
 1

An Operations Concept for Integrated Model-Centric
Engineering at JPL

Todd J. Bayer, Lauren A. Cooney, Christopher L. Delp, Chelsea A. Dutenhoffer, Roli D. Gostelow, Michel D. Ingham,
J. Steven Jenkins, Brian S. Smith
NASA Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, California, 91109

Mail Stop 301-230
818-354-5810

Todd.J.Bayer@jpl.nasa.gov

Abstract—As JPL’s missions grow more complex, the need
for improved systems engineering processes is becoming
clear. Of significant promise in this regard is the move
toward a more integrated and model-centric approach to
mission conception, design, implementation and operations.
 The Integrated Model-Centric Engineering (IMCE)
Initiative, now underway at JPL, seeks to lay the
groundwork for these improvements. This paper will report
progress on three fronts: articulating JPL’s need for IMCE;
characterizing the enterprise into which IMCE capabilities
will be deployed; and constructing an operations concept for
a flight project development in an integrated model-centric
environment.1 2

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. ARTICULATING THE NEED ...2
3. IMCE OVERVIEW ..4
4. ARCHITECTING ..4
5. IMCE OPERATIONS CONCEPT ..7
6. CONCLUSION ..14
REFERENCES ..14
ACKNOWLEDGEMENTS ..14
BIOGRAPHIES ...15

1. INTRODUCTION
The mission of the Integrated Model-Centric Engineering
(IMCE) Initiative at JPL is to advance our enterprise from
the current document-centric engineering practices to one in
which structural, behavioral, physics and simulation-based
models representing the technical designs are integrated and
evolve throughout the life-cycle, supporting trade studies,
design verification and system verification and validation.
A necessary step toward these ends is to define and agree on
the target, i.e., the architecting step. A significant part of
architecting is constructing the operations concept:
understanding how users would use a model-centric
environment to develop future missions.

1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE
2 IEEEAC paper #1120, Version 3, Updated December 11, 2009

The IMCE Operations Concept is a work in progress, and
this paper reports the status of that work as well as two
closely related areas, as summarized below.

First we describe the ways in which the current document-
centric processes are failing to keep up with increasing
mission complexity. This is the section titled “Articulating
the Need”. The goal of this effort is to understand at a
sufficiently detailed level where the current flight project
development processes are not working well. This has been
useful in building understanding of, and advocacy for, the
IMCE Initiative. Its main uses however will be for guiding
the changes to our present environment and for judging the
effectiveness of those changes (the improved, model-centric
environment must of course be able to show that these
current problems have been fixed).

Next we describe the IMCE initiative and address the notion
of architecting and what it means in this context. It is
important to realize that IMCE itself is not a system. The
system of interest is in fact the JPL Flight Project
Development Enterprise. The IMCE Task will deploy
capabilities into this enterprise. It is necessary to understand
the architecture of this enterprise – both the as-is and the
desired, model-centric state.

Finally we describe our approach to, and current status of,
the Operations Concept. Infusion of model-centric
processes into JPL's engineering processes will require,
among other things, the construction of model-centric
analogues corresponding to the current processes, in each
technical domain and at each phase of a project's lifecycle.
To accomplish this it is necessary to understand the
processes we are attempting to transform. The operations
concept will describe key processes which flight projects
execute, in a ‘before’ (document-centric) and an ‘after’
(model-centric) view. A key assumption is that JPL’s
established engineering lifecycle for flight projects is a
mature and successful roadmap. That is, the problems
IMCE aims to address are in the ability of flight projects to
follow this roadmap, not in the roadmap itself. The
approach is to focus on small, almost atomic, pieces of this
process, in order to identify the architectural patterns of

mailto:Todd.J.Bayer@jpl.nasa.gov

 2

interest. Small teams composed of modelers and flight
project subject matter experts are developing the use cases.
Weekly reviews with the full team as well as two large
workshops have provided guidance and feedback.

2. ARTICULATING THE NEED
What problems is IMCE meant to address? At a high level,
the core challenge is to better manage growing system
complexity. As the character of JPL’s missions progresses
from fly-by to orbital study to in situ exploration, the
systems which must accomplish these missions grow in
complexity. One of the trends enabling this progression is
the ever-increasing processing power of spaceborne
computers, which allows more and more of the functionality
(i.e., behaviors) of these systems to be implemented in
software. Unfortunately, single viewpoint, natural language
specifications are inadequate to capture and expose these
system level interactions and characteristics (emergent
system behaviors). At the same time, the potential range of
behaviors has become so large that it is impractical to fully
test it: problems can no longer be reliably exposed by
testing. The result of this situation is that inadequately-
specified and incompletely-tested system level interaction
are a major and growing risk factor for our missions.

In-flight problems often result from these issues. These
problems range in severity from lowered science return all
the way to catastrophic mission failures. In the most benign
cases, unresolved development issues are left to mission
operations to work around, increasing cost and often
degrading the science return[1]. In more serious cases
significant anomalies occur, some of which are mission-
threatening. Escapes in management of complexity have
played a clear role in several significant anomalies during
the Mars Reconnaissance Orbiter (MRO) mission, as
described in [2] and [3].

