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The maneuver cancellation analysis consists of cost contour plots employed by the 
Cassini maneuver team. The plots are two-dimensional linear representations of a larger six-
dimensional solution to a multi-maneuver, multi-encounter mission at Saturn. By using 
contours plotted with B•R and B•T components, it is possible to view the effects on ∆V for 
various encounter positions in the B-plane. The plot is used in operations to help determine 
if the Approach Maneuver (ensuing encounter minus three days) and/or the Cleanup 
Maneuver (ensuing encounter plus three days) can be cancelled and also is a linear check of 
an integrated solution. 

Nomenclature 
OTM = Orbit Trim Maneuvers 
LAMBIC  = Linear Analysis of Maneuvers with Bounds and Inequality Constraints 
∆V = change in velocity 
∆VREF = change in velocity given in the reference trajectory 
OD = Orbit determination 
B = B-vector or B-plane 
R = R-vector of the B-plane 
T = T-vector of the B-plane 
Tn = nth encounter of Titan 
S = the incoming asymptote 
C3 = excess velocity or characteristic energy 
ro = nominal trajectory Apoapsis Maneuver location 
∆r = difference in the Apoapsis Maneuver location for a perturbed trajectory 
∆Βxy = the variations in the B-plane with a perturbed trajectory 
∆B•Ry = y component of grid points in the B-plane  
∆B•Tx = x component of grid points in the B-plane 
∆ΒRT = Grid variation vector 
∆ΒA = Asymptote change B-plane state vector 
B•R = vertical axis of the B-plane 
B•T = horizontal axis of the B-plane 
V1 = the magnitude of the velocity for a Cleanup Maneuver 
V2 = the velocity magnitude for an Apoapsis Maneuver 
i = leg index 
M = the B-plane mapping 
K = K-matrix—a maneuver capability matrix 
Jx,y = ∆V calculation of a B-plane grid point for an Approach Maneuver 
Jx,y,c = ∆V calculation of a B-plane grid point for a Cleanup Maneuver 
Gx,y = grid point value on the contour plot for an Approach Maneuver 
Gx,y,c = grid point value on the contour plot for a Cleanup Maneuver 
LFT = Linearized Flight Time 
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I. Introduction 
he Cassini-Huygens mission to Saturn launched on October 15, 1997 and successfully entered Saturn orbit on 
July 1, 2004. The orbital phase started after Saturn Orbit Insertion and continued through the prime mission 

which ended formally on 30-June-2008 with the extended mission commencing after this date. The driver for the 
Cassini-Huygens orbital segment are the gravity-assist encounters with Titan—Saturn’s largest moon. In between 
encounters with Titan or any other Saturnian moon, there are typically three opportunities for Orbit Trim Maneuvers 
(OTMs). These three maneuvers have been named the Cleanup Maneuver—which takes place at approximately 
three days after an encounter; the Apoapsis Maneuver or Shaping Maneuver—that usually takes place around 
Apoapsis of the orbit; and the Approach Maneuver—which takes place approximately three days before the next 
encounter. These maneuvers can be seen in Fig. 11. The targets for the maneuvers are B•R and B•T components of 
the B-plane and Linearized Flight Time (LFT).2 A description of the B-plane is found in the appendix. 

During the eleven years since launch, there have been many Trajectory Correction Maneuvers, OTMs 
implemented, and also a number of canceled maneuvers. In order for the Cassini-Huygens Maneuver Team to 
provide information for project management to determine if cancellation of a maneuver was the appropriate course 
of action, some tools had to be developed that would quantify what would happen with and without a particular 
maneuver. Thus, the maneuver cancellation analysis software was developed.3 One piece of this maneuver 
cancellation analysis software is the ∆V cost contour plot.  

