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Abstract—As JPL’s missions grow more complex, the need 
for improved systems engineering processes is becoming 
clear.  Of significant promise in this regard is the move 
toward a more integrated and model-centric approach to 
mission conception, design, implementation and operations. 
 The Integrated Model-Centric Engineering (IMCE) 
Initiative, now underway at JPL, seeks to lay the 
groundwork for these improvements.  This paper will report 
progress on three fronts: articulating JPL’s need for IMCE; 
characterizing the enterprise into which IMCE capabilities 
will be deployed; and constructing an operations concept for 
a flight project development in an integrated model-centric 
environment.1 2   
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1. INTRODUCTION 
The mission of the Integrated Model-Centric Engineering 
(IMCE) Initiative at JPL is to advance our enterprise from 
the current document-centric engineering practices to one in 
which structural, behavioral, physics and simulation-based 
models representing the technical designs are integrated and 
evolve  throughout the life-cycle, supporting trade studies, 
design verification and system verification and validation.  
A necessary step toward these ends is to define and agree on 
the target, i.e., the architecting step.  A significant part of 
architecting  is constructing the operations concept:  
understanding how users would use a model-centric 
environment to develop future missions.  

 
1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE 
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The IMCE Operations Concept is a work in progress, and 
this paper reports the status of that work as well as two 
closely related areas, as summarized below. 

First we describe the ways in which the current document-
centric processes are failing to keep up with increasing 
mission complexity.  This is the section titled “Articulating 
the Need”.  The goal of this effort is to understand at a 
sufficiently detailed level where the current flight project 
development processes are not working well.  This has been 
useful in building understanding of, and advocacy for, the 
IMCE Initiative.  Its main uses however will be for guiding 
the changes to our present environment and for judging the 
effectiveness of those changes (the improved, model-centric 
environment must of course be able to show that these 
current problems have been fixed). 

Next we describe the IMCE initiative and address the notion 
of architecting and what it means in this context.    It is 
important to realize that IMCE itself is not a system.  The 
system of interest is in fact the JPL Flight Project 
Development Enterprise.  The IMCE Task will deploy 
capabilities into this enterprise.  It is necessary to understand 
the architecture of this enterprise – both the as-is and the 
desired, model-centric state.    

Finally we describe our approach to, and current status of, 
the Operations Concept.  Infusion of model-centric 
processes into JPL's engineering processes will require, 
among other things, the construction of model-centric 
analogues corresponding to the current processes, in each 
technical domain and at each phase of a project's lifecycle.  
To accomplish this it is necessary to understand the 
processes we are attempting to transform.  The operations 
concept will describe key processes which flight projects 
execute, in a ‘before’ (document-centric) and an ‘after’ 
(model-centric) view.  A key assumption is that JPL’s 
established engineering lifecycle for flight projects is a 
mature and successful roadmap.  That is, the problems 
IMCE aims to address are in the ability of flight projects to 
follow this roadmap, not in the roadmap itself.  The 
approach is to focus on small, almost atomic, pieces of this 
process, in order to identify the architectural patterns of 
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interest. Small teams composed of modelers and flight 
project subject matter experts are developing the use cases.  
Weekly reviews with the full team as well as two large 
workshops have provided guidance and feedback.   

2. ARTICULATING THE NEED 
What problems is IMCE meant to address?  At a high level, 
the core challenge is to better manage growing system 
complexity. As the character of JPL’s missions progresses 
from fly-by to orbital study to in situ exploration, the 
systems which must accomplish these missions grow in 
complexity.  One of the trends enabling this progression is 
the ever-increasing processing power of spaceborne 
computers, which allows more and more of the functionality 
(i.e., behaviors) of these systems to be implemented in 
software.   Unfortunately, single viewpoint, natural language 
specifications are inadequate to capture and expose these 
system level interactions and characteristics (emergent 
system behaviors).  At the same time, the potential range of 
behaviors has become so large that it is impractical to fully 
test it: problems can no longer be reliably exposed by 
testing.  The result of this situation is that inadequately-
specified and incompletely-tested system level interaction 
are a major and growing risk factor for our missions.  

