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NASA’s planned Lunar missions will involve multiple NASA centers where each 
participating center has a specific role and specialization.   In this vision, the Constellation 
program (CxP)’s Distributed System Integration Laboratories (DSIL) architecture consist of 
multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control 
centers interacting with each other over a broadband network to perform test and 
verification for mission scenarios.  To support the end-to-end simulation and emulation 
effort of NASA’ exploration initiatives, different NASA centers are interconnected to 
participate in distributed simulations.  Currently, DSIL has interconnections among the 
following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), 
Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL).  Through 
interconnections and interactions among different NASA centers, critical resources and data 
can be shared, while independent simulations can be performed simultaneously at different 
NASA locations, to effectively utilize the simulation and emulation capabilities at each center.  
Furthermore, the development of DSIL can maximally leverage the existing project 
simulation and testing plans.   In this work, we describe the specific role and development 
activities at JPL for Space Communications and Navigation Network (SCaN) simulator 
using the Multi-mission Advanced Communications Hybrid Environment for Test and 
Evaluation (MACHETE) tool to simulate communications effects among mission assets. 
Using MACHETE, different space network configurations among spacecrafts and ground 
systems of various parameter sets can be simulated. Data that is necessary for tracking, 
navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew 
Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are 
disseminated to different NASA centers and updated periodically using the High Level 
Architecture (HLA).  In addition, the performance of DSIL under different traffic loads with 
different mix of data and priorities are evaluated.  

I. Introduction 
 

pace exploration has been one of NASA’s visions, and NASA’s Exploration Systems Mission Directorate 
(ESMD) is responsible for realizing this vision.   Within ESMD, the Constellation program (CxP)[1] is 

providing the next generation of human transportation spacecraft, Orion (or Crew Exploration Vehicle, CEV).  The 
Ares I and Ares V crew launch vehicles (CLVs) will provide the thrust.   The Distributed System Integration 
Laboratories (DSIL) project fits under the CxP.  The goal of DSIL is to develop capabilities to support systems 
integration, testing, and monitoring of an end-to-end distributed system architecture. DSIL involves multiple System 
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Integration Laboratories (SILs), simulators, emulators, testlabs, and control centers interacting with each other over 
a broadband network to provide virtual test systems for multiple test scenarios.    
 
Currently, DSIL architecture contains the following simulated components: Orion crew exploration vehicle (CEV), 
Ares I crew launch vehicle (CLV), Space Communications and Navigation Network (SCaN), Ground Systems 
(LCS), International Space Station (ISS), and mission control center (MCC), where these are interconnected through 
the High Level Architecture (HLA).  In the future, it is envisioned to extend DSIL architecture to include extra-
vehicular activity (EVA), cargo launch vehicle (CaLV), and Lunar Surface Access Module (LSAM). In the early 
stage of DSIL work, the above components are simulated at different NASA centers and the requirements for 
reliable and accurate operations of each space vehicle and networks of connected vehicles are being assessed.  
Preliminary traffic measurement for operations required for DSIL as well as the Command, Control, 
Communications and Information (C3I) telemetry data streams are collected and analyzed. .From these preliminary 
traffic measurements, we conclude that the HLA traffic is small compared to the available bandwidth from NASA 
Integrated Services Network (NISN) [2]. As the capabilities are being developed incrementally, DSIL will progress 
towards integrating higher fidelity simulations, emulations and including hardware-in-the-loop tests. 
 
 

II. Software & Network Infrastructure for DSIL 
 
DSIL consists of multiple testlabs that are geographically located at different parts of the United States.  These 

testlabs are connected through NISN [2].  The NISN backbone and the externally accessible IP addresses through 
the facility network forms the NASA Distributed Simulation network (DSNet) which is part of NISN.  Currently, the 
DSIL testlabs that are connected through DSNet are located at Jet Propulsion Laboratory (JPL), Marshall Space 
Flight Center (MSFC), Johnson Space Center (JSC), Goddard Space Flight Center (GSFC) and Kennedy Space 
Center (KSC).  

