
Random Testing and Model Checking: Building a Common
Framework for Nondeterministic Exploration

Alex Groce
Laboratory for Reliable Software

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109, USA

Alex.Groce@jpl.nasa.gov

Rajeev Joshi
Laboratory for Reliable Software

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109, USA

Rajeev.Joshi@jpl.nasa.gov

The research described in this publication was carried out at the

Jet Propulsion Laboratory, California Institute of Technology, under

a contract with the National Aeronautics and Space Administration.

Funding was also provided by NASA ESAS 6G.

ABSTRACT
Two popular forms of dynamic analysis, random testing
and explicit-state software model checking, are perhaps best
viewed as search strategies for exploring the state spaces in-
troduced by nondeterminism in program inputs. We present
an approach that enables this nondeterminism to be ex-
pressed in the SPIN model checker’s PROMELA language,
and then lets users generate either model checkers or ran-
dom testers from a single harness for a tested C program.
Our approach makes it easy to compare model checking and
random testing for models with precisely the same input
ranges and probabilities and allows us to mix random test-
ing with model checking’s exhaustive exploration of non-
determinism. The PROMELA language, as intended in its
design, serves as a convenient notation for expressing nonde-
terminism and mixing random choices with nondeterminis-
tic choices. We present and discuss a comparison of random
testing and model checking. The results derive from using
our framework to test a C program with an effectively infi-
nite state space, a module in JPL’s next Mars rover mission.
More generally, we show how the ability of the SPIN model
checker to call C code can be used to extend SPIN’s features,
and hope to inspire others to use the same methods to imple-
ment dynamic analyses that can make use of efficient state
storage, matching, and backtracking.

1. INTRODUCTION
Random testing [9] and model checking [2] can, at the

highest level, be viewed as strategies for exploring state
spaces created by nondeterminism in program input. Ran-
dom testing explores such a state space by taking a large
number of random walks through the graph. Model checking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profi or commercial advantage and that copies
bear this notice and the full citation on the firs page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifi
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

explores the state space more systematically, often using a
depth-first search in the case of explicit state model checking
of executable code. For example, in model-driven verifica-
tion [11], a program is model checked by embedding calls to
C code in a harness written in the SPIN model checker’s
PROMELA language [12]. SPIN generates a specialized
model checker which performs a depth-first search (or varia-
tion thereof), backtracking the model checking harness and
C program to earlier states as needed.

During efforts to apply random testing and model check-
ing to JPL flight software we made two observations: (1)
model checking is not obviously superior to random test-
ing when searching effectively infinite state spaces, and (2)
model checking is, in many cases, easier to set up than ran-
dom testing. Both of these observations are at least some-
what contrary to conventional wisdom. Certainly, when ex-
haustive exploration is practical, model checking is prefer-
able to random testing. The advantages of model check-
ing are less obvious when exhaustive exploration of states is
not possible: is a depth-first search (or another systematic
search) of a small portion of a state space always superior to
a series of random walks through that state space? For ex-
ample, use of unsound abstractions in model checking may
cause systematic exclusion of states that could at least po-
tentially be explored using random testing, but is often nec-
essary when dealing with rich properties of very large state
spaces1. Hamlet has recently argued that there are indeed
cases where “only random testing will do” [10]. Our second
observation is also surprising: it is generally believed (in-
cluding by us, as in our earlier work on random testing [6])
that random testing is“easier” than model checking, which is
often a serious engineering challenge for real programs. We
discovered that, after we began using improved tools to pre-
vent problems with backtracking [7], the primary difference
between setting up model checking and setting up random
testing for critical embedded code was that PROMELA is a
better language for expressing nondeterministic choice than
C (at least to our tastes), and the model checker provided
considerable infrastructure, such as test playback, limitation
of maximum test length, and support for iterative-deepening
test case minimization that we were forced to implement our-
selves when building a random tester. We also observed that

1In our terminology, abstraction is unsound when we ab-
stract by “lifting” concrete states produced by execution,
but there is no guarantee that if s and s′ abstract equiva-
lently their successors will also do so. In this case, we may
never explore some reachable abstract states.

using both model checking and random testing on a software
system was often almost twice as much effort as applying
only one method, even when the test design was essentially
unchanged. Due diligence inclined us to apply both meth-
ods, but the redundant implementation effort was a drain
on time better spent refining the test design (and running
more tests).