In-flight problems often result from these issues. These 
problems range in severity from lowered science return all 
the way to catastrophic mission failures.  In the most benign 
cases, unresolved development issues are left to mission 
operations to work around, increasing cost and often 
degrading the science return[1].  In more serious cases 
significant anomalies occur, some of which are mission-
threatening.   Escapes in management of complexity have 
played a clear role in several significant anomalies during 
the Mars Reconnaissance Orbiter (MRO) mission, as 
described in [2] and [3].    

While real and compelling, these challenges as articulated 
above are not specific enough to guide the IMCE 
development.  Therefore a study was undertaken to explore 
in more detail the nature of these challenges, as described 
below. 

Approach to Identifying Current Challenges  

The IMCE team looked from several different vantage 
points at the current way JPL develops flight projects, and 
identified processes that are broken or functioning sub-
optimally.    We then looked for patterns and common 
themes in what we found, and describe them here.  This 
overall approach is guided by a key assumption that JPL’s 
established engineering lifecycle for flight projects,  as 
expressed by the Flight Project Lifecycle, the Gate Product 
matrix, and the Review Success Criteria,  is a mature and 
successful roadmap.  That is, the problems IMCE aims to 

address are in the ability of flight projects to follow this 
roadmap, not in the roadmap itself.  

Four themes emerged from this work.  We summarize them 
below, then describe each in more detail with references and 
examples provided where available (much of the source 
material is internal, unpublished work). The IMCE 
Operations Concept will include use cases that explicitly 
address the main themes here.  Note that other themes which 
are less directly addressed by Model Based Engineering 
(e.g., training, management) are not addressed here.   

Current Challenges: Four Themes  

The current challenges in flight project engineering can be 
grouped into four themes: 

(1) System design emerges from the pieces, rather than 
from an architected solution, resulting in systems 
which are brittle, difficult to test, and complex and 
expensive to operate. 

(2) Knowledge and investment are lost at project lifecycle 
phase boundaries, resulting in increased development 
cost and risk of delayed discovery of design problems. 

(3) Technical and programmatic sides of projects are not 
well-coupled, hampering effective project decision-
making and increasing development risk.  

(4) System design re-use is lacking, increasing cost and 
risk, and damping the potential for true product lines.  

Theme 1: System Design Emerges From The Pieces  

a. Architectural principles  are seldom articulated or used to 
drive the design.  The need for, and the role of, the architect 
have not yet become a strong part of our engineering 
processes.  Lack of robust architecting allows poorly 
understood or flawed requirements and assumptions to 
persist, resulting in weakened designs.    

Without strong architectural principles, the quality of the 
architecture is disproportionately driven by the design 
process of functional decomposition.   But this process alone 
does not naturally produce a well-architected system, nor 
does the whole spontaneously re-emerge from the parts.    
Some of the problem areas arising from weak architecture 
are: unmanageable interactions, stovepiped analyses, and 
brittle fault protection, as described below.     

Without strong architectural support for system level 
considerations, the management of ad hoc point-to-point 
relationships (interactions, interfaces) can become 
overwhelming.  

Simplification for the purpose of analysis does reduce 
complexity but may overlook interactions.  Extensive 
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decomposing of problems into more “tractable” models can 
result in conflicting conclusions from sub-models.     

Fault protection is largely equivalent to robust design.  It 
needs to be woven into the fabric of a design, where its job 
is to preserve system functionality over a broad range of 
conditions -- including faults, but not just faults.  Some 
projects make the mistake of trying to delineate fault 
protection from nominal functionality to the detriment of 
both.  Such systems tend to be brittle, difficult to operate, 
and less reliable.  

b. Architectural principles, where they exist at all, are 
sometimes abandoned to solve pressing technical problems. 
  This is a problem because these “kludges” often make the 
system more brittle and difficult to operate, increasing costs 
as well as mission risk.  Without stated architectural 
principles, it is easier to abandon them when the going gets 
tough.  Even when they are stated, as some are in the JPL 
Design Principles, they may still be abandoned.  Only when 
they are thoroughly and clearly embodied in a design, via 
the architecture, are they persistent enough to be of value. 