To enable communications and interoperability among different NASA centers within DSNet, HLA is chosen as 
the framework for distributed simulation.  HLA [3] is a layered, event-driven software architecture that defines a set 
of common interfaces, models, and rules for distributed simulation.  HLA was originally developed by the U.S. 
Department of Defense (DoD) Defense Modeling and Simulation Office (DMSO) to achieve interoperability across 
the large numbers of different types of simulations developed and maintained by the DoD [3].  Later, the core of 
HLA distributed simulation technology is adopted for the IEEE 1516 HLA standard. HLA is platform independent 
and it enables the combination of independent simulations into a single, comprehensive simulation. There are 
different implementations of this standard.  DSIL is using the HLA implementation by Pitch [4].   The software 
implementing HLA specification is called Pitch Run-Time Infrastructure (RTI).  An instance of a distributed 
simulation is called a federation where each simulation within the distributed simulation is a federate.  A federation 
Object Model (FOM) defines the objects and interaction classes in the federation.  Information exchange among 
federates are defined by FOM. 

Specifically, in our simulation, the Crew Exploration Vehicle (CEV) federate uses the Advanced NASA 
Technology Architecture for Exploration Studies (ANTARES) software [5].  This simulation supports Orion 
Guidance Navigation and Control flight software evaluation and test, where the simulation is run from JSC.  Mission 
Control Center (MCC) federate is also operated at JSC.  The Launch Control Center (LCC) federate provides pre-
launch capabilities and it is simulated at KSC.  The Crew Launch Vehicle (Ares) simulation is called Ares Real-
Time Environment for Modeling, Integration and Simulation (ARTEMIS) and it is run from MSFC.   GSFC 
provides DSIL Interface Unit (DSILIU) test with JSC to measure DSNet performance.  Space Communications and 
Navigation Network (SCaN) simulation is run from JPL. The purpose of SCaN simulation at the JPL is to simulate 
the end-to-end communications and networks systems to support CxP missions while interoperating with other SILs.    
Specifically, this is the communication network that transports data between Orion (or Ares) and Mission Control 
Center (MCC).  SCaN consists of assets from Space Network (SN), Ground Network (GN), and potentially the Deep 
Space Network (DSN).  Although NASA’s Integrated Services Network (NISN) is not part of SCaN, it is on the data 
path between Orion and MCCs thus it is included in the simulation. 

Spacecraft status such as position, velocity, and acceleration are exchanged among simulation federates through 
HLA.  In addition, Orion and Ares also send telemetry data to MCC and (or) LCC.  The C3I telemetry data are 
passed through User Datagram Protocol (UDP) sockets by using the Managed Automation Environment for 
Simulation, Test, and Real-time Operations (MAESTRO) developed at MSFC.  MAESTRO provides a 
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configuration and control system for test conductor to setup and run a test.  It also provides data distribution and data 
exchange to distribute data generated by models/hardware residing at different facilities.  

 
To measure the end-to-end throughput and delay (of HLA and C3I data streams among different NASA centers) 
during simulation runs, Wireshark [6] was used.  Wireshark is a freeware that measures the end-to-end protocol 
performance.  In addition, to assess the bandwidths between network end-points, IXIA [7] was employed.   
 

III. SCaN Simulator and Interface Design 

A. Network Simulation Tool (SCaN/MACHETE overview)  
 

The SCaN Simulation tool[8] which is based on MACHETE [9] has been developed for the purpose of 
determining the performance of existing and emerging communications protocols and services in the context of 
space exploration.  In addition, the SCaN simulator has a capability to interface with external inputs that are 
necessary for DSIL operations.  Emphasis has been given to capturing the unique effects imposed by Space 
environment where the environment consists of the following general systems: 

 
1. Orbital and planetary motion kinematics modeling: the simulation tool imports spacecraft positions for Orion 

and Ares and it uses assumptions to predict Tracking and Data Relay Satellite (TDRS) positions.  From the 
given positions, the tool computes the range and propagation delay accordingly.  Link dynamics (visibility) are 
either imported or computed by the network simulation tool.  This is further described in a later section. 

