

American Institute of Aeronautics and Astronautics

1

A Model-Based Approach to Developing Your Mission
Operations System

Robert R. Smith1, Kathryn A. Schimmels2, Patricia D Lock3, and Charlene P. Valerio4
Jet Propulsion Laboratory / California Institute of Technology, Pasadena, CA, 91109

Model-Based System Engineering (MBSE) is an increasingly popular methodology for
designing complex engineering systems. As the use of MBSE has grown, it has begun to be
applied to systems that are less hardware-based and more people- and process-based. We
describe our approach to incorporating MBSE as a way to streamline development, and how
to build a model consisting of core resources, such as requirements and interfaces, that can
be adapted and used by new and upcoming projects. By comparing traditional Mission
Operations System (MOS) system engineering with an MOS designed via a model, we will
demonstrate the benefits to be obtained by incorporating MBSE in system engineering
design processes.

I. Introduction
System engineering is essential to the design of complex systems. It provides a multidisciplinary approach to

both the technical and management needs of in system design. As modern systems continue to increase in
complexity, more rigorous and standardized practices are needed. The use of Model-Based Systems Engineering is
an emerging paradigm set to meet this need.

MBSE helps to manage complexity by moving systems engineering practice from an approach that is primarily
document-based to one that is model-based. In this paradigm, a core model represents the collaboration of many
systems, and in turn, becomes the basis of a project’s artifacts such as requirements, design specifications, and
verification information. This contrasts with the traditional method of capturing system design details in a number of
different documents, leading to problems with completeness, traceability and understanding. The Jet Propulsion
Laboratory (JPL) has extended MBSE to the design of a mission operations system, which consists of a ground-
based operations system and the personnel, processes, and procedures needed to achieve mission success.
Traditionally, an MOS is developed through adaptation of previous systems. However, this has proven to lead to
serious limitations and inefficiencies, historically impacting missions in terms of time, money, and risk. An MOS
built via a model, while still observing proper systems engineering practices, provides benefits to designers such as
complete capture of the system design, a single authoritative source of information, design artifact generation,
lessons learned capture, flight-ground trade analysis, and savings in time and risk.

II. How Do We Currently Build Our Mission Operations System?
Development of systems through a document-based approach is a time-proven method. In the current document-

based paradigm, the Mission Operations System Engineer (MOSE) briefly analyzes a new mission’s objectives,
high-level requirements, architecture, and constraints. Based on that analysis, the MOSE determines a similar
mission’s MOS that could be adapted to the new mission, and collects its MOS design artifacts. The MOSE and a
Ground Data System Engineer (GDSE) scrutinize the heritage design for differences, lacks, and unneeded
capabilities, and based on the heritage design, create a draft design for the new mission. This design is analyzed

1 Manager, Operations Revitalization, Mission Operations System Engineering Group, Jet Propulsion Laboratory,
4800 Oak Grove Drive, Pasadena, CA 91109, MS 301-270, Member.
2 Europa Clipper Mission Operations System Engineer, Mission Operations System Engineering Group, Jet
Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, MS 321-560, Member.
3 Mission Operations System Engineering Group Supervisor, Mission Systems Engineering Section, Jet Propulsion
Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, MS 301-270, Member.
4 STABLE Mission Operations Systems Engineer, Ground Data System Engineering Group, Jet Propulsion
Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, MS 301-270, Member.

American Institute of Aeronautics and Astronautics

2

further to ensure that it meets the needs of the new mission. Over the early development period, subsequent analyses
and trades occur until a preliminary design for the new mission is considered complete.

Meanwhile, spacecraft and instrument design has been taking place ahead of MOS design, which is often begun
six months to a year later than flight system design. Traditionally, the flight and ground systems have been treated as
if their designs interact only at the flight-to-ground interface. Because the flight system is maturing ahead of the
ground system, interactions between the two systems may be overlooked without input from mission operations.
During the preliminary and critical design phases, the MOSE must work to adapt the previous MOS design to the
new mission as well as impact any previous decisions made in flight system design, and monitor for changes that
can affect the operations system.

The traditional design paradigm also has limitations that impact development and operations risk, some of which
are illustrated in Figure 1. Functional elements in this system are highly interwoven, each element tied to most of the
others. If new functionality is added to the system, the complexity of the interactions increases geometrically.
Integration of the overall system is arduous, requiring months of testing, and regression testing for minor changes
can take weeks. Functionality is provided on a somewhat ad-hoc basis, based more on team structure or software
implementation than on what the system needs to do.