c. System designs are spread across many disconnected 
artifacts (documents, presentations, spreadsheets).  It’s not 
always clear what the approved baseline is.  A design 
change can take months to propagate fully into the baseline 
design, and the process requires many meetings, word-of-
mouth interactions, and emails.  

d. Analogously to the scattering of design artifacts, aspects 
of the design itself are often scattered. Weakly architected 
systems often result in a situation where many disparate 
pieces of the design contribute to carrying out a given 
function with little high-level coordination.  The control 
parameters for these functions are similarly scattered 
throughout the system, and are therefore more difficult to 
understand, let alone manage.  This problem is exacerbated 
by the sheer numbers of control parameters (e.g.,  more than 
20,000 on MRO).   

e. Physics-based models in the various engineering 
specialties are not connected to each other or to a system 
model.  Trade studies and system analyses require manual 
integration of results among all these domains.  The 
inefficiencies make trades and other analyses take longer 
than necessary, and make examination of more than a few 
point designs impractical.  This ‘stovepiping’ of analyses 
can also hide significant system level interactions which may 
only  be ‘discovered’ during system test or, worse, after 
launch.  

f. Insufficient consideration of verification and validation 
(V&V) during requirements development can render aspects 
of the design untestable, increasing mission risk.   

g. Science requirements are not well coupled to flight and 
ground system requirements, causing the actual ‘goodness’ 

of a given engineering solution, in terms of its science 
return, to be unknown until it’s too late to change the design. 
The inadequate quantitative understanding of how changes 
in engineering parameters affect the science objectives (the 
so-called science merit function) can  result in lost 
opportunities to make risk/cost/schedule saving trades, and 
can even result in a system which does not satisfy the 
science objectives. 

h. Desired system behaviors are poorly articulated by the 
current textual representation.  Using these textual 
representations, system engineers are unable to 
communicate meaningfully with software engineers about 
the desired system behaviors.  This results in systems whose 
behavior must be ‘discovered’ – often in flight. 

Theme 2: Knowledge & Investment are Lost Across Phases 

a. Models used during the formulation phase of a project are 
abandoned and new ones created when implementation 
phase begins.  Many examples exist: trade models, cost 
models, power, telecom, data transport models. 

b. Configuration Management (CM) of existing models is 
lacking, impeding continued use in the next phase (or re-use 
on the next project). 

c. Essential attributes of design are not captured consistently 
in a readily accessible manner. Architectural principles, 
Trade study assumptions and rationale, and system design, 
rationale, and narrative are only partially captured at best 
and are seldom readily accessible. 

d. Training of engineers joining a project takes longer than 
necessary. Moving from pre-phase A to Phase A, and then to 
Phases B, C and D, significant team expansion and turnover 
occur.  Training people who were not around for previous 
phases is currently heavily dependent on getting key 
documents from, and having lengthy conversations with, key 
people.  Because the system design is poorly captured, this 
essentially ensures that new team members will be 
discovering attributes of the design for years.   

Theme 3: Technical & Programmatics are Poorly Coupled  

a. The cost, schedule, scope, investment and risk 
implications of a given set of requirements, science 
objectives, components and functions is very difficult to 
determine. Very little coupling exists between the 
performance side (science, requirements, components, and 
functions) and the implementation side (implementation, 
investments, and risks). Schedule and cost models rarely 
include mitigations/backup options for technical 
implementation risks.  It is difficult to transfer information 
between tools and different discipline types.     

b. Trade studies seldom fully incorporate programmatic 
considerations.  There is an unfilled need to be sure that 
systems engineers are knowledgeable about the 
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programmatic realities of a project and the impact of 
engineering decisions on programmatics.  The existing tools 
do not support such an integrated view.  

Theme 4: System Design Re-Use is Lacking  

a. Because system architectures and designs are not well-
captured, re-using them on subsequent projects is difficult 
and seldom happens (except where the project team itself is 
‘inherited’ by the next project).  There is currently no formal 
way to document and integrate the broad experience and 
knowledge of engineers across a project, to train new 
systems engineers who will need to absorb this broad 
knowledge quickly and deeply, and to make this available as 
a legacy to future projects in a manner that is easily 
dissected and reapplied to new circumstances.  The current 
institutional guidance (e.g., JPL Design Principles), while 
providing important and useful heuristics and lessons 
learned, is not sufficient to enable architecture re-use.  