2. Traffic generation, protocol state machine modeling and execution: we have built models for the complete 
Consultative Committee for Space Data Systems (CCSDS) [10] protocol stack, including Proximity-1, Packet 
Telemetry, Advanced Orbiting Systems (AOS), and CCSDS File Data Protocol (CFDP), using Scalable 
Network Technologies’ QualNet [11] simulation environment.  On-board spacecraft data management system 
models have also been developed to capture the interaction among communications payloads, flight computer, 
persistent storage (Solid State Recorder, SSR), spacecraft busses, and traffic generated by on-board science 
instruments. In DSIL evaluations, the scenario consists of Orion, Ares, MCC, and TDRS bent-pipe.  We are 
currently using an in-house link budget library to simulate the communications effects and the tool is capable of 
delaying data to simulate propagation delay effects. Figure 1 shows the current SCaN simulation scenario used 
for DSIL, where the dotted region shows a TDRS bent-pipe link.   

 
 

 
Figure 1. SCaN simulation Scenario   

 
 
  
3. Real-time application interface: this feature enables the connection of MACHETE with external applications 

(e.g. middleware, protocol emulators) to perform real-time hybrid simulation/emulation.  Currently, MACHETE 
has a HLA interface which is used to synchronize different federates and exchange global information such as 
spacecraft positions, velocities, positions etc.  There is also an IP Network Emulator (IPNE) interface [11] to 
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called Time Stamp Order (TSO) events. Depending on whether it is desirable to enable TSO event in HLA 
simulation, the TM scheme can be a combination of time-regulating and /or time-constrained.  Time-regulating 
means a federate can send TSO events.  By doing so, RTI can prevent other federates from advancing time until 
time-regulated federates have sent all the data that they are going to send before time advancement request. In time-
constrained mode, a receiving federate can process TSO events in time stamped order. Hence, RTI prohibits time-
constrained federates from advancing time until it has received all the data that may be sent by other federates up to 
time advancement request.  In DSIL simulation, both time-regulating and time-constrained modes are used to 
synchronize time between federates and to analyze and trace simulation interactions.  
 

C. Managed Automation Environment for Simulation, Test and Real-time Operations (MAESTRO) 
 
MAESTRO was developed at Marshal Space Flight Center.  It is a software package that uses User Datagram 

Protocol (UDP) on a specified port to transport Command, Control, Communication, and Information (C3I) at a rate 
of 1 Hertz.  The Data Exchange Message (DEM) is used as a base format for MAESTRO.  In addition to the C3I 
data, DEM also contains information on time, fragmentation, and security in the functional context.  

The Extensible Markup Language (XML) is used to define the Metadata for all the packets used in MAESTRO.  
The Metadata describes all the packet data structure, name, descriptions, data format type, and engineering units 
used in C3I data and it is sent once at the beginning of simulation to reduce overhead.  
   

D. TDRSS Link model and Link Budget Calculation Library  
 

In order to evaluate and simulate the communications performance of CxP scenario described in Fig 1, we 
implemented the link budget calculation library and delay function in the SCaN Simulator based on the operational 
link budgets depicted in [18].  Hence, the SCaN simulator is capable of simulating TDRS link and it can simulate 
various Bit Error Rates (BERs) causing data loss according to various power, frequency and coding schemes. 
Further, we developed the internal Satellite bent-pipe model to accurately capture the bent-pipe behavior of TDRS in 
the SCaN simulator by using the link budget library to accurately model the physical layer. That is, the internal 
Satellite bent-pipe model calls the Link budge library to determine whether to drop the specific frames or not.   

 
 With this link budget calculation library, the CEV-SN and CLV-SN link budgets at various supporting frequency 
bands of different mission phases are calculated. The primary purpose of the link budget calculation is to evaluate 
the system operating point and to determine whether the error probability associated with that point meets the 
system requirements.  The link budget calculation library is written in C++ and can be run on either Linux or 
Windows environments. All static communication parameters listed in [18] for link budget calculations are dictated 
in the XML format. Each DSIL node such as CEV and SN in the SCaN Simulator has one XML file composed of 
different frequency bands for various phases and they are hierarchically categorized.  The proper XML files and 
relevant data are loaded based on the configuration of transmitter and receiver for the execution of link budget 
calculation. Moreover, some dynamic parameters needed for link budget calculation, such as the positions of the 
receiver and transmitter, are updated externally from HLA in real time. Some static data, such as the data rate, can 
be set externally after observing the performance variation as the setting changes.   The entire link budget 
calculation library is constructed as shown in the following figure. 
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Figure 3. Link budget calculation library 
 