Inspired by these observations, we developed a framework
that allows us to use the same PROMELA harness to per-
form either random walks or searches with state matching
and backtracking using the SPIN model checker. A key fea-
ture of our framework is that it does not require modifying
SPIN itself in any way. Rather, we make use of a macro
package for nondeterminism that uses SPIN’s ability to em-
bed C code in PROMELA to modify the graph structure itself

(and thus the search used by the model checker). We believe
that others interested in performing dynamic analysis of C
programs using state matching and backtracking might ben-
efit from this approach — and from using SPIN to produce
program executions to analyze. SPIN is an extremely effi-
cient model checker, the namesake of a long-running series of
workshops on software model checking, and won the ACM
System Software Award in 2002. It provides many pow-
erful options for complete or partial exploration of C pro-
gram state spaces, including various state hashing strategies,
multi-core and distributed exploration, and state matching
based on user-defined abstractions. In order to explore C
program state spaces it is not necessary for SPIN users to
become model checking experts or learn temporal logic. Be-
cause SPIN simply makes calls to C functions (or sets vari-
ables) to interface with the program being explored, there
is no limit on program source size — SPIN can even model
check binaries without source, so long as a public interface
and memory locations of program state can be determined.

2. BUILDING THE FRAMEWORK
As indicated in the introduction, the SPIN model checker

can be used to verify or test C programs. SPIN works by
taking a harness (model) written in the PROMELA lan-
guage and producing a specialized model checker, written in
C, for that harness. Because SPIN generates C programs,
including native C code in the transitions used to define the
state space is easy. The only additional work required is to
define the memory used by the C code so that the model
checker can backtrack the program state space when explor-
ing different input choices.

2.1 SPIN Nondeterminism
The SPIN model checker’s PROMELA language includes

a construct for expressing nondeterministic choice:

if

:: a -> x = 1

:: a || b -> x = 2

:: a && b -> x = 3

:: else -> x = 4

fi

Each sequence in the if consists of a guard and a state-
ment to execute. There will be a successor to the if state-
ment in the state space for every enabled guard from the
previous state — the else is only enabled if no other guards
are true. If more than one guard is true, the state with the

if will have multiple successors, which will be explored dur-
ing the state space search. A state in which neither a nor
b is true will have one successor (x = 4), a state in which b

alone is true will have one successor (x = 2), a state in which
a alone is true will have two (x = 1, x = 2), and a state in
which both a and b are true will have three successors (all
but x = 4).

2.2 Expressing Wider Choice Ranges
The if notation is useful for expressing the limited nonde-

terminism found in the protocols and concurrent algorithms
SPIN was originally designed to model check. In software
model checking, however, it is often useful to succinctly ex-
press larger ranges of choice, i.e., the selection of a random
file descriptor. Many SPIN models thus define a macro like
this:

inline pick(var, range) {

var = 0;

do

:: (var < range) -> var++

:: break

od;

}

The do construct works just like the if construct above,
except that it loops until a break is chosen (there is an
implicit guard of true for the break statement). The effect
of the pick macro is to assign var to a value from 0 to
range-1.

2.3 Using pick for Random Testing
When SPIN backtracks, it continues until it finds a non-

deterministic choice2. If we change all nondeterminism to
use pick, we can control backtracking, and force the model
checker to behave as a random tester3:

inline pick(var, range) {

if

:: !initialized ->

nondet_pick(seed, SEED_RANGE);

c_code{printf ("Test with seed %d\n",

now.seed);

srandom(now.seed);};

initialized = TRUE

:: else -> skip

fi;

var = c_expr{random()} % range;

}

where nondet_pick is just the earlier pick macro, c_code
allows us to include arbitrary C code in our model, and
now.seed is the notation for accessing a PROMELA variable
in C code. We can see the different behaviors of the two
macros easily with a trivial PROMELA model:

2Or a choice in process scheduling; however, in this paper
we focus on a single process, as most testing of C programs
with SPIN does not involve concurrency.
3Our actual implementation varies slightly, for reasons of
efficiency and to avoid SPIN reporting the end of each test
as a possible system deadlock.

n = 0;

do

:: n < 4 -> pick(x,100);

c_code{printf ("[%d: x = %d] ",

now.n, now.x);};

n++

:: else -> break

od;

c_code{printf ("\n");}

The loop picks 4 integers. Exploration using the first pick
macro produces this output:

[0: x = 100] [1: x = 100] [2: x = 100] [3: x = 100]

[3: x = 99]
[3: x = 98]
...

[3: x = 0]
[2: x = 99] [2: x = 98] [2: x = 97] [2: x = 96] ... [1: x = 99]

Using our second pick macro, we get something like this:

Test with seed 100

[0: x = 40] [1: x = 1] [2: x = 79] [3: x = 84]
Test with seed 99

[0: x = 72] [1: x = 24] [2: x = 49] [3: x = 13]
Test with seed 98
[0: x = 21] [1: x = 67] [2: x = 75] [3: x = 43]

...

In the first case, the model checker chooses x = 100 four
times, then backtracks to explore all possibilities for the last
choice (where n = 3) before trying alternative values for the
next to last choice (where n = 2). Because the final choice of
x overwrites that choice, SPIN backtracks and so no output
is produced beyond the point where n = 2. When all choices
at n = 2 have been explored, the model checker will similarly
explore all choices at n = 1. The output for the second pick
macro is simply a sequence of random tests, with seeds for
the random number generator decreasing from 100 to 0.

The second macro works by moving all the nondetermin-
ism to an initial choice of a random seed. When the model
checker backtracks, it is forced to unwind the entire random
test and pick a new seed. We’ve changed the state space
itself to represent a set (fixed by the seed range) of random
walks through the original nondeterministic state space.

Without modifying SPIN, we have changed the model
checker generator into a random tester generator. We can
now use the same models for both model checking and ran-
dom testing, enabling us to compare search techniques and
making it convenient to apply both strategies (in the spirit
of search diversification, somewhat like Dwyer et al.’s ap-
proach [3]) to one model without writing two test harnesses.

2.3.1 Using pick to Permute Choices
A useful application of the same trick is to permute choices

when using full nondeterminism in model checking. As shown
in the output above, the usual do loop explores choices in
sequential order. When the range is large and complete
state-space exploration is impossible, this unfortunately bi-
ases our exploration to one portion of a range, especially if
several choices from the same range are made in a loop. It
would be better, even when performing model checking, to
explore each choice once but to permute the choices them-
selves. As shown by Dwyer et al., this search order can be
a controlling factor in whether the model checker finds an
error in a large state space [4]. Producing permutations of

inline pick(var, range) {

if

:: !initialized ->

nondet_pick(seed, SEED_RANGE);

c_code{printf ("Test with seed %d\n",

now.seed);

srandom(now.seed);};

initialized = TRUE

:: else -> skip

fi;

c_code{srandom(now.last_seed);};

var = c_expr{random()} % range;

c_code{now.last_seed = random();};

}

Figure 1: The pick macro, fixed to allow mixing
random choice with full nondeterminism

nondeterministic choices is in fact quite easy, using the same
method we used to introduce random testing. We omit the
macro code in the interests of space, but note that it does not
move all nondeterminism to a single choice of seed. Rather
it uses a fixed seed to randomly permute a choice array at
each call to pick, then returns a value chosen from that
array by nondet_pick.