3. IMCE OVERVIEW 
The objective of JPL’s Integrated Model-Centric 
Engineering Initiative is to advance engineering practice to a 
state in which descriptive and analytical models representing 
technical designs and relating them to stakeholder concerns 
are developed and integrated throughout the mission life 
cycle, from early concept through operations. The IMCE 
team encourages and facilitates this transition by providing 
training, user community support, tool/model integration, 
modeling standards, and a reusable models repository, in 
partnership with engineers,flight projects, and institutional 
management. 
 
The IMCE Initiative is beginning its second year. The 
emphasis in this early phase is development of initial 
capability (personnel and process in addition to technology) 
and demonstrating value in order to encourage uptake and 
adoption of model-based engineering practices. 
 
In recognition of the growing importance of the Systems 
Modeling Language (SysML) [4] as an industry-wide 
standard, the IMCE Initiative sponsors semiannual training 
in SysML and the use of SysML modeling tools. In addition 
to formal training, there is an active and growing Modeling 
Early Adopters group that meets informally to exchange 
problems and ideas. 
 
The bulk of the IMCE workforce at this stage of the 
initiative is devoted to developing the modeling 
environment, which consists of tools, repositories, standards, 
conventions, and guidance, in addition to consulting 
services. Particular focus is given to practices that support 
and encourage building interrelated models that cross 
system, organization, and life-cycle boundaries. For 
example, subsystem modelers should be able to relate their 
design elements to system design elements authorized by a 

different project work element, created by a different 
organization, in an earlier life-cycle phase. This 
interrelatedness is a key feature of the integrated nature of 
IMCE. Achieving it requires, among other things, standards 
for naming and classification of model elements and 
properties (ontologies) and the expression of those standards 
in SysML-specific terms (profiles). It also requires 
established conventions for model organization and 
configuration management (including access controls). 
 
Another important aspect of the IMCE Initiative is explicit 
integration with and support for JPL’s established 
engineering life cycle. For example, our life cycle defines a 
set of milestone reviews, with defined scope, deliverables, 
and success criteria for each. The IMCE team is analyzing 
these definitions in order to identify model-based 
deliverables (or deliverable elements) and artifacts that may 
be applicable evidence for assessing success. Any such 
standard deliverables and artifacts will then become 
candidates for development of generator applications built 
upon a common model access, analysis, and product 
generation infrastructure. Through these developments the 
IMCE team intends to systematize and automate key 
elements of the engineering life cycle at JPL, with the 
benefits of improved information richness and consistency at 
lower cost. 
 
The IMCE Initiative has supported several modeling pilot 
projects, the purpose of which has been to gain experience 
in the use of SysML and SysML tools, to gather 
requirements for institutionally-supported modeling 
infrastructure, and to validate IMCE solutions to enterprise 
modeling challenges (e.g., configuration management). The 
pilots have focused on existing JPL projects, namely Gravity 
Recovery and Interior Laboratory (GRAIL), Soil Moisture 
Active/Passive (SMAP), and the proposed Jupiter Europa 
Orbiter mission. 

4. ARCHITECTING 
The IMCE Initiative is currently in the architecting stage, 
but what exactly is it architecting?  It is important to realize 
that IMCE itself is not a system.  The system of interest is 
actually the JPL flight project development enterprise.  Our 
objective is to improve the effectiveness of this enterprise 
through the infusion of model-centric capabilities.  In order 
to accomplish this objective, it is necessary to address the 
current and future architectures of this enterprise. 