While real and compelling, these challenges as articulated
above are not specific enough to guide the IMCE
development. Therefore a study was undertaken to explore
in more detail the nature of these challenges, as described
below.

Approach to Identifying Current Challenges

The IMCE team looked from several different vantage
points at the current way JPL develops flight projects, and
identified processes that are broken or functioning sub-
optimally. We then looked for patterns and common
themes in what we found, and describe them here. This
overall approach is guided by a key assumption that JPL’s
established engineering lifecycle for flight projects, as
expressed by the Flight Project Lifecycle, the Gate Product
matrix, and the Review Success Criteria, is a mature and
successful roadmap. That is, the problems IMCE aims to

address are in the ability of flight projects to follow this
roadmap, not in the roadmap itself.

Four themes emerged from this work. We summarize them
below, then describe each in more detail with references and
examples provided where available (much of the source
material is internal, unpublished work). The IMCE
Operations Concept will include use cases that explicitly
address the main themes here. Note that other themes which
are less directly addressed by Model Based Engineering
(e.g., training, management) are not addressed here.

Current Challenges: Four Themes

The current challenges in flight project engineering can be
grouped into four themes:

(1) System design emerges from the pieces, rather than
from an architected solution, resulting in systems
which are brittle, difficult to test, and complex and
expensive to operate.

(2) Knowledge and investment are lost at project lifecycle
phase boundaries, resulting in increased development
cost and risk of delayed discovery of design problems.

(3) Technical and programmatic sides of projects are not
well-coupled, hampering effective project decision-
making and increasing development risk.

(4) System design re-use is lacking, increasing cost and
risk, and damping the potential for true product lines.

Theme 1: System Design Emerges From The Pieces

a. Architectural principles are seldom articulated or used to
drive the design. The need for, and the role of, the architect
have not yet become a strong part of our engineering
processes. Lack of robust architecting allows poorly
understood or flawed requirements and assumptions to
persist, resulting in weakened designs.

Without strong architectural principles, the quality of the
architecture is disproportionately driven by the design
process of functional decomposition. But this process alone
does not naturally produce a well-architected system, nor
does the whole spontaneously re-emerge from the parts.
Some of the problem areas arising from weak architecture
are: unmanageable interactions, stovepiped analyses, and
brittle fault protection, as described below.

Without strong architectural support for system level
considerations, the management of ad hoc point-to-point
relationships (interactions, interfaces) can become
overwhelming.

Simplification for the purpose of analysis does reduce
complexity but may overlook interactions. Extensive

 3

decomposing of problems into more “tractable” models can
result in conflicting conclusions from sub-models.

Fault protection is largely equivalent to robust design. It
needs to be woven into the fabric of a design, where its job
is to preserve system functionality over a broad range of
conditions -- including faults, but not just faults. Some
projects make the mistake of trying to delineate fault
protection from nominal functionality to the detriment of
both. Such systems tend to be brittle, difficult to operate,
and less reliable.

b. Architectural principles, where they exist at all, are
sometimes abandoned to solve pressing technical problems.
 This is a problem because these “kludges” often make the
system more brittle and difficult to operate, increasing costs
as well as mission risk. Without stated architectural
principles, it is easier to abandon them when the going gets
tough. Even when they are stated, as some are in the JPL
Design Principles, they may still be abandoned. Only when
they are thoroughly and clearly embodied in a design, via
the architecture, are they persistent enough to be of value.

c. System designs are spread across many disconnected
artifacts (documents, presentations, spreadsheets). It’s not
always clear what the approved baseline is. A design
change can take months to propagate fully into the baseline
design, and the process requires many meetings, word-of-
mouth interactions, and emails.

d. Analogously to the scattering of design artifacts, aspects
of the design itself are often scattered. Weakly architected
systems often result in a situation where many disparate
pieces of the design contribute to carrying out a given
function with little high-level coordination. The control
parameters for these functions are similarly scattered
throughout the system, and are therefore more difficult to
understand, let alone manage. This problem is exacerbated
by the sheer numbers of control parameters (e.g., more than
20,000 on MRO).

e. Physics-based models in the various engineering
specialties are not connected to each other or to a system
model. Trade studies and system analyses require manual
integration of results among all these domains. The
inefficiencies make trades and other analyses take longer
than necessary, and make examination of more than a few
point designs impractical. This ‘stovepiping’ of analyses
can also hide significant system level interactions which may
only be ‘discovered’ during system test or, worse, after
launch.

f. Insufficient consideration of verification and validation
(V&V) during requirements development can render aspects
of the design untestable, increasing mission risk.

g. Science requirements are not well coupled to flight and
ground system requirements, causing the actual ‘goodness’

of a given engineering solution, in terms of its science
return, to be unknown until it’s too late to change the design.
The inadequate quantitative understanding of how changes
in engineering parameters affect the science objectives (the
so-called science merit function) can result in lost
opportunities to make risk/cost/schedule saving trades, and
can even result in a system which does not satisfy the
science objectives.

h. Desired system behaviors are poorly articulated by the
current textual representation. Using these textual
representations, system engineers are unable to
communicate meaningfully with software engineers about
the desired system behaviors. This results in systems whose
behavior must be ‘discovered’ – often in flight.

