enforced parameter dictionary, with unique identifiers, and strict adherence to the
dictionary across all modules will greatly reduce the complexity and increase the utility of future mission’s
parameter management solutions.

Acknowledgments

The author would like to acknowledge present and former JPL software developers David Noble, Paul Wang,
Nicole Ameche, Hayk Arutyunyan, Pearl Haw and Frank Hy for support and contributions to the effort.

The work described in this paper was carried out at the Jet Propulsion Laboratory (JPL), California Institute of
Technology (Caltech), under a contract with the National Aeronautics and Space Administration (NASA).

If you want to go fast, go apart
If you want to go far, go together

- African proverb

References

! “Mars Global Surveyor (MGS) Loss of Contact” NASA lesson learned, URL: http://llis.nasa.gov/lesson/1805, 13 April
2007.

19
American Institute of Aeronautics and Astronautics

http://llis.nasa.gov/lesson/1805

	Ground Data System Analysis Tools To Track Flight System State Parameters for the Mars Science Laboratory (MSL) and Beyond
	I. Introduction
	II. Definitions
	III. Context for Development
	IV. Parameter Tracking Problem Space
	A. About Flight System Configuration by In-Memory Parameters
	B. Parameter Tracking End Use Cases
	C. Defining and Identifying Parameters
	D. Command and Control
	E. Parameter State Monitoring

	V. Early Design and Implementation
	A. Requirements and Concepts
	B. Application Design
	C. Query Design
	D. Graphical User Interfaces
	E. Design Lessons Learned

	VI. Supporting MSL Cruise
	VII. Supporting MSL Surface
	A. Overview
	B. Ordering Trouble Found
	C. Secondary Evidence: Command Evidence
	D. Comparison with Mechanisms Incon, and Further Identification Issues

	VIII. Next Steps
	IX. Conclusion
	Acknowledgments
	References