2.4 Mixing Random Choice with Full Nonde-
terminism

Given that we are performing our random testing with
a model checker, it would be nice to mix random testing
with full nondeterminism. For example, we might want to
generate operations and inputs for testing a file system ran-
domly (because the full range of choices is far too large to
exhaustively explore), but exhaustively explore the place-
ment of system resets in each such test. It would be useful if
our framework made it easy to experiment with this kind of
hybrid search strategy. Unfortunately, as written our pick

macro won’t quite work. We can indeed mix if nondeter-
minism (or nondet_pick calls) with pick calls, but when the
model checker backtracks the program to a nondeterminis-
tic choice, it will not be able to backtrack the state of the
system’s random number generator, and so different choices
will be made than in the first “version” of the test. For-
tunately, we can easily remedy this by using a PROMELA
variable to seed the random number generator at each call
to pick (Figure 1).

The model checker will restore the old value of last_seed
whenever the state is backtracked, allowing us to mix non-
determinism and random choice as we wish.

Figure 2 shows the heart of a simple model mixing ran-
domizeable nondeterminism using pick with full nondeter-
minism. If we use nondet_pick in place of pick, and set
MAX to 1,000, MIN to 800, and T to 5, the model checker
explores 10,628,619 choices for t and k2 before finding an
assertion violation; this is improved considerably to “only”
4,011,045 choices if we randomly permute the choices. Ran-
dom testing, in contrast, explores only 13 choices! Using
mixed nondeterminism, the tester performs only 1 “test,”
which violates the assertion. It is instructive to look at the
output of the tester (Figure 3). The tester first explores
a sequence of choices in both loops. It then backtracks to
the B loop, and tries the same choices with t set to 1. If

n = 0;
pick(k1, MAX);

if
:: t = 0
:: t = 1

fi;
do

:: (n < T) -> pick(k2, MAX);
c_code {printf ("A%d: %d(%d/%d)\n", now.n,

now.t, now.k2, now.k1);};
assert (t || ((k1-k2) < MIN));
k1 = k2;

n++;
:: else -> break

od;
n = 0;

if
:: t = 0
:: t = 1

fi;
do

:: (n < T) -> pick(k2, MAX);
c_code {printf ("B%d: %d(%d/%d))\n", now.n,

now.t, now.k2, now.k1);};

assert (!t || ((k1-k2) < MIN));
k1 = k2;

n++;
:: else -> break

od;
c_code {printf ("DONE\n");};

Figure 2: Core of example.pml

this hadn’t found an assertion violation, the model checker
would have backtracked again and tried the same choices in
the A loop with t set to 1. If we change the harness to use
pure random testing, the results change slightly but random
testing still outperforms model checking by many orders of
magnitude.

Why does random testing do so much better than model
checking in this case? The key is the wide range of choices
for k2 – the model checker is performing a depth-first search,
which means that it has to try all 1,000 choices for k2 in the
last step of the run before it can reconsider the previous
choices. Unfortunately, the error cannot be exposed in the
second loop until the model checker backtracks all the way
to the decision on t. This difficulty is not addressed by
the usual reduction technique of introducing an (unsound)
abstraction, if we abstract by matching states rather than
by limiting inputs: the model checker still has to gener-
ate all the possible choices, even if only to discard them as
reaching an already visited abstract state. Permuting the or-
der of the nondeterministic choices is also ineffective — the
choices must all be explored, whatever the order. Switching
to breadth-first search often only makes the problem worse,
due to the memory requirement for the state queue, though
in some cases a heuristic search such as A* may be able to
address the issue of large choice ranges [8]. The example
is contrived, but the problem is real. In general, users try
very hard to avoid using large choice ranges in explicit-state
model checking.

This example serves as a trivial analogue for the possibility
of checking a file system with random testing for generating
operations and parameters mixed with full nondeterminism
for choosing placement of system resets.

2.5 Boolean Choice and Probabilities
We also provide a pick_bool macro, allowing users to as-

sign a boolean choice without specifying a range of 1. This

Test with seed 100001
A0: 0(870/309)

A1: 0(131/870)
A2: 0(940/131)
A3: 0(706/940)

A4: 0(790/706)
B0: 0(606/790)

B1: 0(984/606)
B2: 0(122/984)

B3: 0(998/122)
B4: 0(67/998)
DONE

B0: 1(606/790)
B1: 1(984/606)

B2: 1(122/984)
pan: assertion violated (!(t)||((k1-k2)<800)) (at depth 148)

Figure 3: Output for random testing with mixed
nondeterminism

macro takes three arguments: pick_bool(var, num, den).
The parameters num and den indicate the probability that
the variable should be assigned true. We are exploring con-
venient notations for allowing biased choice to be introduced
into the original pick macro, but find that concise but flex-
ible expression of probability distributions is not easy.