Theme 2: Knowledge & Investment are Lost Across Phases

a. Models used during the formulation phase of a project are
abandoned and new ones created when implementation
phase begins. Many examples exist: trade models, cost
models, power, telecom, data transport models.

b. Configuration Management (CM) of existing models is
lacking, impeding continued use in the next phase (or re-use
on the next project).

c. Essential attributes of design are not captured consistently
in a readily accessible manner. Architectural principles,
Trade study assumptions and rationale, and system design,
rationale, and narrative are only partially captured at best
and are seldom readily accessible.

d. Training of engineers joining a project takes longer than
necessary. Moving from pre-phase A to Phase A, and then to
Phases B, C and D, significant team expansion and turnover
occur. Training people who were not around for previous
phases is currently heavily dependent on getting key
documents from, and having lengthy conversations with, key
people. Because the system design is poorly captured, this
essentially ensures that new team members will be
discovering attributes of the design for years.

Theme 3: Technical & Programmatics are Poorly Coupled

a. The cost, schedule, scope, investment and risk
implications of a given set of requirements, science
objectives, components and functions is very difficult to
determine. Very little coupling exists between the
performance side (science, requirements, components, and
functions) and the implementation side (implementation,
investments, and risks). Schedule and cost models rarely
include mitigations/backup options for technical
implementation risks. It is difficult to transfer information
between tools and different discipline types.

b. Trade studies seldom fully incorporate programmatic
considerations. There is an unfilled need to be sure that
systems engineers are knowledgeable about the

 4

programmatic realities of a project and the impact of
engineering decisions on programmatics. The existing tools
do not support such an integrated view.

Theme 4: System Design Re-Use is Lacking

a. Because system architectures and designs are not well-
captured, re-using them on subsequent projects is difficult
and seldom happens (except where the project team itself is
‘inherited’ by the next project). There is currently no formal
way to document and integrate the broad experience and
knowledge of engineers across a project, to train new
systems engineers who will need to absorb this broad
knowledge quickly and deeply, and to make this available as
a legacy to future projects in a manner that is easily
dissected and reapplied to new circumstances. The current
institutional guidance (e.g., JPL Design Principles), while
providing important and useful heuristics and lessons
learned, is not sufficient to enable architecture re-use.

3. IMCE OVERVIEW
The objective of JPL’s Integrated Model-Centric
Engineering Initiative is to advance engineering practice to a
state in which descriptive and analytical models representing
technical designs and relating them to stakeholder concerns
are developed and integrated throughout the mission life
cycle, from early concept through operations. The IMCE
team encourages and facilitates this transition by providing
training, user community support, tool/model integration,
modeling standards, and a reusable models repository, in
partnership with engineers,flight projects, and institutional
management.

The IMCE Initiative is beginning its second year. The
emphasis in this early phase is development of initial
capability (personnel and process in addition to technology)
and demonstrating value in order to encourage uptake and
adoption of model-based engineering practices.

In recognition of the growing importance of the Systems
Modeling Language (SysML) [4] as an industry-wide
standard, the IMCE Initiative sponsors semiannual training
in SysML and the use of SysML modeling tools. In addition
to formal training, there is an active and growing Modeling
Early Adopters group that meets informally to exchange
problems and ideas.

The bulk of the IMCE workforce at this stage of the
initiative is devoted to developing the modeling
environment, which consists of tools, repositories, standards,
conventions, and guidance, in addition to consulting
services. Particular focus is given to practices that support
and encourage building interrelated models that cross
system, organization, and life-cycle boundaries. For
example, subsystem modelers should be able to relate their
design elements to system design elements authorized by a

different project work element, created by a different
organization, in an earlier life-cycle phase. This
interrelatedness is a key feature of the integrated nature of
IMCE. Achieving it requires, among other things, standards
for naming and classification of model elements and
properties (ontologies) and the expression of those standards
in SysML-specific terms (profiles). It also requires
established conventions for model organization and
configuration management (including access controls).

Another important aspect of the IMCE Initiative is explicit
integration with and support for JPL’s established
engineering life cycle. For example, our life cycle defines a
set of milestone reviews, with defined scope, deliverables,
and success criteria for each. The IMCE team is analyzing
these definitions in order to identify model-based
deliverables (or deliverable elements) and artifacts that may
be applicable evidence for assessing success. Any such
standard deliverables and artifacts will then become
candidates for development of generator applications built
upon a common model access, analysis, and product
generation infrastructure. Through these developments the
IMCE team intends to systematize and automate key
elements of the engineering life cycle at JPL, with the
benefits of improved information richness and consistency at
lower cost.

The IMCE Initiative has supported several modeling pilot
projects, the purpose of which has been to gain experience
in the use of SysML and SysML tools, to gather
requirements for institutionally-supported modeling
infrastructure, and to validate IMCE solutions to enterprise
modeling challenges (e.g., configuration management). The
pilots have focused on existing JPL projects, namely Gravity
Recovery and Interior Laboratory (GRAIL), Soil Moisture
Active/Passive (SMAP), and the proposed Jupiter Europa
Orbiter mission.