 
In the first initialization step, both the transmitter and the receiver are configured and the proper static 

communication data are loaded from the XML files. Furthermore, some static data are optionally specified to 
overwrite the existing setting. There are three link budget relevant functions provided in the link budget calculation 
library. Each function calculates the link margin, data rate, and the BER based on user’s request, respectively.  The 
following picture illustrates in general how the link margin is calculated. The power received at the receiver is 
calculated by adding the gains and subtracting the losses to and from the transmitter power. At the receiver, the 
received Eb/No is calculated according to the data rate and it is further compared with the Eb/No of the required 
BER. This difference is the link margin.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Detailed Link Budget calculation 
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By default, the transmission is claimed to be at the safe side if the link margin exceeds 3 dB.  The calculation of data 
rate is the reverse process of the link margin calculation. The user has to specify the expected link margin, then the 
achievable data rate is calculated according to the expected link margin and the power received at the receiver node. 
The calculation of the BER or Symbol Error Rate (SER) is to calculate the data error rate according to the required 
and corresponding Eb/No values.   All calculations are based on the link budget calculation formula provided [18]. 
This library also provides a printing function which tabulates a balance list of calculated losses and gains. 
 

IV. Network Traffic Analysis Methodology for C3I data 
 
The DSIL simulation is performed under Distributed Simulation Network (DSNet), which is a collection of 

firewall facility local area networks that connected different NASA centers through NASA Integrated Services 
Network (NISN). The NISN provides the data transfer backbone for space missions.  There are two separate 
networks for NISN: a mission network (Figure 5), controlled out of NASA Goddard Space Flight Center (GSFC), 
and an institutional network, controlled out of NASA Marshall Space Flight Center (MSFC).  The NISN maintains 
staffed Gateway facilities at each NASA Center and most NASA facilities.  Staffed sites include Ames Research 
Center (ARC), Dryden Flight Research Center (DFRC), Cluster Controller (CC), Jet Propulsion Laboratory (JPL), 
Johnson Space Center (JSC), Kennedy Space Space (KSC), Langley Research Center (LaRC), Michoud Assembly 
Center (MAF), MSFC, Stennis Space Center (SSC), Vandenberg Air Force Base (VAFB), and White Sands Test 
Facility (WSTF)/White Sands Complex (WSC).  However, NISN does not provide or manage the local on-site 
networks at the various NASA centers.   

 
 

 

Figure 5. NISN Mission network [19] 

 
There are two ways data can flow through NISN network: 1) using the Internet Protocol Operational Network 
(IPONet) or 2) the High Data Rate System (HDRS).  The IPONet uses the Transmission Control Protocol 
(TCP)/Internet Protocol (IP) or User Datagram Protocol (UDP)/IP, which is the standard way to transfer data on the 
Internet.  The HDRS transports data rates from 2 Mbit/s to 48 Mbit/s for specialized missions requiring a high rate 
of data transfer and does not require the infrastructure of routers, switches and gateways to send its data forward like 
IPONet.   The DSIL uses IPONet to transfer data between all the SILs.  The SILs use TCP to simulate the truth data 
and UDP to transfer the C3I telemetry data, communicate with each other through the Internet Voice Distribution 
System (IVODS), and conduct video teleconferencing through VSee[17].  All these features consume certain 
amount of bandwidth, but NISN is only guaranteeing 15 Mbps limited bandwidth for DSIL from time to time.   As a 
result, it is necessary for DSIL to characterize the NISN network to understand its capability and ensure certain 
standard of Quality of Services (QoS).  Furthermore, it is important to monitor the traffic during the test to make 
sure that all the messages are being sent and received intact between different SILs with acceptable levels of 
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available bandwidths.  Because DSIL is working with a constrained network, any waste in network bandwidth 
should be minimized and there is a strong need to quantify these values.  Currently, we use IxChariot [7] to 
characterize the NISN network and Wireshark [6] to monitor the incoming and outgoing traffic at the JPL SIL.  
However, it is desirable to implement netflow [15] in the future to monitor traffic in real-time during the test to 
monitor bandwidth usages.  The DSNet currently guarantees 15Mbps throughput for reliable DSIL operations. There 
are TCP traffic generated for HLA operations as well as separate C3I data telemetry streams which are sent as UDP 
packet. In this section, we quantitatively measure traffic coming to the SCaN SIL.  The preliminarily empirical data 
traffic measurement show that the required HLA traffic is very small and does not interfere with the C3I UDP data 
stream.   