The contour plot is a two-dimensional linear representation of a larger six-dimensional solution to the multi-
maneuver, multi-encounter operation that takes place on the Cassini-Huygens mission at Saturn. Shown on the plots 
are ∆V costs for different B-plane encounter positions of the spacecraft with respect to the nominal B-plane 
encounter aimpoint. There are two versions of the plot—one for the Approach Maneuver and another for the 
Cleanup Maneuver. These plots are generated by using a computer program named LAMBIC (Linear Analysis of 
Maneuvers with Bounds and Inequality Constraints), which produces the statistics of ∆V magnitude and delivery 
accuracy by simulating the execution of a sequence of maneuvers through the use of the Monte Carlo method. 
Included in LAMBIC is an optimization routine that has been used to develop maneuver optimization strategies and 
design OTMs. LAMBIC45 can also generate ∆V costs corresponding with grid points that represent flyby errors. 
Data associated with the grid points are used to make the contours, but the plots are not made by the LAMBIC 
program. The contour plots are produced by MATLAB6 with the grid point data from LAMBIC. 
 
 

T 

 
Figure 1. Maneuver Locations of a typical Cassini-Huygens encounter 
with Titan. An illustration of a Nominal and Perturbed Trajectory is 
included. 
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II. Methodology and Development 
The contour plots are made by plotting ∆V costs for a grid of B-plane data points, which makes it possible to 

view the effects on ∆V for various encounter positions in the B-plane, as shown in Fig. 2. Plotting the ∆V contours 
on the B-plane allows for the maneuver implementation delivery ellipse and current orbit determination (OD) 
delivery ellipse to be drawn on the plot. (B-plane information can be found in the appendix.) By doing this, statistics 
are able to be applied to the contour plot thus giving the navigation team probabilities that certain ∆V costs will or 
will not occur. 

Originally, the Approach maneuver contour plot was used as a visual aid to show the sensitivity of flyby errors; 
if the nominal flyby aimpoint represents a classical quadratic minimum; and if the encounter would be on the flyby 
altitude boundary (i.e. the boundary of the altitude requirement to prevent the spacecraft from tumbling due to 
atmospheric drag)—all of which is of limited value for operations. However, after some appropriate modifications 
were made to account for the change between incoming nominal and perturbed asymptotes, the Approach Maneuver 
cost contour plot has become an important tool in the decision making process of canceling Approach Maneuvers. 
The modifications will be further covered in Section III.   

It was then theorized that a similar contour plot could be constructed for the Cleanup Maneuvers. The Cleanup 
Maneuver cost contour was formed by differencing two LAMBIC runs and then mapping that difference back to the 
encounter just before the Cleanup Maneuver. The first LAMBIC run is with the Cleanup Maneuver included in the 
simulation while the second LAMBIC run is without the Cleanup Maneuver. The reason for mapping the cost 
contours to the previous flyby is that there is not a well-defined B-plane target at the next encounter for the Cleanup 
Maneuver. This is because the Cleanup Maneuver and the Apoapsis Maneuver (the maneuver between the Cleanup 
and Approach Maneuvers) are designed together and the intermediate target is flexible. (The target of the Cleanup 
Maneuver is the intermediate target. The intermediate target is shown as ro+∆r in Fig. 1.) 

While using these contour plots, another application for these tools was discovered. The Approach maneuver 
contour plot became useful for biasing the targets of the Approach Maneuvers. As a result, there have been two 
instances where the B-plane targets of an encounter were changed because a sizable negative ∆V region (a negative 
∆V region represents an area of ∆V savings) was discovered on the Approach Maneuver contour plot that was big 
enough to target. Therefore, the encounter target was changed to take advantage of the ∆V savings. This will be 

further discussed in Section IV. In addition, the contour plots help the maneuver analysts determine that the current 
setup for a particular maneuver is correct and more importantly, it is a linear check of the integrated solution that is 
nominally processed. These contour plots also take into account future encounters and how the current encounter 

 
Figure 2. Contour Plot for Titan Encounter 42. The plot on the left is the contour plot. The plot on 
the right is the contour surface. 
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Figure 3. Example B-plane with grid point sample 

target effects the downstream ∆V costs associated with those future encounters. It can also be seen how the future 
encounters affect the ∆V cost at the next encounter. This is evident in the changes to the contour plots when the 
length of the optimization chain is changed when LAMBIC is run. 