4. ARCHITECTING
The IMCE Initiative is currently in the architecting stage,
but what exactly is it architecting? It is important to realize
that IMCE itself is not a system. The system of interest is
actually the JPL flight project development enterprise. Our
objective is to improve the effectiveness of this enterprise
through the infusion of model-centric capabilities. In order
to accomplish this objective, it is necessary to address the
current and future architectures of this enterprise.

The current JPL flight project development enterprise has an
architecture—every system does3. This architecture,

3 We adhere to the definition of architecture from the IEEE standard 1471–
2000, “Recommended Practice for Architectural Description of Software-
intensive Systems”, which is now also ISO/IEC 42010:2007 [5]: the
fundamental organization of a system embodied in its components, their
relationships to each other and to the environment and the principles
guiding its design and evolution.

 5

however, is not well-described. Furthermore, it represents
the accumulation of local, ad hoc decisions, many of which
were not recorded. The net result is an architecture that
makes it easy to achieve certain goals (e.g., produce
presentation charts) and difficult to accomplish others (e.g.,
rapidly bound the scope of a requirement change.)
Similarly, the architecture of the future enterprise will
determine which goals are easy to achieve and which are
not. If we want our enterprise to achieve definite goals, we
need to shape its architecture with deliberate intent. These
goals, in turn, are defined by the stakeholders of the
enterprise and their concerns. [5] In order to ensure that our
architecture adequately addresses stakeholder concerns, we
develop views of the architecture that correspond to the
viewpoints of those concerns. These relationships are
captured in the IEEE 1471-2000 standard conceptual
framework in Figure 1.

For example, users or operators are generally considered
important stakeholders of a system like our flight project
development enterprise. Their concerns about operability
are generally addressed via an operational viewpoint of the

architecture, with views consisting of use cases and activity
diagrams/descriptions.

As another example, consider the situation where an
engineer wants to assess the impact of a requirement change.
The viewpoint in this case is the system design as seen from
that requirement: the higher-level requirements that it
refines, the lower-level requirements that refine it, any
analyses that relate it to peer requirements, the component,
function, interface or process that it specifies. This view
makes explicit the fact that there are concepts called
component, function, requirement, etc., and various well-
defined relationships among them.

One of the key motivations of the IMCE Operations Concept
is to provide an operational context for the architecture, i.e.,
the view which captures the concerns of those who will be
using the integrated model-centric engineering environment
to develop flight projects. The resulting operational
perspective will inform the other pertinent views of the
architecture, e.g., structural views, information flow views,

Figure 1 IEEE 1471 Conceptual Framework.

 6

etc. The envisioned architecting process is illustrated in
Figure 2 and described below:

• Produce a specification of the current architecture,
consisting of a set of general engineering
application patterns, captured in a set of useful
views. The process of constructing these models
will reveal “pain points”, risk areas, and
inefficiencies in our current architecture and
processes, representing improvement target. These
patterns will be produced by examining and
abstracting views from a representative set of
engineering applications (see Figure 2). Examples
of representative engineering applications are
discussed in Section 5 of this paper.

• Once the current architecture has been adequately
specified, the evolution of this architecture from its
current state to the desired future state needs to be
specified. This evolution will necessarily consist of
a sequence of incremental steps, in which
manageable changes are documented through
similar views and then implemented.

This architecting process is currently underway at JPL for
our flight project development enterprise. Key questions that
need to be answered include:

What “views” do we need?

As mentioned above, answering this question involves
identifying the key stakeholders and their concerns/needs,

and deciding what viewpoints (and specific views) would be
of most utility in addressing those concerns. In addition to
the above-mentioned operational viewpoint (including views
captured in use cases and activity diagrams/descriptions), we
anticipate needing viewpoints that capture information and
data flow through our systems; the set of engineering tools
used and the relationships between them; workflow for intra-
and inter-organizational collaboration; inheritance and reuse
of models and software; and others.

What methodology(ies) do we follow to produce these

required views?

At this point, we have only a partial answer to this question.
We will undoubtedly use some combination of our current
engineering practice (domain-specific thinking, via
engagement of the appropriate domain experts at JPL), and
aspects of model-based engineering methodologies that
resonate with our architecting and engineering teams (e.g.,
our in-house developed State Analysis methodology [6], the
Object-Oriented Systems Engineering Methodology [7], the
Rational Unified Process [8], etc). The question of
methodology is a critical one, and work is underway to
answer this question.

How do we train our people?

In this case “training” involves both the people who need to
produce these views (the architecture team), as well as the
people who will need to do their work within the context of
the (re-architected) enterprise (the JPL engineering
community). JPL’s IMCE initiative is beginning to address

Figure 2 Documenting the current structure of our Flight Project Development Enterprise.

 7

this question in two ways: (1) by sponsoring training classes
in the areas of system and software architecture and model-
based engineering (for both systems and software)
methodologies and representations, and (2) by providing
leadership, support and resources to the growing community
of practice in model-based engineering at JPL.

5. IMCE OPERATIONS CONCEPT
Development Approach

The approach begins with capturing user scenarios in
support of use-case development (Figure 1). The team
selected several Subject Matter Experts (SME) in Flight
Systems development to review trade studies and
requirements development processes. Capturing as-is
models of workflows would help identify specific problems
that an integrated model-centric environment could solve.