The current JPL flight project development enterprise has an 
architecture—every system does3. This architecture, 
 
3 We adhere to the definition of architecture from the IEEE standard 1471–
2000, “Recommended Practice for Architectural Description of Software-
intensive Systems”, which is now also ISO/IEC 42010:2007 [5]: the 
fundamental organization of a system embodied in its components, their 
relationships to each other and to the environment and the principles 
guiding its design and evolution.  
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however, is not well-described.  Furthermore, it represents 
the accumulation of local, ad hoc decisions, many of which 
were not recorded.  The net result is an architecture that 
makes it easy to achieve certain goals (e.g., produce 
presentation charts) and difficult to accomplish others (e.g., 
rapidly bound the scope of a requirement change.)  
Similarly, the architecture of the future enterprise will 
determine which goals are easy to achieve and which are 
not.  If we want our enterprise to achieve definite goals, we 
need to shape its architecture with deliberate intent.  These 
goals, in turn, are defined by the stakeholders of the 
enterprise and their concerns. [5] In order to ensure that our 
architecture adequately addresses stakeholder concerns, we 
develop views of the architecture that correspond to the 
viewpoints of those concerns. These relationships are 
captured in the IEEE 1471-2000 standard conceptual 
framework in Figure 1. 

For example, users or operators are generally considered 
important stakeholders of a system like our flight project 
development enterprise. Their concerns about operability 
are generally addressed via an operational viewpoint of the 

architecture, with views consisting of use cases and activity 
diagrams/descriptions. 

As another example, consider the situation where an 
engineer wants to assess the impact of a requirement change. 
The viewpoint in this case is the system design as seen from 
that requirement: the higher-level requirements that it 
refines, the lower-level requirements that refine it, any 
analyses that relate it to peer requirements, the component, 
function, interface or process that it specifies. This view 
makes explicit the fact that there are concepts called 
component, function, requirement, etc., and various well-
defined relationships among them. 

One of the key motivations of the IMCE Operations Concept 
is to provide an operational context for the architecture, i.e., 
the view which captures the concerns of those who will be 
using the integrated model-centric engineering environment 
to develop flight projects. The resulting operational 
perspective will inform the other pertinent views of the 
architecture, e.g., structural views, information flow views, 

 
Figure 1 IEEE 1471 Conceptual Framework. 
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etc.  The envisioned architecting process is illustrated in 
Figure 2 and described below: 

• Produce a specification of the current architecture, 
consisting of a set of general engineering 
application patterns, captured in a set of useful 
views. The process of constructing these models 
will reveal “pain points”, risk areas, and 
inefficiencies in our current architecture and 
processes, representing improvement target. These 
patterns will be produced by examining and 
abstracting views from a representative set of 
engineering applications (see Figure 2). Examples 
of representative engineering applications are 
discussed in Section 5 of this paper. 

• Once the current architecture has been adequately 
specified, the evolution of this architecture from its 
current state to the desired future state needs to be 
specified.  This evolution will necessarily consist of 
a sequence of incremental steps, in which 
manageable changes are documented through 
similar views and then implemented. 

This architecting process is currently underway at JPL for 
our flight project development enterprise. Key questions that 
need to be answered include: 

What “views” do we need? 

As mentioned above, answering this question involves 
identifying the key stakeholders and their concerns/needs, 

and deciding what viewpoints (and specific views) would be 
of most utility in addressing those concerns. In addition to 
the above-mentioned operational viewpoint (including views 
captured in use cases and activity diagrams/descriptions), we 
anticipate needing viewpoints that capture information and 
data flow through our systems; the set of engineering tools 
used and the relationships between them; workflow for intra- 
and inter-organizational collaboration; inheritance and reuse 
of models and software; and others. 

What methodology(ies) do we follow to produce these 

required views? 

At this point, we have only a partial answer to this question. 
We will undoubtedly use some combination of our current 
engineering practice (domain-specific thinking, via 
engagement of the appropriate domain experts at JPL), and 
aspects of model-based engineering methodologies that 
resonate with our architecting and engineering teams (e.g., 
our in-house developed State Analysis methodology [6], the 
Object-Oriented Systems Engineering Methodology [7], the 
Rational Unified Process [8], etc). The question of 
methodology is a critical one, and work is underway to 
answer this question. 

How do we train our people?  

In this case “training” involves both the people who need to 
produce these views (the architecture team), as well as the 
people who will need to do their work within the context of 
the (re-architected) enterprise (the JPL engineering 
community).  JPL’s IMCE initiative is beginning to address 

 
Figure 2 Documenting the current structure of our Flight Project Development Enterprise. 
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this question in two ways: (1) by sponsoring training classes 
in the areas of system and software architecture and model-
based engineering (for both systems and software) 
methodologies and representations, and (2) by providing 
leadership, support and resources to the growing community 
of practice in model-based engineering at JPL. 