The contour lines are shaped and oriented in a manner that corresponds to the orbital change that takes place 
due to the flyby of the encounter body. For instance, if the altitude of the flyby is the primary cause of the orbital 
change, the semi-minor axis of the contours will line up with the B-vector of the encounter. Or stated another way, if 
the orbital change that takes place because of the encounter is sensitive to the altitude of the encounter, the steepest 
gradient of the contour lines will line up with the B-vector. 

On the Approach Maneuver contour plot in Fig. 2, there are two one-sigma ellipses: the blue ellipse is the current 
trajectory without a maneuver taking place which is provided to the Maneuver Team by the Orbit Determination 
Team (OD team); and the black ellipse is the delivery ellipse if the maneuver takes place. Included in the delivery 
ellipse are the one-sigma maneuver execution errors.7 The axes of the contour plot are position differences in B•R 
and B•T with respect to the nominal aimpoint. So the nominal aimpoint is at point (0,0). The contour values are ∆V 
differences with respect to the ∆V value for the nominal aimpoint. This is why the zero contour always passes 
through the origin of the plot (More in-depth information on this topic is found in Section III). The reason why ∆V 
differences with respect to the nominal aimpoint are used is that the ∆V difference is more consistently accurate than 
the absolute ∆V values. 

III. Theory 

A. Approach Maneuver Cancellation Contour Plot 
The ∆V costs shown on the contour come from two sources: B-plane grid variations (encounter position 

variations) and an asymptote correction that is the result of a B-plane offset which stems from the fact that the B-
planes are different for a nominal and perturbed trajectory. Figure 3 shows an example of the B-plane used for the 

contour plot with a sample grid point. Each grid point is a summation of the ∆V for multiple maneuvers over 
multiple encounters. For the Approach Maneuver case, the algorithm that the optimizer uses is the following cost 
function. 

 

           ( )∑
=

+=
3

0
, 21

i
iiyx VVJ              (1) 

Jx,y represents the ∆V calculation for a grid point, V1 represents the magnitude of the velocity for a Cleanup 
Maneuver and V2 represents the velocity magnitude for an Apoapsis Maneuver. The i index represents a leg number. 
Usually, four legs or four sets of Cleanup and Apoapsis Maneuvers are used in the optimization process. Now the 
value at each grid point is subtracted from the cost at the nominal aimpoint. (The nominal aimpoint is at the origin of 
the contour plot.) So the value of the grid point is computed from: 

 
             0,0,, JJG yxyx −=              (2) 
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Figure 4. Illustration of B-plane offset. The offset is due to difference of the perturbed trajectory incoming 
asymptote and the nominal trajectory incoming asymptote. 

Gx,y represents the values on the contour plot. Note that this is the cost due to flyby error assuming the ensuing 
Cleanup Maneuver will be implemented, the Approach Maneuver is assumed to be cancelled, and the encounter 
takes place at the grid points. The grid variation can be written in the following equation since the only terms that 
have a value are the B•R and B•T terms. 
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Figure 4 is an illustration of the B-plane offset which goes with Fig. 1, which is an example of a perturbed 

trajectory (perturbed with respect to the nominal reference trajectory). Bo is the B-vector for the nominal trajectory, 
So is the incoming asymptote for the nominal trajectory, Tn is the nth Titan encounter, Tn+1 is the n+1th Titan 
encounter, B is the B-vector for the perturbed trajectory, and S is the incoming asymptote for the perturbed 
trajectory.  