3. APPLICATIONS: FLIGHT SOFTWARE
DATA STORAGEMODULES

We applied our framework to a large-scale effort to model
check and test flight software systems used for data storage
(on flash memory and in a RAM file system) for NASA/JPL’s
upcoming Mars Science Laboratory mission [1]. In earlier
work, we described our application of random testing with
feedback to a preliminary version of these modules [6], and
our use of automated source code instrumentation to model
check the lowest-level (and most critical) flash storage mod-
ule [7]. In this paper we report on our application of a
unified framework for random testing and model checking
to the full POSIX flash file system. The model is similar to
the NVDS (Non-Volatile Data Storage) model described in
earlier work, except that the range of operations and inputs
is extended to the POSIX operations used in the flight file
system, including choice of file descriptor and path names.
We make use of the same approach to automatically instru-
ment the code so we can detect modifies clause (i.e., mem-
ory safety) violations. Figure 4 shows a simplified version of
the part of the PROMELA harness that tests unlink. The
pseudo-PROMELA above is not in any way specific to MSL
or space usage: this is what any tester for POSIX file systems
would look like, at a high level. As shown, we determine the
correctness of NVFS (Non-Volatile File System) behavior
by comparing results with our RAMFS (RAM File System)
implementation for MSL, which has been more thoroughly
tested via comparison with Linux file systems (we are not
injecting RAMFS with faults — it operates without experi-
encing the resets and hardware failures our harness presents
to NVFS) and with another, independently developed, RAM
file system, a standard use of differential testing [13]. The
testing and model checking has revealed a number of impor-
tant bugs, in both RAMFS and NVFS. The full PROMELA
harness is about 2,700 lines, and is considerably more read-
able and flexible than the test driver used in earlier random
testing (about 5K lines of C).

NVFS itself is a C program of approximately 8K lines. Its

:: choice == UNLINK -> /* unlink */
pick(pathindex, NUM_PATHS); /* Choose a path */
c_code { enter_nvfs(); /* Allow memory access to NVFS region */

now.res = nvfs_unlink (path[now.pathindex]);
now.nvfs_errno = errno;

leave(); /* Disallow memory access */ };
check_reset(); /* Check for system reset and reinitialize/mount NVFS if needed */

if
:: (res < 0) && (nvfs_errno == ENOSPC) -> /* If there was an out-of-space error */

check_space();

:: ((!did_reset) || (res != -1)) && !((res < 0) && (nvfs_errno == 28)) ->
c_code{ enter_ramfs(); /* Allow memory access to RAMFS region */

now.gres = ramfs_unlink (path[now.pathindex]);
now.ramfs_errno = errno;
leave(); /* Disallow memory access */ }

:: else -> skip
fi;

...
assert (res == gres);

assert (nvfs_errno == ramfs_errno);

Figure 4: Simplified PROMELA code for file system testing

 70

 75

 80

 85

 90

 0 20 40 60 80 100 120 140 160 180

C
ov

er
ag

e
(o

ut
 o

f 1
00

%
)

Minutes

 RT, nvds_box
 MC, nvds_box
 RT, nvfs_pub
 MC, nvfs_pub

Figure 5: Source code (statement) coverage

state space, even when unsound abstractions are applied and
flash space is reduced to 8 blocks of 4 pages with 112 bytes
of data, is effectively “infinite”— bitstate model checking on
a 32GB system suggests a lower bound of at least 5 × 1010

states.

4. EXPERIMENTS:RANDOMTESTINGVS.
MODEL CHECKING

Our framework made it possible to experiment with ex-
ploring the same (effectively infinite) state space, with the
same model and probabilities for nondeterministic choices
via model checking and random testing. We compiled two
model checkers from a SPIN harness for the MSL NVFS
modules, with only one difference: in the first version, pick
was defined to produce complete nondeterminism with ran-
dom ordering of transitions; in the second version, the macro
was defined to induce random testing with test runs of length
1,000. For model checking, we used an arbitrary depth-first
search limit of 2,000 states4.