5. IMCE OPERATIONS CONCEPT 
Development Approach 

The approach begins with capturing user scenarios in 
support of use-case development (Figure 1). The team 
selected several Subject Matter Experts (SME) in Flight 
Systems development to review trade studies and 
requirements development processes. Capturing as-is 
models of workflows would help identify specific problems 
that an integrated model-centric environment could solve.  

We resolved to “eat our own dog food” and capture these 
workflows and architectural views in a SysML model:  to be 
successful with furthering the adoption of modeling we need 
to adopt modeling ourselves as a demonstration of the 
effectiveness and utility we are advocating. In other words – 
if modeling can’t be used to solve the problem of designing 
IMCE then how could it solve anything else? 

The approach of low-level workflow models has become an 
important aspect of our approach. Based on the work so far, 
the root causes of many of the problems identified in section 
2 are thought to be deeply and pervasively embedded in 
low-level interactions among people and tools.  So, to 
discover and mitigate these root causes, we must look at 
these low level interactions.  This approach is consistent 
with the assumption previously stated that the high level 
process (i.e., the overall engineering lifecycle) is sound.  

SME insights into these workflows are key to a complete 
understanding of the as-is architecture. It was assumed that 
past lessons learned have already been incorporated into the 
current practices. It is critical not to lose this experience 
when developing a model-based approach to systems 
engineering. By conducting these studies with a few 
different engineers who were experienced in each area, the 
modeling teams assumed a fair sampling of existing 
knowledge. The as-is models were reviewed with the system 
engineers whose experience had been used to build them to 
ensure accuracy. It is important to note that this is 
supplementary to the eventual incorporation of institutional 
best practices, rules, processes etc – much work is still 
required. 

To ensure consensus on the work flow feed back from the 
SMEs, model reviews were also held with members of the 
model-based community to review and help interpret and 
guide the modelers’ interactions with the SME’s.. These 
experienced modelers also had a variety of different systems 

engineering experience, and helped mainly by bringing to 
bear a depth of knowledge and experience from past 
modeling endeavors.  The models were also presented to 
larger audiences at two IMCE workshops. 

Basic Process for Information Gathering 

The first step in the process was to select a set of activities 
on which to focus.  Ideally, this selection would largely 
cover the spectrum of activities performed within the 
organization.  However, time constraints, as well as an 
awareness of the diminishing returns on repeating the 
process, limited the number of activities explored so far.  
The reason that diminishing returns exist is that there are 
fundamental issues and needs that will be uncovered 
multiple times, while the number of new issues and needs 
left to find decreases with each new study performed.  
Therefore, two activities were selected: Trade Study 
Performance and Requirements Development in Phase A.  
Phase A is a significant point to start these activities as it is 
the hinge-point between formulation and implementation – 
the most problematic point of disconnect in the current 
enterprise. It also positions us for application of this work to 
the proposed Jupiter Europa Orbiter mission. A team of two 
people was assigned to each activity.  The teams followed 
approximately the same steps to achieve the goals outlined 
in the Approach section above. 

The basic steps performed by each team were: 

(1) Identify and interview stakeholders and subject matter 
experts 

(2) Develop a high-level workflow and dataflow model of 
the current process by which the activity is performed 

(3) Identify an individual sub-activity within the process to 
expand in more detail 

(4) Develop a detailed workflow and dataflow model of 
the sub-activity as it is currently performed 

(5) Develop a detailed workflow and dataflow model of 
the sub-activity as it might be performed in a model-
centric engineering environment 

(6) Analyze models developed in steps 4 and 5 to discover 
needs 

At each step, a panel of experienced systems engineers 
reviewed the results for correctness, completeness, 
feasibility, and accessibility to the intended audiences.  
Therefore, the completion of each step involved several 
iterations.  