We resolved to “eat our own dog food” and capture these
workflows and architectural views in a SysML model: to be
successful with furthering the adoption of modeling we need
to adopt modeling ourselves as a demonstration of the
effectiveness and utility we are advocating. In other words –
if modeling can’t be used to solve the problem of designing
IMCE then how could it solve anything else?

The approach of low-level workflow models has become an
important aspect of our approach. Based on the work so far,
the root causes of many of the problems identified in section
2 are thought to be deeply and pervasively embedded in
low-level interactions among people and tools. So, to
discover and mitigate these root causes, we must look at
these low level interactions. This approach is consistent
with the assumption previously stated that the high level
process (i.e., the overall engineering lifecycle) is sound.

SME insights into these workflows are key to a complete
understanding of the as-is architecture. It was assumed that
past lessons learned have already been incorporated into the
current practices. It is critical not to lose this experience
when developing a model-based approach to systems
engineering. By conducting these studies with a few
different engineers who were experienced in each area, the
modeling teams assumed a fair sampling of existing
knowledge. The as-is models were reviewed with the system
engineers whose experience had been used to build them to
ensure accuracy. It is important to note that this is
supplementary to the eventual incorporation of institutional
best practices, rules, processes etc – much work is still
required.

To ensure consensus on the work flow feed back from the
SMEs, model reviews were also held with members of the
model-based community to review and help interpret and
guide the modelers’ interactions with the SME’s.. These
experienced modelers also had a variety of different systems

engineering experience, and helped mainly by bringing to
bear a depth of knowledge and experience from past
modeling endeavors. The models were also presented to
larger audiences at two IMCE workshops.

Basic Process for Information Gathering

The first step in the process was to select a set of activities
on which to focus. Ideally, this selection would largely
cover the spectrum of activities performed within the
organization. However, time constraints, as well as an
awareness of the diminishing returns on repeating the
process, limited the number of activities explored so far.
The reason that diminishing returns exist is that there are
fundamental issues and needs that will be uncovered
multiple times, while the number of new issues and needs
left to find decreases with each new study performed.
Therefore, two activities were selected: Trade Study
Performance and Requirements Development in Phase A.
Phase A is a significant point to start these activities as it is
the hinge-point between formulation and implementation –
the most problematic point of disconnect in the current
enterprise. It also positions us for application of this work to
the proposed Jupiter Europa Orbiter mission. A team of two
people was assigned to each activity. The teams followed
approximately the same steps to achieve the goals outlined
in the Approach section above.

The basic steps performed by each team were:

(1) Identify and interview stakeholders and subject matter
experts

(2) Develop a high-level workflow and dataflow model of
the current process by which the activity is performed

(3) Identify an individual sub-activity within the process to
expand in more detail

(4) Develop a detailed workflow and dataflow model of
the sub-activity as it is currently performed

(5) Develop a detailed workflow and dataflow model of
the sub-activity as it might be performed in a model-
centric engineering environment

(6) Analyze models developed in steps 4 and 5 to discover
needs

At each step, a panel of experienced systems engineers
reviewed the results for correctness, completeness,
feasibility, and accessibility to the intended audiences.
Therefore, the completion of each step involved several
iterations.

Detailed Process Description

Step 1 – Identify and interview stakeholders and subject
matter experts

 8

In order to model the workflow and dataflow of performing
a trade study, the team needed to understand the process.
The team gained this understanding through interviews with
four subject matter experts and stakeholders in the area of
Phase A Trade Studies. The dialogue that took place in
these interviews was translated into SysML workflow and
dataflow diagrams. The first draft of this was reviewed by
two of the subject matter experts and revised based on their
comments.

Step 2 – Develop a high-level workflow and dataflow model
of the current process by which the activity is performed

This step was initially intended to be a main product of the
study. However, as time progressed, it became clear that its
function was rather to provide context for a deeper analysis.
 In either case, the correctness of this model was of
importance. In order to try to ensure correctness, the
modeling teams held interviews with several experts on the
study topics of differing backgrounds and focus. The
modeling teams used these discussions to generate models to
describe the process flow and the dataflow of the entire
activity. These subject matter experts reviewed these
diagrams and made suggestions and revisions, which the
modeling teams used to develop a second version of the
diagrams. The panel then reviewed these over the course of
several meetings in order to arrive at the final models.

Step 3 – Identify an individual sub-activity within the
process to expand in more detail

As the review of these products continued, it became clear
that they were not expressed at a low enough level of detail
to enable the main goal of helping define and elucidate the
Concept of Operations. This is due to the fact that there are
no major issues with the high-level process: it has evolved
over time to meet the needs of the project at each phase and
cannot be altered without failing to address the needs it was
developed to meet. However, what areas do present
problems to be solved are the means by which each step
within the whole process is completed. Therefore, it was
decided that each team would select a sub-activity within the
process to expand in more detail in order to identify those
problems and posit solutions to them. Again, this process
would ideally be completed for each sub-activity, but due to
various constraints, each modeling team analyzed only one
sub-activity so far. The sub-activities chosen were selected
because they are critical steps in the high-level process.