We then executed both versions, in each case with a fixed
time limit: that is, for each experiment we executed n min-

4The state limit and test run length are not directly compa-
rable: the length in the first case is measured in number of
random choices, the other in internal model checker states.

 35

 40

 45

 50

 55

 60

 65

 0 20 40 60 80 100 120 140 160 180

A
bs

tra
ct

 fl
as

h
st

at
es

 c
ov

er
ed

Minutes

 RT
 MC

Figure 6: Abstract flash state coverage

utes of model checking and n minutes of random testing. We
began with a time limit of only 5 minutes, and increased the
limit in steps of 5 minutes to 3 hours (180 minutes). The
number of states stored by the model checker increased from
just 6,000,000 states with a 5 minute limit to 1.84×108 with
180 minutes. For random testing, 5 minutes proved sufficient
to perform 11,018 test runs. Increasing the time to 180 min-
utes allowed us to perform 375,512 runs. Of course, states
stored and test runs are not directly comparable; these fig-
ures serve only to indicate how both methods scaled with
additional run-time. As the time and number of system
states stored or random tests performed increased, we ex-
pected that coverage of the module’s source code and of
abstractions of the system state would also increase.

4.1 Source Code Statement Coverage
Figure 5 shows how statement coverage of the most inter-

esting source files (nvds_box.c and nvfs_pub.c) increased
over time. Model checking began with significantly higher
coverage and covered at least as many statements for al-
most every time limit, in both cases. For the NVFS public
interface (nvfs_pub.c), random testing eventually matched
the coverage level of model checking. For this portion of
the code, we believe coverage to be complete: that is, we
do not believe that the choices allowed by the harness make

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180

A
bs

tra
ct

 p
ag

e
st

at
es

 c
ov

er
ed

Minutes

 RT
 MC

Figure 7: Abstract page state coverage

it possible to cover more of the source code. The second
file, nvds_box.c, is more interesting, as we do not know if
the coverage was complete at 86.41% for model checking.
This file contains much of the low-level behavior managing
how “boxes” (files and directories) are stored on flash. For
this critical file, random testing not only initially covered
less code than model checking, but the gap remained signif-
icant even at 3 hours (though random testing did improve
on model checking at the 50 and 55 minute limits).

We speculate that the coverage of the public interface is
governed almost purely by the choice of parameters: while
the state of the file system does matter (for instance, cov-
ering code returning an error code for a file that does not
exist), it only matters in a “shallow” way. Obtaining com-
plete coverage requires knowledge only of the tree structure
of the file system and the valid ranges of parameters, and
random operations will usually produce states in which it is
easy to“guess”both a pathname that exists and a pathname
that does not exist. For nvds_box.c, on the other hand, cov-
erage depends on the state of the flash device — which pages
are in use and dirty and which blocks have the highest wear
counts. An alternative way of looking at this distinction is
that we expect that it would be possible (or even easy) to
cover nvfs_pub.c by applying random operations to almost
any random file system state. For a fixed file system state it
would be impossible to generate inputs to cover nvds_box.c,
as some conditions are mutually exclusive (e.g., the flash de-
vice cannot be both full and nearly unused), and even for
code paths reachable from that state inputs might be unique,
rather than members of a large equivalence class (consider
the difficulty of guessing “write between 50 and 60 bytes to
file f” vs. “attempt to open a file that does not exist”).
Because model checking backtracks to explore all possibili-
ties and stops exploration when it reaches an already visited
state, it should have an advantage in obtaining coverage.

For another file, nvds_tree.c, the model checker covered
85.02% of statements in 5 minutes, while the random tester
covered only 81.43%, but for larger time limits both explo-
rations covered 85.02%. The two approaches did not differ
at any point for the files nvds_nvm.c and nvds_ftl.c, and
additional time did not increase coverage of these files from
the 5 minute baselines of 79.70% and 82.14%.