Detailed Process Description 

Step 1 – Identify and interview stakeholders and subject 
matter experts 
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In order to model the workflow and dataflow of performing 
a trade study, the team needed to understand the process.  
The team gained this understanding through interviews with 
four subject matter experts and stakeholders in the area of 
Phase A Trade Studies.  The dialogue that took place in 
these interviews was translated into SysML workflow and 
dataflow diagrams.  The first draft of this was reviewed by 
two of the subject matter experts and revised based on their 
comments. 

Step 2 – Develop a high-level workflow and dataflow model 
of the current process by which the activity is performed 

This step was initially intended to be a main product of the 
study.  However, as time progressed, it became clear that its 
function was rather to provide context for a deeper analysis. 
 In either case, the correctness of this model was of 
importance.  In order to try to ensure correctness, the 
modeling teams held interviews with several experts on the 
study topics of differing backgrounds and focus.  The 
modeling teams used these discussions to generate models to 
describe the process flow and the dataflow of the entire 
activity.  These subject matter experts reviewed these 
diagrams and made suggestions and revisions, which the 
modeling teams used to develop a second version of the 
diagrams.  The panel then reviewed these over the course of 
several meetings in order to arrive at the final models. 

Step 3 – Identify an individual sub-activity within the 
process to expand in more detail 

As the review of these products continued, it became clear 
that they were not expressed at a low enough level of detail 
to enable the main goal of helping define and elucidate the 
Concept of Operations.  This is due to the fact that there are 
no major issues with the high-level process: it has evolved 
over time to meet the needs of the project at each phase and 
cannot be altered without failing to address the needs it was 
developed to meet.  However, what areas do present 
problems to be solved are the means by which each step 
within the whole process is completed.  Therefore, it was 
decided that each team would select a sub-activity within the 
process to expand in more detail in order to identify those 
problems and posit solutions to them.  Again, this process 
would ideally be completed for each sub-activity, but due to 
various constraints, each modeling team analyzed only one 
sub-activity so far.  The sub-activities chosen were selected 
because they are critical steps in the high-level process. 

Step 4 – Develop a detailed workflow and dataflow model of 
the sub-activity as it is currently performed (As-Is) 

Once each team chose the sub-activity of focus, they 
constructed models that describe what currently happens (as-
is) inside the sub-activity.  Modeling at this level was 
productive because it was at a sufficiently detailed level to 
enable problems to become apparent, but not so low as to be 
cluttered with detail at the level of mouse-clicks or 

individual conversations.  Like the previous models, these 
describe both the actions performed, and the dataflow 
associated with each activity.  The models were reviewed by 
the panel and refined several times. 

There was a difference between how this step was 
completed by the Trade Studies Performance modeling team 
and the Requirements Development modeling team.  The 
Trade Studies modeling team found it useful to also create a 
logical model at the low-level that is “method-independent”. 
 They then described the steps of the current process (as-is) 
as occurring within these logical steps.  This made it easier 
to compare the current process with a model-centric 
engineering process by introducing conceptual divisions into 
the process model.  This approach worked well for Trade 
Studies modeling team because the logical steps and basic 
ordering for performing a trade study is clear.  The 
Requirements Development modeling team found it more 
difficult,  because the highly interdependent nature of the 
steps in that process makes it less productive to create 
conceptual divisions between steps. 

Step 5 – Develop a detailed workflow and dataflow model of 
the sub-activity as it might be performed in a model-centric 
engineering environment 

Using the same sub-activities as were used in Step 4, the 
teams created models that describe how that sub-activity 
might be performed in a model-centric way.  Thus, this step 
involved both modeling the process and also brainstorming 
to come up with the potential processes.  Any problems that 
were apparent in the as-is models were taken into 
consideration in defining the model-centric processes.  The 
models were reviewed by the panel and refined several 
times.  The Trade Studies team again used the logical 
grouping to help organize the process.  Like the models 
produced in Step 4, these descriptions focused on the level 
of detail just above minute-by-minute behaviors, and also 
contain dataflow information. 