Step 4 – Develop a detailed workflow and dataflow model of
the sub-activity as it is currently performed (As-Is)

Once each team chose the sub-activity of focus, they
constructed models that describe what currently happens (as-
is) inside the sub-activity. Modeling at this level was
productive because it was at a sufficiently detailed level to
enable problems to become apparent, but not so low as to be
cluttered with detail at the level of mouse-clicks or

individual conversations. Like the previous models, these
describe both the actions performed, and the dataflow
associated with each activity. The models were reviewed by
the panel and refined several times.

There was a difference between how this step was
completed by the Trade Studies Performance modeling team
and the Requirements Development modeling team. The
Trade Studies modeling team found it useful to also create a
logical model at the low-level that is “method-independent”.
 They then described the steps of the current process (as-is)
as occurring within these logical steps. This made it easier
to compare the current process with a model-centric
engineering process by introducing conceptual divisions into
the process model. This approach worked well for Trade
Studies modeling team because the logical steps and basic
ordering for performing a trade study is clear. The
Requirements Development modeling team found it more
difficult, because the highly interdependent nature of the
steps in that process makes it less productive to create
conceptual divisions between steps.

Step 5 – Develop a detailed workflow and dataflow model of
the sub-activity as it might be performed in a model-centric
engineering environment

Using the same sub-activities as were used in Step 4, the
teams created models that describe how that sub-activity
might be performed in a model-centric way. Thus, this step
involved both modeling the process and also brainstorming
to come up with the potential processes. Any problems that
were apparent in the as-is models were taken into
consideration in defining the model-centric processes. The
models were reviewed by the panel and refined several
times. The Trade Studies team again used the logical
grouping to help organize the process. Like the models
produced in Step 4, these descriptions focused on the level
of detail just above minute-by-minute behaviors, and also
contain dataflow information.

Step 6 – Analyze models developed in Steps 4 and 5 to
discover needs

The modeling teams used the models created in Steps 3 and
4 to identify problems in the existing processes (both in
terms of workflow and dataflow). They could then verify
that they were mitigated or obviated in the model-centric
processes. They also used the models to identify any
capabilities added in the model-centric process that are not
present in the current process. These gave confidence in the
usefulness of the model-centric processes. The completion
of Step 5 also explicitly drew out a set of capabilities that
IMCE should provide and some architectural features and
infrastructure that could enable those capabilities. These
will be used to help understand the needs of stakeholders
and develop the requirements for IMCE, as well as to define
and describe the system in the Concept of Operations.

 9

Discovery:

Proto-Principles and Guidelines

Principles are general rules and guidelines, intended to be
enduring and seldom amended, which inform and support
the way in which an organization sets about fulfilling its
mission. In order to provide guidance to development of the
Concept of Operations, we have begun to identify
architectural principles and properties of concerns of
stakeholders.

The guiding principles identified in this work largely
revolve around enabling more sophisticated modeling and
data access while minimizing the invasiveness into the user
space. Although the team has not formally adopted such
principles yet, some initial development principles have
been captured and provisionally used:

• IMCE should add value to current investments in
modeling

• IMCE should not get between the users and their tools

• IMCE should not require overnight change

• IMCE should make it easy to do the right things, and
difficult to do the wrong things

• Models should be re-usable and evolvable

• Information may exist in multiple locations, but all
information should have one locatable 'truth' source

• Artifacts should be machine-readable

• There should be no us (IMCE developers) and them
(IMCE users)

• Engineers must be able to trust modeling and
development tools.

Workflow Analysis Discoveries

In our study we found that, when a single user is responsible
for maintaining their complete view of the system design,
information and accuracy are lost both in data transfer and
due to the isolated nature of the analysis. We investigated
how a user might perform trade studies and develop
requirements in a model-centric environment, focusing on
actions performed by the SME and how the model would fit
in to the framework.

Guided by our emerging development principles we outlined
some workflow views of how modeling and simulation
could take place in a more integrated environment. These
concepts provide the seeds for the conceptual architecture
from an operational viewpoint. Generally, we discovered
that engineering and design processes have a lot of creative
and ad-hoc activities. These activities no doubt promote

good design, however they rely on things like email and
office productivity tools to express complex and
sophisticated design concepts and decisions. These tools
lack the capability to capture detail and expressive semantics
in a scalable way. Interconnection between sets of
information is also a highly manual process—there is
nothing which checks if the value of a given property is the
same in two different documents.

There needs to be a single authoritative source for each
piece of data used in the model. As envisioned, there should
be a manual mapping of model parameters to data source
parameters. Once the engineer has performed this mapping,
the computer maintains this relationship and tracks metadata
about configurations. Users waste a lot of time collecting the
data, and in fact that data may be out-of-date, out-of-context,
or incorrect due to clerical errors. The model provides a
map for where to find the authoritative source for that data.
Figure 3 shows the high-level view of a trade study process
in a model centric environment.

Throughout the project lifecycle, there is substantial
knowledge loss due to information spread between a wide
range of documentation and non-computer readable formats,
such diagrams in presentation slides. The fact that the
model itself contains metadata about the design provides
comprehensive capture about methods, initial conditions and
results. This allows for complete documentation and
information capture/querying capabilities.

For example, in the model-centric trade study information
and meta-information about the trade study would be
available through a registry. Such a capability would allow
for the capture of what information the trade used, rationale
and outcomes in a single source of truth.