There is a need for a way to capture the complexity of each component, describe how it interacts with the other
system components, and capture the functionality of both the component and the overall system. Diagrams and
terms need to be represented in a common manner and refer to items using consistent names.

The weaknesses in the current MOS design process have led system engineers to transition to a model-based
approach, controlling the model of the MOS instead of its documentation.

III. Why Model An MOS?
Two key architectural principles drive the application of an MBSE approach to the development of a mission

operations system model. First, the MOS model must be treated as a control system that is capable of “closing the
loop” on its required objectives, that is, the performance of any planned activity is also analyzed based on that plan.
Second, the MOS model must support a “develop with what you fly with” paradigm, meaning that the system used
to develop a mission is also the system that operates the mission1. Applying these architectural principles results in a
model consisting of elements that represent the system’s requirements, design, rationale, and interfaces. Further,
Systems Modeling Language notation (SysML) provides a standardized language for representing aspects of the

Figure 1. Heritage Mission Operations System Information Exchange Overview

American Institute of Aeronautics and Astronautics

3

model in terms of its requirements, structure, and behavior, thus allowing it to be viewed from different subsystem
perspectives.

In addition to SysML’s standardization benefits, the model itself represents a single source of truth, i.e., a sole
repository of information that can be version controlled. An MOS model enhances traceability among use cases,
requirements, and implemented functions. Lines of responsibility and authority over information become clear when
a model provides an unambiguous design of the system’s composition, functionality, and information flow.
Modeling also offers some automation capability and supports syntax verification, enabling verification of the model
itself as well as allowing early design verification. As the model consists of reusable and adaptable products based
on the knowledge of MOS subject matter experts, it also serves as a powerful tool for knowledge capture, leading to
better cross-system understanding and mission-to-mission experience. That experience, captured in the model,
allows an MOSE to quickly identify interfaces and standard mission elements, and therefore focus their attention on
the unique aspects of the new mission. This helps MOSEs to even out the flight and ground system development
processes when MOS development begins later.

A significant benefit comes from the ability to produce standard system description documentation, e.g., gate
products2, directly from the model. By maintaining a system’s information and relationships within the model,
changes to documentation are dynamically captured as design changes are made. Creating documents, a task that
can take weeks, becomes a much-simplified effort when they are instead generated from the model, saving time
while mitigating risk. At scheduled points in the development process, documentation is produced by populating
existing templates with the design information available from the model. In a similar way, reviews and review
packages are improved by modeling. Document-based review package pictorial diagrams often contain abstractions
of system information or misrepresent some aspect of the system. Review boards frequently find discrepancies
between the information presented by different subsystems. Unlike pictorial representations, model views depict the
system’s information consistently and accurately, regardless of a subsystem’s unique perspective. Thus, model
views change dynamically as the system’s design matures.

It must be noted that building a model is not a replacement for systems engineering. Rather, a model-based
approach should be viewed as a tool to aid the system engineering effort across the full MOS. Instead of an MOS
design retooling past or existing missions, modeling allows engineers to take a fresh look at what the system needs
to accomplish.

IV. Traditional MOS Design vs. MOS Designed via a Model
In addition to the two key architecture principles introduced above (close the loop, develop with what you fly

with), the use of a model-based approach enables several additional architectural principles to be realized. The first
principle is to build common solutions to common problems via a single authoritative source of information and the
second is to learn from experience, by incorporating lessons into a re-usable modular MOS design.

We’ve identified five key challenges that a system engineer faces in the traditional MOS design methodology:
maintaining a single, authoritative source of design information; requirements development and verification; impact
assessment in flight/ground trades; capture of operational interfaces and agreements; and the transition of knowledge
and information from development to operations. These challenges and the benefits of using a model-based MOS
design approach are explained below.

A. Single Authoritative Source of Design information
A primary task in development is to capture the design as it evolves. In the early and mid-design phases, the

MOSE’s challenge is working with designs that are constantly changing and linked quite closely to changes
elsewhere in the larger mission or project system. Text documents and presentations have traditionally been used to
record and communicate design information. This approach is time consuming, suffers from redundancy and overlap
of information among multiple sources, and has no single authoritative source. As such, the information is often out-
of-date, and therefore ignored by the intended audience.