It can be seen in Fig. 4 that there is an offset in the B-plane due to the incoming asymptote being different than 
the asymptote of the original trajectory. The target at Tn is the same but the “route” to get to the target changed from 
the one that was planned. This asymptote change can be written in B-plane state as 
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The LFT term has negligible effect. Therefore, it is set to zero. Also, oo RS
vv

• and oo TS
vv

•  terms are zero by 
definition. Now ∆BA and ∆BRT can be brought together in the equation  
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B yx∆ ,  represents the variations in the B-plane (due to the ∆BRT term) using the perturbed trajectory B-plane 

state. B
v  is the perturbed B-vector, Bo

v  is the nominal B-vector, Ro
v is the nominal B-plane R-vector, T o

v  is the 

nominal B-plane T-vector, S
v is the perturbed incoming asymptote, and 3C∆  is the C3 difference. The TB •∆  

component is the x grid point of the B-plane, with the RB •∆  component the y grid point. So the B-plane variation 
mapped (M is the B-plane state mapping) from the nth Titan encounter to the n+1th Titan encounter for the 
perturbed trajectory is 

 
              B yx

n
nM ∆+

,
1 * .            (7) 

 
The ∆BRT component is produced from a special setting in LAMBIC. What this setting does is produce ∆V 

values that correspond to the grid of position errors with respect to the flyby. Now this setting is merged with 
another feature of LAMBIC which, combined with the aforementioned special setting, has the function of centering 
the grid of flyby errors at the perturbed flyby conditions represented by the incoming asymptote error estimate. The 
estimate is computed by using the current trajectory from operations. Thus, the result is a grid of ∆V values in the B-
plane that corresponds to the perturbed trajectory, which is much more accurate than using the nominal or reference 
trajectory B-plane.  

The influence of using the current trajectory from operations rather than the nominal reference trajectory can be 
seen in the difference between Fig. 5 and Fig. 6 which are contour plots of the T32 encounter. Figure 5, shows the 
case for Approach Maneuver OTM115 without applying the incoming asymptote correction. It shows that the 
current OD ellipse is close to the 5 m/s contour; the delivery ellipse is directly on top of the zero m/s contour point; 
and there is no negative ∆V region. Hence, the best maneuver strategy would be targeting to the nominal aimpoint. 
Figure 6 shows the cost contour for the same maneuver, but this plot takes into account the incoming asymptote 
change. The OD ellipse is not as close to the 5 m/s contour as in Fig. 5; the delivery ellipse is still on the zero m/s 
contour but the zero m/s contour is now an oval rather than a point; and there is a substantial negative ∆V region. 
Now, targeting to the nominal aimpoint doesn’t look like the best option. (Note: The project decided to bias the 
encounter targets for the T32 encounter. There is more discussion on biased targeting in Section IV.) This proves 
how important the asymptote correction is in accurately displaying the ∆V costs associated with a flyby. 
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Figure 6. Contour Plot for OTM115 with incoming asymptote correction. Shows the negative ∆V 
contours before the target bias. 

 
Figure 5. T32 Approach OTM115 Cancellation Cost without incoming asymptote correction. 
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B. Cleanup Maneuver Cancellation Contour Plot 
After the Approach Maneuver Contour Plot was assembled, the possibility of cancelling a Cleanup Maneuver 

emerged so a Cleanup Maneuver Contour Plot was formulated and is now used in the analysis to consider 
cancellation of a Cleanup Maneuver. There are some differences to how the procedure is performed for the 
Approach Maneuver case and the Cleanup Maneuver case.  