4.2 Abstract Flash State Coverage
An independent measure of a search of this state space

is the number of abstract states covered. One abstraction
we use is based on how flash memory is being used. For
each block of the flash device, we consider only the mod-
ule’s notion of the block state (is the block in use, free, or
dead?) and the number of live and dirty pages on the block.
Figure 6 shows how model checking and random testing im-
proved their coverage of this abstraction. Here the story is
more complex than with source code coverage: even though
the model checker bases its exploration on this abstraction
(never backtracking when it has found a new abstract state),
random testing covers more abstract states until around the
50-minute mark. After this point, however, model checking
consistently covers more states, including very difficult-to-
produce scenarios resulting from precisely-timed system re-
sets. We do not know if the coverage is complete, but have
not observed improved coverage even for multi-day runs on
a 32GB machine.

The shapes of the graphs for a similar but finer-grained
abstraction based on the states of all pages on the flash (us-
ing 32 rather than 8 abstract variables) are similar (Figure
7). In this case, however, model checking begins with bet-
ter coverage, and random testing briefly matches but never
improves on model checking.

5. RELATEDWORK
Visser et al. implemented a true random testing mode

[16] in Java PathFinder [15], in order to compare exhaustive
model checking (with or without symbolic execution), ran-
dom testing, and model checking with lossy abstractions,
for basic block and predicate coverage of Java data struc-
tures. Their implementation does not allow mixing of ran-
dom testing mode and full nondeterminism with backtrack-
ing (though this would be fairly easy to implement in JPF,
using a choice generator). The key differences with our work
are that JPF has the advantages and disadvantages of Java
rather than PROMELA (with as much C as is needed or
desired) as a language for a test harness, and that JPF is a
considerably less efficient model checker than SPIN, even if
large fragments of native Java are used.

Dwyer et al. note the importance of transition ordering
in model checking, and establish the difficulty of evaluating
different search techniques [4]. Concern about high sensitiv-
ity to error location and search order influenced our decision
to report coverage results in our experimental results rather
than compare the error detection effectiveness of random
testing and model checking.

6. CONCLUSIONS AND FUTUREWORK
Given our uncertainty about how best to test programs

with very large state spaces, we would like to apply both
systematic techniques (such as model checking) and ran-
dom testing. Unfortunately, the effort required to produce
a model checking harness and a random tester is often close
to twice that required to produce just one of these. In this
paper, we show how to use a model checking harness to
perform true random testing. Our framework also makes it
possible to mix model checking and random testing, giving
us the tools to explore novel and potentially useful search
strategies that are difficult or impossible to use with pure
model checking or pure random testing.

6.1 Is Model Checking Better than Random
Testing?

For our example, assuming we have more than an hour to
test a program, model checking appears to cover the state
space more effectively than random testing. It would be pre-
mature to draw any general conclusions from one non-trivial
real world application such as our file system testing. The re-
sults of Visser et al. show that random testing can (in some
circumstances) be competitive with exhaustive exploration
[16]. In both cases, it might be better to compare with
random testing using feedback [6, 14] to limit the choices
available based on past history, mitigating random testing’s
tendency to execute many redundant and invalid operations.
An example of using feedback in this case would be to limit
pathname choices in a state to the set of pathnames pro-
vided as arguments to successful mkdir or creat operations
(a set that would initially contain only the root path /),
with the possibility of adding one additional random path-
name component. E.g., if the history set was {/, /a, /b},
path choices would include the members of the set plus /c,
/d, /a/a, /a/b, and so forth, but not /a/b/c or /c/a. We
restrict the choices based on the observation that if the file
system is correct, no POSIX operation can ever succeed on a
path that is not of this form. We do not remove paths from
the history when they are deleted from the file system, as the
“resurrection” of dead files is a common fault. Feedback is
also potentially useful for model checking, though the model
checker will likely benefit less because of state-matching. It
is also the case that our model was originally designed with
model checking in mind: we therefore greatly limited the
choices for pathnames, file descriptors, placement of simu-
lated hardware faults, and number of bytes in arguments to
read and write. Random testing is (as shown in the toy
example from Section 2.4) often more effective than model
checking when a depth-first search must consider each of
1,000 possibilities for the last choice made in a path before
it is able to re-examine earlier choices. Our model is easily
parametrized, so we hope to perform a much more in-depth
study of how the range of parameters and use of feedback
affects the effectiveness of both model checking and random
testing. Preliminary results for experiments in which we in-
crease the range of bytes written and read from 5 to over
300 show random testing as slightly superior in statement
coverage for some files, but remaining generally less effective
as test time increases.