Often information (documents, requirements etc.) and
simulations are reused from previous projects. This practice
is highly desirable but it can be difficult to gauge what is
appropriate to reuse. Modeling environments can facilitate
this to a much better extent. Investments in libraries,
templates, profiles, ontology and modular simulations will
foster reusability.

For example, talking to some of the SMEs, it was discovered
that in the current process a lot of analytical models are
created for a specific purpose, used for that purpose and
then no longer maintained. Figure 4 shows this process
where data from one model is hard-coded into another
model designed for a specific use. This is a problem,
because if something changes and the analysis needs to be
redone, the model is often so out-of-date that it’s easier to
make a whole new model than to reuse the existing one. In
the model-based paradigm (Figure 5), the model is
maintained throughout the entire lifecycle. Instead of
abandoning preliminary models used in early development
once the requirements are established, the preliminary
system model can be refined and specialized as the design

 10

matures. In contrast to many existing ad hoc methods, the
inherent scalability of a SysML description allows the model
to grow and evolve as detailed design information is added.
Also, existing simulation tools can be tied in with the system
models to get a richer and more complete view of the system
than the current methods allow.

 11

Figure 3 High Level View of Trade Study Process in a Model-Centric Environment

 12

Information that is passed between different engineering
roles is informally tracked and could be captured in a way
that is more transparent to the user. This avoids the use of
emails as a means of cataloging design information, a task
for which email is poorly suited. Similarly, when the
requested information is received, which could take some
time depending on how significant a request it is, it can be
checked against the request and additionally verified for
other forms of completeness like units, etc.

For example, Figure 6 shows manual model conversion
performed by multi-body dynamics engineers and finite
element analysis engineers. These engineers convert a
design model generated from a specific tool (“NX”) to two
different formats, each to be used by two separate tools
(“ADAMS” and “Femap”). Such model transformations are

time consuming and tedious. A model centric environment

would automate this process, as well as capture these
transactions and verify their correctness, completeness, etc.

Figure 4 Ad Hoc Models During Requirements Development

 13

Figure 5 Model Re-use Concepts to Support Requirements Development

Figure 6 Patterns of Information Flow in Current Architecture

 14

6. CONCLUSION
JPL’s current engineering processes suffer from
discontinuities at major lifecycle phase boundaries, between
systems and subsystems teams, between technical and
management domains, and from one project to the next.
These discontinuities increase cost, stretch schedules, and
increase both development and mission risk. The goal of
the IMCE Initiative is to facilitate an evolution to a more
model-centric enterprise which should contribute to mending
these gaps.

We have begun the work to understand the scope of such a
transition. In the context of system architecting, this will
involve delivering targeted, enabling capabilities into the
JPL flight project development enterprise. We are working
to describe the current architecture of this enterprise, and
how it should be evolved. The IMCE Operations Concept is
a key piece of this work, aimed at elucidating the concerns
of the users of these capabilities. Work on the Operations
Concept is well underway and is already yielding valuable
insights.

During the coming year we plan to complete the operations
concept work and provide the results in a form useful for
architecting the needed changes to the flight project
development enterprise. Major elements of the work to go
include: modeling additional relevant scenarios in other life
cycle phases and to cover other areas of concern such as
model building/reuse; studying our results to discover the
essential patterns of the current architecture, how they
should change in a model-centric environment, and what
high level requirements are implied; and deliver all of this to
the IMCE team as a fully-documented SysML model.

It’s been said that nothing succeeds like success. A
corollary might be that nothing raises expectations for future
success like past success. Each successful mission of
discovery answers important scientific questions. It also
creates many new questions, which are often more difficult
to answer, requiring more capable observing platforms and a
closer vantage point. We must equip ourselves with more
powerful tools and methods if JPL and its partners are to
continue rising to these challenges.

REFERENCES
[1] “Managing the On-Board Data Storage,

Acknowledgement and Retransmission System for
Spitzer”, Marc Sarrel, Carlos Carrion, Joseph Hunt, Jr.,
2006, AIAA Paper 2006-5564

[2] “In-Flight Anomalies and Lessons Learned from the Mars
Reconnaissance Orbiter Mission”, Todd Bayer, 2007,
IEEEAC Paper #1451

[3] “In-Flight Anomalies and Lessons Learned from the Mars
Reconnaissance Orbiter Mission – an Update”, Todd
Bayer, 2008, IEEEAC paper #1086

[4] Object Management Group. OMG Systems Modeling
Language (OMG SysMLTM), Version 1.1. November
2008.

[5] IEEE Std 1471-2000. IEEE Recommended Practice for
Architectural Description of Software-Intensive
Systems.2004.

[6] Ingham, M., Rasmussen, R., Bennett, M., and Moncada,
A., “Engineering Complex Embedded Systems with State
Analysis and the Mission Data System”, AIAA Journal of
Aerospace Computing, Information and Communication,
Vol. 2, No. 12, Dec. 2005, pp. 507-536.

[7] Sanford Friedenthal, Alan Moore, Rick Steiner, “A
Practical Guide to SysML, The Systems Modeling
Language” (The MK/OMG Press). August 2008.