For the Cleanup Maneuver cancellation case, it is assumed that the Cleanup Maneuver is cancelled with the 
subsequent Apoapsis Maneuver implemented. As mentioned before there are two LAMBIC runs performed to 
generate the data for the Cleanup Maneuver Contour Plot and the difference between the two LAMBIC runs produce 
the values of the contour plot. The first run is the nominal run that produces values from Eq. (1). The second run 
uses a different cost function which is the minimization of  

 

          ( )∑
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Where Jx,y,c represents the ∆V calculation for a grid point, V20 represents the upcoming Apoapsis Maneuver (V1o 

is cancelled). Usually, four legs or four sets of Cleanup and Apoapsis Maneuvers are used in the optimization 
process, but for this case there are only three legs in the summation. Let Gx,y,c be the difference of the ∆V at a grid 
point without the Cleanup Maneuver minus the ∆V at a grid point with the Cleanup Maneuver. 

 
            yxcyxcyx JJG ,,,,, −=              (9) 
 
The B-plane error mapped from the nth Titan encounter to the n+1th Titan encounter for the perturbed 

trajectory, assuming cancellation of the Cleanup Maneuver, is: 
 
           REFxxy

n
n VKBM ∆−∆+

36
1 *             (10) 

 
Remember the variations ∆Bxy for the cost contours is with respect to the previous flyby, not the ensuing flyby 

and M is the B-plane mapping. The VK REFx
v

∆− 36  component of Eq. (10) is included in order to subtract or take out 
the Cleanup Maneuver which is nominally included with the reference trajectory since it might have a deterministic 
component (If a cleanup maneuver with a deterministic component is cancelled, its effect needs to be accounted for 
in the LAMBIC simulation. This is done by adding the negative influence of the maneuver.) The K term is the 
maneuver capability matrix at the Cleanup Maneuver, and the V REF

v

∆  is the nominal deterministic ∆V planned in the 
reference trajectory.  Multiplying these together gives the B-plane change due to the nominal (reference) Cleanup 
Maneuver. 

Figure 7 is an example of a Cleanup Maneuver Contour Plot where there was a deterministic ∆V component of 
1.17 m/s. The plot shows the contours running parallel with a zero contour channel. On the contour, three OD 
solutions are plotted. Two OD solutions, 071116_053T38 (short) and 071118_053T38 (short), are pre-encounter 
solutions. The last OD solution, 071120_053T38 (short), is a post-encounter solution which shows were the 
encounter took place in the B-plane. For this Cleanup Maneuver Contour plot example, using the 071120_053T38 
(short) solution shows that the cost to cancel OTM134 is approximately 0.7 m/s. This was in very close agreement 
with the integrated solution which produced a value of approximately 0.8 m/s for OTM134 cancellation. 
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IV. Biasing Targets8 
As mentioned previously, the contour plots are used to estimate the cost of cancellation and the one-sigma OD 

and delivery ellipses can provide some statistics on the cost of cancellation. There is one more use that should be 
discussed in some detail since it saved ∆V for the Cassini-Huygens Project. This use is biasing the targets of an 
encounter. Biasing or changing targets are not new. The Galileo project changed targets; however, that mission had 
more time to adjust the targets. For Cassini-Huygens the time to design a maneuver and make all the appropriate 
decisions is about three days (given a typical 5-day spacing of OTMs). So the quick time frames do not usually 
permit retargeting. However, there were some instances where the contour plot aided in target biasing since it was so 
simple to take the appropriate information from the plot itself. Biasing the encounter targets was done twice (for 
OTM109 and OTM115 which targeted to T30 and T32 respectively) and saved approximately 4.6 m/s of ∆V. The 
original contour plot for OTM115 is shown in Fig 6. It can be seen from Fig 6 that there is a sizable negative ∆V 
area which was mentioned in Section III. It was determined that changing the targets did not have any undesirable 
downstream effects and the trajectory would be closer to the reference trajectory by targeting the maneuvers to 
biased aimpoints. By changing the B•R target by 9.4 km and the B•T target by 4.1 km without changing the 
encounter time would put the center of the delivery ellipse at the absolute minimum of the contour plot. The contour 
plot then changed and looked like Fig. 8. The decision to bias the target was not just a navigation and ∆V savings 
issue. There had to be discussion with the science team to make sure that the biased target did not negatively affect 
the science taking place. However, since there were two benefits (the 4.6 m/s of ∆V savings and the trajectory would 
be closer to the reference trajectory by implementing the maneuver with the biased targets), the science team agreed 
to the change. 
 