The focus of the development systems engineering process should be on identifying and capturing the complete
set of MOS system components, interfaces, internal and external agreements, operations processes, and procedures –
and seeing them clearly connected. This requires a standard way to capture, document, and visualize the MOS
design, in particular its connection to how the MOS controls the flight system. A central step in MOS development
is identifying the operational scenarios for the flight and ground systems3. Scenarios drive the requirements,
agreements, interfaces, and processes. Scenarios, however, are not static – they require iteration, collaboration, and
are very fluid early in the lifecycle. In order to capture and communicate them effectively, we need a single source

American Institute of Aeronautics and Astronautics

4

for scenario documentation and information. Using a model-based system to do so reduces the risks brought by
multiple versions of repetitive or conflicting information.

To capture scenarios effectively, system engineers need to be able to:
• Incorporate both text and diagrams to communicate intent,
• Allow collaboration - multiple authors must edit and review content in a configuration-controlled

manner,
• Easily export scenario documentation; more specifically, generate an up-to-date document at any point,
• Easily and explicitly link requirements to scenarios, in support of verification and validation (V&V),
• Use scenarios to identify and directly link to a list of principal interfaces or agreements early in the

development lifecycle, and later link directly to the actual interface agreements.

Several approaches have been used on flight project development efforts to capture and communicate scenarios –
from the traditional viewgraph charts and text descriptions, to wiki pages, to an online repository database. Figure 2
compares three methods for scenario capture. The model-based approach offers solutions across all of the desired
areas:

• Provides a model repository - Single authoritative source for all information,
• Allows collaboration among users for editing and reviewing scenarios,
• Allows collaboration among users for editing and reviewing scenarios,
• Up-to-date documents are easy to generate and maintain,
• Gate product templates (e.g. Operations Concept Document) are easily populated and exported in a

variety of formats,
• Scenarios can be linked with requirements in the model,
• The model persists throughout the lifecycle allowing scenarios to be tied to agreements, interfaces, and

processes all in one place,
• Analysis tools can validate that scenarios meet requirements (also allows use of external tools),
• Provides the capability to link scenarios to the teams, roles, and processes needed to carry them out,
• Provides metrics on the completeness and correctness of the model.

Figure 2. A comparison of several methods for capturing scenario information.

American Institute of Aeronautics and Astronautics

5

The use of a model-based approach early in the development process reduces the time spent documenting design
information, and reduces inconsistencies introduced by multiple sources of information, thereby reducing
development risk.

B. Developing and Verifying Requirements
The requirements development and verification process has its own challenges. Key is identifying the right set of

requirements applicable to the mission under development, and avoiding inappropriate items from previous projects.
It is also necessary to provide a clear mapping of the requirements to operations scenarios and the processes that
respond to or fulfill them. Verifying requirements against the design early in the lifecycle mitigates costly fixes late
in development.

Requirements must be derived from the operations concept, scenarios, and architecture-driven interfaces early in
the development of the operations concept. Typically, the mapping of requirements to test and analysis plans is done
via a requirements management system such as DOORS, and is not connected to the operations scenarios and
processes that are to be validated. Additionally, requirements change frequently throughout the development
lifecycle, even at the V&V stage. Whereas a requirements management tool can provide linking between
hierarchical levels of requirements and verification plans and status, it lacks the ability to interrogate the source of
and resulting design from the requirement. In the case of an MOS development effort, knowing where the
connections to the operations processes, interfaces, scenarios, and external agreements are allows clearer
understanding of the impacts of design changes and trades.

Using a model-based system to capture requirements not only provides the traceability of a typical requirements
management tool, but also adds the ability to specify physical, interrogatable connections between elements in the
model. It allows the system engineer to assess completeness and correctness of a requirement, and can include
syntax review to identify poorly written requirements. Using this approach, requirements will be written correctly in
the early stages of development, reducing the need for re-work due to poorly written “shall” statements.

C. Flight / Ground Trade Assessment
As the flight and ground system designs proceed, trades are performed on function ownership. Should certain

functionality be provided onboard the flight system, or in the ground system and MOS? Is this a scope increase, and
if so, to which system? Every major operability trade has an impact on the flight system as well as the ground
system. Often, though, impacts to the flight system are simple to characterize in terms of a consumable or margin
impact (e.g., mass, power, data volume, etc.), or development budget and schedule. Changes to flight system
capabilities, however, often drive additional requirements and costs to the ground system, and the impact may be
harder to assess qualitatively without complex analyses. Figure 3 illustrates the difficulty in assessing all of the
impacts in an example mission trade. Using a model to assess the real, quantifiable impact of proposed flight system
changes is essential to performing balanced trades with equal options to consider.