 
 
A. Traffic Monitoring and Throughput Benchmarking  

 
IxChariot is a commercial software tool developed by IXIA[7], it is considered to be a leading test tool for 
simulating real-world applications for predicting device and system performance under realistic load conditions. 
Furthermore, it provides the ability to assess the performance characteristic of any application running on wired and 
wireless networks.  Some of IXIA’s capabilities include: 1) over 150 application scripts for simulation Enterprise, 
Tripple-Play, and Internet traffic 2) real-world application behavior at the transport layer, 3) Separate control and 
data-plane activity creation using application groups, 4) tailored scripting capabilities, 5) throughput, jitter, packet 
lost, and end-to-end delay measurement capabilities, 6) embedded custom payloads to test specific data content 
across the network, etc.  Currently, we measure the throughput, jitter, packet loss, and end-to-end delay in the NSIN 
using IxChariot.     

 

Installing and using IxChariot is required a single console and a pair of clients (endpoints).  Figure 6 shows an 
example of how to connect and communicate between the console and endpoints pairs using IxChariot.   At the 
beginning, the test conductor creates a test scenario in the IxChariot console and executes the test.  At this point, the 
console establishes communications with end-points and sends test setup information to endpoint 1.  Then, endpoint 
1 establishes connections and sends test setup information to endpoint 2.  When endpoint 2 has acknowledged the 
connection, endpoint 1 replies to the console.  When all endpoint pairs are ready, the console directs them to start.  
After that, the two endpoints execute the test.  Endpoint 1 collects the test results and sends results to the console. 
Currently, MSFC SILs is the only SIL that has installed IxChariot client.  However, we anticipate that other SILs 
will participate in the near future.   

 
Figure 6. IxChariot connections between different SILs 
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By injecting additional traffic during the test, we can benchmark DSIL traffic because we are able to figure out how 
much additional traffic DSIL can handle.  This can be achieved by using IxChariot to inject additional traffic during 
the test.  For example, the red flow represents normal DSIL test traffic, the pink flow is the additional injected traffic.  
Thus, we can collect statistics at all SILs and use the statistics to calculate the drop rate to benchmark DSIL’s 
effective bandwidth. 

 

 
Figure 7. IxChariot traffic generation 

  
 

B. End-to-end Traffic measurement 
 
 

To measure the incoming and outgoing traffic at JPL, Wireshark[6] (freeware, also known as Ethereal) is used.  
Wireshark is a “packet sniffer”.  This tool can be used to determine the amount of data loss on DSNet between 
centers and variable delays on the DSNet. 

 

Empirical Traffic 
 
During a test run of a 11-minute Launch/Ascent scenario, we measured traffic coming to JPL from different 

NASA centers and classified traffic by source and by protocols.  All TCP, UDP, and SSH traffic coming are 
captured in the following figure and shown in the different colors.  
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Figure 8. Overall traffic measured using Wireshark 
 

In Figure 8, 1∆  depicts the time interval for test initialization and setup; 2∆ marks the actual scenario run.              
 

In Figure 8, UDP data include C3I telemetry data, as well as VSEE (video of different labs running the test); 
TCP include HLA data and internal network operation traffic.  SSH is using TCP but we separated it out in the 
figure.  From the TCP traffic, we can identify the duration of the scenario by looking for patterns that match the 
HLA traffic.  We observed that C3I telemetry data from CEV and CLV are relatively small compared to VSEE 
where VSEE dominates the UDP traffic.  

The total CEV data is being generated from CEV is 0.03 Mbps and 0.012 Mbps for CLV.  This is consistent with 
what actually was sent from the CEV at JSC and CLV at MSFC.   The minimum required bandwidth is 0.042 Mbps 
for the UDP C3I telemetry for this initial test.  The rest of the UDP traffic consists of VSEE, the minimum UDP 
bandwidth required for DSIL operations are about 2.5 Mbps for this scenario.    In the future, it is expected that CEV 
and CLV will send more C3I telemetry and we can analyze the performance in the similar way described in this 
work.    
 