 
 

 
Figure 7. Cleanup Maneuver Cancellation Cost Contour Plot for OTM134. The (0,0) point of the contour is 
still the nominal trajectory aimpoint, but the zero m/s cost contour usually does not pass through it. The light blue 
ellipse is an OD solution before the flyby as well as the blue ellipse. The magenta cross is the actual encounter 
position—if OTM134 was cancelled there would be a ∆V cost of approximately 0.7 m/s. Notice even if the aimpoint 
was met precisely, there would be a 0.5 m/s cost to cancel OTM134. 



 
American Institute of Aeronautics and Astronautics 

092407 
 

10 

V. Future Work 
The contour plots show very accurate results when dealing with a Titan encounter. However, there is not the 

same level of accuracy for a contour plot of the smaller and less massive Saturnian satellites such as Enceladus. It is 
hypothesized that the reason for the inaccuracy is due to the asymptote difference being the dominant variable for 
∆V costs in these instances whereas for a Titan encounter the grid points or more specifically where the encounter 
takes place with respect to Titan is dominant. The asymptote correction explained in Section III is an external one 
based on operations. For a Titan encounter this is sufficient since the effects of asymptote variations from grid point 
to grid point are negligible. On the other hand, for an encounter of a less massive body near periapsis, the asymptote 
can change substantially from one grid point to another and this asymptote change must be generated internally in 
addition to the correction due to operations. So the grid points, which are based only on two-dimensional variations 
would expand to five dimensions.  The extra three dimensions would deal with the asymptote differences. 

Therefore, an augmented or enhanced grid generation could be added to the LAMBIC software to better 
account for asymptote variation among grid points.  
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Assume that K6x3 found in Eq. (11) is the K-matrix at the Approach (or prior) Maneuver point, but it is broken 

into two 3x3 matrices—A and S. To take account the asymptote variation among the grid points multiply the K6x3 

matrix in the following manner to adjust the asymptotes accordingly  
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Figure 8. Contour Plot for OTM115. Shows the contours with the biased target. 
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Notice that the ∆B•R and ∆B•T remains the same due to the identity matrix (I) and the S-matrix contains the 
desired asymptote adjustments. An adjustment to the LAMBIC software would be the next course of action with 
some additional work to be done to verify the algorithm. 

 

VI. Conclusion 
In conclusion, the contour plots used by the Cassini-Huygens maneuver team have helped in the maneuver 

cancellation decision-making process and has become a valuable tool to save ∆V as the opportunity presents itself. 
Furthermore, the position variations of an encounter without the time of flight component are a significant source to 
show the ∆V variations of an encounter.  

 

Appendix: The B-plane 
 

The B-plane is another name for the Aiming Plane which is a 
plane that is perpendicular to the incoming asymptote vector of the 
spacecraft and passes through the target body. The B-vector is the 
vector from the center of the target body to the location in the B-
plane where the path of the spacecraft is projected onto the B-
plane. (As shown in Fig. 9.) The B-vector is also known as the 
impact parameter and is the place of closest approach to the target 
body if the target body was massless. The B-vector position can be 
plotted by using the two principle axes of the B-plane—R and T. 
The T axis is usually aligned with either the ecliptic or body 
equatorial plane of the target body and the R axis is the third vector 
that completes the right handed system with the S and T axes. Now 
the B•R and B•T components would provide the position of the 
encounter in the B-plane. The inset on Fig. 9 shows the 1-σ 

dispersion ellipse that develops around the impact parameter point. This ellipse has a semi-major axis dimension 
(SMAA), semi-minor axis dimension (SMIA), and an orientation value θ, which is the angle between the T axis and 
the semi-major axis of the ellipse in the clockwise direction. The S component of the dispersion is a time of flight 
dispersion or distance dispersion along the S axis. 
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