One way of enabling sound trade studies is validation of flight operations scenarios early in the development
lifecycle. In order to do this, we need reliable models to capture and analyze scenarios. Performing this validation
early in the lifecycle reduce the impacts when, during system-level scenario testing, a pivotal scenario turns out to
be faulty. Early modeling and analysis reduces re-design, work-arounds, additional costs, and risk late in
development. The essential method, provided by the MOS model-based approach, is to close the loop early and ask
– does the system or approach do what was intended? System engineers use the model, paired directly with analysis
tools, to identify the impacts to operability in design trades.

American Institute of Aeronautics and Astronautics

7

E. Transition of Information and Knowledge into Flight Operations
One goal of a Mission Operations System Engineer is to put in place for the operations team a system that will

allow the team to easily align ground plans with any changes that occur in flight system operations. The use of a
model allows quick understanding of impacts to MOS functions due to a change in how the flight system is
operating (e.g. anomaly impacts to MOS design). It is also crucial for the system to allow the team to assess
proposed changes, providing the ability to see how a proposed change would impact how the flight team operates.

Another vital area is the transition of development knowledge, products, and information into operations.
Traditionally, missions experience a lack of spacecraft & subsystem engineer availability to capture “how to operate
the subsystem” information in the rush leading up to launch. Typically, knowledge is transferred by email,
potentially out-of-date design documents, and incomplete or immature operations procedures. This incomplete
information then weakens operations team training.

An MOS model alleviates these problems by providing useful products for training and operational readiness
testing early on. From within the MOS model, teams are able to “fly the mission” thousands of times before ever
launching. The information needed by operators for procedures and anomaly investigation has been captured, and
persists in the model throughout the mission duration. Primary system design information is more easily transitioned
from the development team to the operations team, with less chance of “missing something”. Persistence of a model
through the entire lifecycle is the key!

V. How Do We Build Models?
The approach to designing a mission operations system using model-based systems engineering is not that

different than for any other system engineering task. The first step is to define the scope of the task, which includes
defining the system boundary, needed information, level of detail, and the documents to be produced. The scope of
the system information can include use cases, system requirements, system composition, interfaces, processes,
system state, information products, and relationships between system information (such as relating planned states to
actual values). Each of these information products has multiple levels of detail that can be specified. The details of
the scope become the metrics against which progress of the system engineering task is measured.

To put together a modeling team, three areas of expertise have been identified as key. First is expertise in the
underlying model-based enabling engineering platform. This includes the modeling software, collaborative model
information repository, document-generating software, and document server design and maintenance. The second
area of expertise is an understanding of the modeling architecture framework. The framework includes the standard
model representation for each piece of information to be modeled. This expert is also responsible for the proper use
of model-based system engineering in the design of the system. The third area consists of the mission operations
system engineers and subsystem domain experts who are responsible for the overall design of the mission operations
system. In modeling the system, the mission operations system engineers must build the right system, while the
model engineers must build the system right.

The diversity of the team leads next to the diversity of stakeholders and reviews. Model progress and products
are reviewed for technical content, proper use of modeling methods, and performance. Stakeholders in each domain
area review the model-generated information for accuracy and completeness. As the modeling effort progresses,
regular discussions are held with domain experts external to the task to facilitate dialog and engage experts with
different experiences and opinions. Materials generated from the model are distributed for review to mission
operations and subsystem engineers across a variety of missions. The use of customer advisory groups is also
helpful in addressing models where each customer has a different view of the system design. Together as a group, a
common solution can be identified. The model framework and its application require a different set of reviewers
who are knowledgeable in model-based systems engineering and the associated best practices. Regular progress
reviews evaluate schedule, risk, budget, staffing, and progress against established milestones and metrics.

A schedule is built based on the needed model components and the order in which those are to be built. The
schedule follows a system engineering approach of sketching out a concept, identifying the requirements, then
designing a system that meets the requirements. The model development lead identifies the model elements to be
built, the documents to be generated from the model, and the model framework to be developed. Document reports
are helpful in assessing the accuracy and completeness of the model. Either a traditional waterfall schedule or
something similar to a software agile development schedule method is used. The agile schedule method can be more
beneficial for new types of development where the schedule uncertainty is large as it allows breaking a large task
into smaller, more measurable pieces of work. Short development cycles of approximately one month produce
useable products on a regular basis. When unexpected problems arise, priorities can be readily shifted to allow other
work to be completed ahead of schedule. Stakeholders can incrementally review generated material. Showing

American Institute of Aeronautics and Astronautics

9

and re-useable processes identified, e.g., each process does not uniquely define how to perform anomaly
notification; instead, there is a common process for anomaly notification.