[8] The Rational Unified Process: An Introduction, 2nd ed.,
by Philippe Kruchten (Addison Wesley Longman, 2000)

ACKNOWLEDGEMENTS
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

The information in the section on Articulating the Need was
drawn from many internal unpublished sources, including
works by Mark Brown, John Casani, Steve Cornford, Frank
Deakens, Jennifer Mindock, Brian Muirhead, Robert
Rasmussen, and Marc Rayman. The authors wish to
acknowledge their significant contributions to the IMCE
effort.

 15

BIOGRAPHIES
Todd J. Bayer is the Assistant
Manager for Flight Projects of
JPL’s Systems and Software
Division where, among other
pursuits, he is working to make
integrated model centric
engineering a reality at JPL. He
received his B.S. in Physics in 1984

from the Massachusetts Institute of Technology. He started
his career as a project officer in the US Air Force at Space
Division in El Segundo, California. Following his military
service, he joined the staff of JPL in 1989. He has
participated in the development and operations of several
missions, including Mars Observer, Cassini, Deep Space 1,
and Mars Reconnaissance Orbiter. During a leave of
absence from JPL, he worked as a systems engineer on the
European next generation weather satellite at EUMETSAT
in Darmstadt, Germany. He was the Lead Flight System
Engineer for MRO development, and Chief Engineer for
MRO flight operations .

Christopher Delp is Architectural
Engineer for Multi-Mission
Operations and a member of of the
Flight Software Systems Engineering
and Architectures Group at the Jet
Propulsion Laboratory. His research
interests include software and
systems architecture, model-based
systems engineering applications, and

real-time embedded software engineering. He earned his
M.S. and B.S. degrees from the U of A in Systems
Engineering.

Lauren Cooney is a Systems
Engineer in the Guidance,
Navigation and Control Section at
JPL. Her interests include control,
autonomy and intelligence for space
and underwater systems. She
received her SM in Ocean
Engineering and SB in Mechanical
Engineering from MIT.

Chelsea Dutenhoffer is an engineer
in the Systems and Software Division
at JPL. She is currently the Ground
Data System Engineer for the Dawn
project and also performs testing on
multi-mission ground software used
at JPL. Her primary interest is how
model-based systems engineering
practices can make complicated

space systems easier to understand and manage, especially
ground data systems. She holds a B.S. in Aerospace
Engineering from Embry-Riddle Aeronautical University.

Roli Gostelow is a Software Systems
Engineer in the Integrated Ground
Data section at JPL. She is currently
involved in software quality
improvement, web design, and model-
based systems engineering work. She
holds a B.S. in Computer Science and
in Mathematics from the University of
Chicago.

Michel Ingham is the technical
group supervisor of the Flight
Software Systems Engineering and
Architectures Group at the Jet
Propulsion Laboratory. His research
interests include model-based
methods for systems and software
engineering, software architectures,
and spacecraft autonomy. He earned
his Sc.D. and S.M. degrees from MIT

in Aeronautics and Astronautics, and a B.Eng. in Honours
Mechanical Engineering from McGill University in
Montreal, Canada.

Steven Jenkins is a Principal
Engineer in the Systems and Science
Division at the Jet Propulsion
Laboratory, currently supporting
JPL's Integrated Model-Centric
Engineering Initiative. His interests
include application of semantic and
modeling technologies to systems
engineering. Dr. Jenkins holds a B.S.
in Mathematics from Millsaps

College, an M.S. In Applied Mathematics from Southern
Methodist University, and a Ph.D. In Electrical Engineering
(Control Systems) from UCLA.

 Brian Smith is a Software Engineer in
the Flight Software Systems
Engineering and Architectures Group
at the Jet Propulsion Laboratory
(JPL). His research interests include
autonomous systems, robotic systems,
and the verification and validation of
flight software systems. He earned his
Ph.D. and M.S. degrees in Electrical

and Computer Engineering from the Georgia Institute of
Technology, as well as his B.S. degree in Computer
Engineering. Dr. Smith is also currently developing and
testing software for the Mars Science Laboratory (MSL).
While at Georgia Tech, Dr. Smith designed and
implemented the user interface and control software for a
multi-robot network for Antarctic climate research, as well
as implementing path planning software for unmanned
helicopters.

 16

	Mail Stop 301-230
	818-354-5810
	Todd.J.Bayer@jpl.nasa.gov
	Table of Contents
	1. Introduction
	2. Articulating the Need
	3. IMCE Overview
	4. Architecting
	5. IMCE Operations Concept
	6. Conclusion
	References
	Acknowledgements
	Biographies
	Christopher Delp is Architectural Engineer for Multi-Mission Operations and a member of of the Flight Software Systems Engineering and Architectures Group at the Jet Propulsion Laboratory. His research interests include software and systems architectu...
	Chelsea Dutenhoffer is an engineer in the Systems and Software Division at JPL. She is currently the Ground Data System Engineer for the Dawn project and also performs testing on multi-mission ground software used at JPL. Her primary interest is how ...
	Roli Gostelow is a Software Systems Engineer in the Integrated Ground Data section at JPL. She is currently involved in software quality improvement, web design, and model-based systems engineering work. She holds a B.S. in Computer Science and in M...