6.2 Inspiring NewApproaches toModel Check-
ing and Dynamic Analysis

More generally, we hope that our method, which changes
the shape of the state space without modifying the model
checker — essentially implementing new search strategies
by using SPIN’s ability to call native C code — will inspire
other researchers to “hack” the model checker and introduce
heuristic search and other capabilities useful for testing but
missing from SPIN’s standard release.

Finally, we hope that this approach to random testing will
inspire other dynamic analysis and testing researchers to
consider the use of SPIN for analyzing C programs. At least
for embedded systems with clearly defined state memory,
the process is relatively painless and enables a wide variety
of partial and exhaustive selections of executions to explore.
Because SPIN works by actually executing C code, using
dynamic analysis tools such as Daikon [5] with the model
checker generating the analyzed executions is often trivial.

7. REFERENCES
[1] http://mars.jpl.nasa.gov/msl/.

[2] Edmund M. Clarke, Orna Grumberg, and Doron
Peled. Model Checking. MIT Press, 2000.

[3] Matthew B. Dwyer, Sebastian G. Elbaum, Suzette
Person, and Ragul Purandare. Parallel randomized
state-space search. In International Conference on

Software Engineering, pages 3–12, 2007.

[4] Matthew B. Dwyer, Suzette Person, and Sebastian
Elbaum. Controlling factors in evaluating
path-sensitive error detection techniques. In
Foundations of Software Engineering, pages 92–104,
2006.

[5] Michael Ernst, Jake Cockrell, William Griswold, and
David Notkin. Dynamically discovering likely program
invariants to support program evolution. In
International Conference on Software Engineering,
pages 213–224, 1999.

[6] Alex Groce, Gerard Holzmann, and Rajeev Joshi.
Randomized differential testing as a prelude to formal
verification. In International Conference on Software

Engineering, pages 621–631, 2007.

[7] Alex Groce and Rajeev Joshi. Extending model
checking with dynamic analysis. In International

Conference on Verification, Model Checking, and

Abstract Interpretation, pages 142–156, 2008.

[8] Alex Groce and Willem Visser. Heuristics for model
checking Java programs. Software Tools for

Technology Transfer, 6(4):260–276, 2004.

[9] Richard Hamlet. Random testing. In Encyclopedia of

Software Engineering, pages 970–978. Wiley, 1994.

[10] Richard Hamlet. When only random testing will do.
In International Workshop on Random Testing, pages
1–9, 2006.

[11] Gerard Holzmann and Rajeev Joshi. Model-driven
software verification. In SPIN Workshop on Model

Checking of Software, pages 76–91, 2004.

[12] Gerard J. Holzmann. The SPIN Model Checker:

Primer and Reference Manual. Addison-Wesley
Professional, 2003.

[13] William McKeeman. Differential testing for software.
Digital Technical Journal of Digital Equipment

Corporation, 10(1):100–107, 1998.

[14] Carlos Pacheco, Shuvendu K. Lahiri, Michael D.
Ernst, and Thomas Ball. Feedback-directed random
test generation. In International Conference on

Software Engineering, pages 75–84, 2007.

[15] Willem Visser, Klaus Havelund, Guillaume Brat,
SeungJoon Park, and Flavio Lerda. Model checking
programs. Automated Software Engineering,
10(2):203–232, April 2003.

[16] Willem Visser, Corina Păsăreanu, and Radek Pelanek.
Test input generation for Java containers using state
matching. In International Symposium on Software

Testing and Analysis, pages 37–48, 2006.