As processes are developed, there may be changes to information flows. This then becomes an iterative process
of designing and refining the inputs, outputs, and processes. The development schedule must be planned to allow for
some rework.

The various roles within the mission operations system are modeled as actors. A role represents the entity that
performs a specific function. Typical roles include a mission planner, a command operator, and an attitude control
engineer. When individuals with different backgrounds discuss roles, each person may have his or her own
understanding of what each role does. Within the model, a role is only associated with a specific function or set of
functions. This allows all team members to use the same terms when discussing system design, functionality, and
the role responsible for producing a product.

Teams and roles have often been confused. In a model, a role performs a function, and a function can be
performed by a person or by software, therefore a role can represent a person or software. Roles are explicitly
defined and mapped to functions, or specific activities within the processes. Teams, on the other hand, are a
collection of roles. For a reference model, a typical set of teams may be identified, but the mapping of teams to roles
is left to the mission to decide, based on their preferences. A mission transitioning out of a high activity period such
as launch and checkout may reduce staff by consolidating their workforce so that fewer teams perform more roles
than during the high activity periods. The roles remain the same, and the functions do not change. Rather, the teams
take on additional roles.

Once the requirements are linked to the services and their specific functions, and functions are tied to
information and roles, traceability matrices are generated from the model. Verification and validation details are
easily exported with the system design information and tests are designed around one or more views of the model.
“Thread” tests are based on a flow of information, process steps performed by roles, and expected results of the
process. Following this pattern, training plans for each role can be quickly extracted from the model.

A model-based approach leads a designer through the system engineering steps needed to develop a system that
is is designed based on the way the system will be used. Requirements are traceable to system components, the
functions those components provide, and the roles performing the functions. Naming model elements forces the
names of system items to be consistent across all services, with specific descriptions of each model
element. Information flows are expressed explicitly, and any mismatches quickly become evident. For components
that need to be updated or replaced, the functionality and information that needs to be replaced by the new system is
clear. Each model element captures a specific aspect of the system design. Model-generated documentation is linked
directly to the single authoritative source of design information. As the design evolves, the documentation
automatically reflects the changes. This includes design description documentation, traceability matrices, and
training material. From this list, one can see that using a model-based approach greatly enhances the MOSE’s ability
to engineer the details of the system.

VI. What Models Have We Built?
Using the methods detailed above, a number of models have been built under pilot programs, whose intent was

to produce prototypes. Others are larger models intended to replace or augment existing capabilities.
One of the most detailed models that pioneered many modeling techniques is Operations Revitalization, or

“OpsRev”. OpsRev is a subset of the MOS 2.04,5 initiative that is developing a next-generation operations system.
MOS 2.0 is planned to incorporate a number of models in its tool suite, while also encapsulating operations practices
that have too long been left to providence. Via models of the system, developers can use ground tools as soon as
they are adapted to a minimum set of mission parameters. Design is supported by the same tools used in operations,
and analyses and tests of flight-to-ground interactions performed at every stage. This yields time and risk savings
over the previous paradigm, in which only some of the Phase D activities were performed using the operations
ground system.

Another modeling project related directly to MOS 2.0 is the MOSE and GDSE development procedures model.
Both the MOS and GDS development efforts employ a lead system engineer that is responsible for the overall
development and delivery of the system and all of the necessary design artifacts. In order to correctly accomplish the
many steps of these roles, procedures have been written to capture the details of the day-to-day development process
and responsibilities. These procedures are routinely updated and have been maintained as text files for years. As a
training exercise, the procedures were modeled using SysML and Business Process Modeling and Notation
(BPMN). Though the two existing procedures were considered to be “very good” by organizational management,
the activity of modeling them pointed out many areas where enhancements could be made and information capture

American Institute of Aeronautics and Astronautics

10

could be improved. Ambiguity was widespread, and the two procedures, which must be aligned, were inconsistent in
a number of areas. Engineers with more than 20 years of experience in MOS and GDS were surprised to see how
many these issues the modeling effort uncovered in these mature, straightforward processes.