In Figure 8, the total TCP traffic is plotted with black color and the majority of TCP traffics are HLA traffic. The 
cumulative average of TCP traffic during the test is about 0.25 Mbps.  In the following figure, all HLA traffic 
measured at JPL are separated according to the senders.   The data points with pink color is all incoming HLA traffic 
at JPL The plots with red, green, and blue indicates the HLA traffic received from JSC, MSFC, and KSC 
respectively. 
 
 
 
      

 
 
 

Red: SSH traffic (bits) 
Black: all TCP traffic (bits) 
Green :all UDP traffic (bits) 
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Figure 9.  HLA traffic measured at JPL 

 
We can see that the bandwidth required from HLA operations is 0.25Mbps. Hence, we can see that the HLA 

traffic is relative small compared to the available bandwidth given by the DSNet. 
  

 

C. NISN Characterization between JPL and MSFC 
 

C.1 Latency 
Currently, MSFC SIL is the only center that installed IxChariot client.  We can only characterize NISN only the link 
between JPL and MSFC.  First, we measure delay by sending 5000 UDP packets of sizes 654 (and 1698 bytes).  The 
following figure shows the round-trip time delay from sending the packet to the receiving application sending back 
an acknowledgement.  For example, the average round-trip delay is 95 ms for packet size of 654 bytes; the minimum 
is 94ms, and maximum is 97 ms.  The delay is accurate with 95 percent confidence.  For the packet with size of 
1698 bytes, the average round-trip delay is 96 ms; the minimum is 96ms, and the maximum is 131ms with 95 
percent confidence level. 

 

     
Figure 10. Latency measurement using IxChariot 

 

 

 

Max (all HLA traffic)  
~ 0.25 Mbps 
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C.2 Bandwidth 
C.2.1 TCP Bandwidth Measurement 

We also measured the TCP throughput, although it varies throughout the day, the throughput nevertheless is always 
less than 3 Mbps.  Here is a snapshot of an instance of TCP throughput measurement between JPL and MSFC.  The 
average is 2.32 Mbps; the minimum is 1.806 Mbps, and the maximum is 2.657 Mbps, with 95 percent confidence 
interval of [2.251, 2.38] Mbps. 

 
Figure 11. Throughput measurement using IxChariot. 

 

 
C.2.2  UDP Bandwidth Measurement 

 
To measure the UDP throughput from one SIL to the other SIL over the DSNet, we send 365 MB of data, in packet 
sizes of 500 B, 1000 B, 1698 B, 10,000 B, 16,210 B, and 32,700 B with data rate between 10 Mbps to 140 Mbps. 
From the percentage of packet drop, we determine the optimal UDP packet sizes with respect to different data rates 
to minimize the packet drop over the DSNet.  This is shown in the Figure 12, where X-axis is data rate in Mbps and 
the y-axis is the percentage of packet drop. Hence, packet size of 1698 B (and 5000 B) yield the lowest packet drop 
rate for data rates less than 50 Mbps (and 80 Mbps).  

 
Figure 12. Packet drop rate as a function of transmission rates for different packet sizes 
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V. Conclusions and Future work 
 
We have successfully participated in distributed simulations of the Launch/Ascent scenario for the Distributed 
System Integration Laboratories (DSIL) involving different NASA centers and tested interoperability through HLA.  
In addition, we implemented SCaN simulation to be used within HLA infrastructure and framework to simulate the 
performance of CxP scenario.  The collective behavior of different data traffic coming to JPL is captured and 
analyzed. The assessment of the minimum bandwidth required to achieve the successful DSIL operation is shown in 
this work. Current development work is underway to continuously monitor and characterize the network 
performance on different DSIL data traffic. We are also leveraging off the development of SCaN simulation tool and 
protocols in another project to achieve higher fidelity of the network models.  As the CxP mission requirements 
become more complex, we envision that there will be a more need to perform the distributed simulation to analyze 
the mission requirements in various aspects while coherently achieving the real-time simulation. 
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