Work in a related area has been done to model verification and validation (V&V) activities6. This was part of a
pilot program to determine if static models could help with V&V work, and if so, could executable models be built
to perform early requirements verification. These models complement MOS models, using the requirements and
design model-generated products as input to verification planning. Inheritance from the design models themselves
allows faster planning and checking of test procedures, which in turn can be used to generate test scripts. With an
executable model, test scripts can be run against the model and provide early design verification. The pilot program
proved the value of the effort, though necessarily, the limited design models of a pilot program yielded limited
results. The program continues.

VII. Future work in MOS and the Ground System
Part of the MOS is the ground data system (GDS), which performs a set of roles and functions within the MOS.

The GDS is a system composed of software capabilities that operate on hardware platforms, and rely on
infrastructure services, such as the ability to print or exchange information between software components. MOS
processes and information interfaces describe what the GDS must do. Upcoming work will define a reference GDS
model and associated views of the system, including describing how GDS software maps to operational processes.

The MOSE and GDSE development procedure models, described above, were completed as planned. However,
the exercise provided many suggestions for improvements. Future work will connect the two system engineering
procedures to the OpsRev model, streamlining system engineering workflow. More detail will also be added, and the
model will capture research resources, “tips and tricks”, lessons learned, and historical contacts. Eventually, the
combined MOSE/GDSE procedure model, in concert with OpsRev and the GDS model, will provide most of the
tools necessary for a system engineer to efficiently design, build, test, and deliver an operations system to a flight
project.

A number of efforts to model spacecraft and instrument systems are also underway. As the various independent
models are developed, a parallel effort is underway to develop model interoperability, leading to better analyses and
trade study outcomes. A number of deep space, Earth, and Mars missions have employed SysML models to capture
design topics smaller than a full operations system. The next generation of JPL missions, most notably NASA’s
Mars 2020 and Europa Clipper missions, have begun early work to fully model both the flight and ground systems
throughout development and into operations.

VIII. Conclusion
Transitioning from a traditional, document-based approach to mission operations system engineering to a model-

based approach offers significant benefits. The traditional approach spreads requirements, design, and analysis
information across several documents, limiting understanding of an MOS’s design to either a macro- or micro-view.
MBSE serves to address these matters by building a model to serve as the single source of truth for communicating
the design. This then allows unambiguous definitions of interfaces between systems and their information flows, and
effective knowledge capture between missions.

In this paper we’ve shown that applying MBSE is not a change in systems engineering practice. Rather, it
provides principles that allow system engineers the freedom to apply creative approaches to the design of an MOS
while still observing commonalities essential to an MOS’s architecture. This approach to building an MOS model
has successfully been put into application in the Operations Revitalization and MOSE and GDSE development
models. As we move forward, we will continue to explore the positive impact that MBSE has on MOS design and
system engineering.

Acknowledgments
The work described in this paper was performed at the Jet Propulsion Laboratory (JPL), managed by The

California Institute of Technology (Caltech), under contract to the National Aeronautics and Space Administration
(NASA).

American Institute of Aeronautics and Astronautics

11

References
1Bindschadler, D.L., Boyles, C.A., Carrion, C., and Delp, C.L., “MOS 2.0: The Next Generation in Mission Operations

Systems,” SpaceOps 2010 Conference Proceedings, Huntsville, AL, Apr 25-30, 2010.

2Jackson, M., Delp, C., Bindschadler, D., Sarrel, M., Wollaeger, R., Lam, D., “Dynamic gate product and artifact generation

from system models,” 2011 IEEE Aerospace Conference Proceedings, AERO 2011, May 13, 2011.

3Carrion, C., Delp, C.L., Illsley, J., and Liepack, O., “Use of Operational Scenarios in Architecting MOS 2.0”, SpaceOps

2010 Conference Proceedings, Huntsville, AL, Apr 25-30, 2010.

4Bindschadler, D., Delp, C., McCullar, M., “Principles to Products: Toward Realizing MOS 2.0”, AIAA Space Operations

Conference Proceedings, June 2012.

5Delp, C. L., Bindschadler, D., Wollaeger, R., Carrion, C., McCullar, M., Jackson, M., Sarrel, M., Anderson, L., Lam, D.,

“MOS 2.0 - Modeling the next revolutionary mission operations system,” 2011 IEEE Aerospace Conference Proceedings, AERO
2011, May 13, 2011.

6Khan, Dubos, Tirona, Standley, Model-Based Verification and Validation of the SMAP Uplink Processes, IEEE Aerospace

Conference Proceedings, March, 2013.