Step 6 – Analyze models developed in Steps 4 and 5 to 
discover needs 

The modeling teams used the models created in Steps 3 and 
4 to identify problems in the existing processes (both in 
terms of workflow and dataflow).  They could then verify 
that they were mitigated or obviated in the model-centric 
processes.  They also used the models to identify any 
capabilities added in the model-centric process that are not 
present in the current process.  These gave confidence in the 
usefulness of the model-centric processes.  The completion 
of Step 5 also explicitly drew out a set of capabilities that 
IMCE should provide and some architectural features and 
infrastructure that could enable those capabilities.  These 
will be used to help understand the needs of stakeholders 
and develop the requirements for IMCE, as well as to define 
and describe the system in the Concept of Operations. 
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Discovery: 

Proto-Principles and Guidelines 

Principles are general rules and guidelines, intended to be 
enduring and seldom amended, which inform and support 
the way in which an organization sets about fulfilling its 
mission. In order to provide guidance to development of the 
Concept of Operations, we have begun to identify 
architectural principles and properties of concerns of 
stakeholders. 

The guiding principles identified in this work largely 
revolve around enabling more sophisticated modeling and 
data access while minimizing the invasiveness into the user 
space. Although the team has not formally adopted such 
principles yet, some initial development principles have 
been captured and provisionally used:  

• IMCE should add value to current investments in 
modeling 

• IMCE should not get between the users and their tools 

• IMCE should not require overnight change 

• IMCE should make it easy to do the right things, and 
difficult to do the wrong things 

• Models should be re-usable and evolvable 

• Information may exist in multiple locations, but all 
information should have one locatable 'truth' source 

• Artifacts should be machine-readable  

• There should be no us (IMCE developers) and them 
(IMCE users)   

• Engineers must be able to trust modeling and 
development tools. 

Workflow Analysis Discoveries 

In our study we found that, when a single user is responsible 
for maintaining their complete view of the system design, 
information and accuracy are lost both in data transfer and 
due to the isolated nature of the analysis.   We investigated 
how a user might perform trade studies and develop 
requirements in a model-centric environment, focusing on 
actions performed by the SME and how the model would fit 
in to the framework. 

Guided by our emerging development principles we outlined 
some workflow views of how modeling and simulation 
could take place in a more integrated environment. These 
concepts provide the seeds for the conceptual architecture 
from an operational viewpoint. Generally, we discovered 
that engineering and design processes have a lot of creative 
and ad-hoc activities. These activities no doubt promote 

good design, however they rely on things like email and 
office productivity tools to express complex and 
sophisticated design concepts and decisions. These tools 
lack the capability to capture detail and expressive semantics 
in a scalable way. Interconnection between sets of 
information is also a highly manual process—there is 
nothing which checks if the value of a given property is the 
same in two different documents. 

There needs to be a single authoritative source for each 
piece of data used in the model.  As envisioned, there should 
be a manual mapping of model parameters to data source 
parameters.  Once the engineer has performed this mapping, 
the computer maintains this relationship and tracks metadata 
about configurations. Users waste a lot of time collecting the 
data, and in fact that data may be out-of-date, out-of-context, 
or incorrect due to clerical errors.   The model provides a 
map for where to find the authoritative source for that data. 
Figure 3 shows the high-level view of a trade study process 
in a model centric environment. 

Throughout the project lifecycle, there is substantial 
knowledge loss due to information spread between a wide 
range of documentation and non-computer readable formats, 
such diagrams in presentation slides.  The fact that the 
model itself contains metadata about the design provides 
comprehensive capture about methods, initial conditions and 
results.  This allows for complete documentation and 
information capture/querying capabilities. 

For example, in the model-centric trade study information 
and meta-information about the trade study would be 
available through a registry. Such a capability would allow 
for the capture of what information the trade used, rationale 
and outcomes in a single source of truth. 

Often information (documents, requirements etc.) and 
simulations are reused from previous projects. This practice 
is highly desirable but it can be difficult to gauge what is 
appropriate to reuse. Modeling environments can facilitate 
this to a much better extent. Investments in libraries, 
templates, profiles, ontology and modular simulations will 
foster reusability. 

For example, talking to some of the SMEs, it was discovered 
that in the current process a lot of analytical models are 
created for a specific purpose, used for that purpose and 
then no longer maintained. Figure 4 shows this process 
where data from one model is hard-coded into another 
model designed for a specific use.  This is a problem, 
because if something changes and the analysis needs to be 
redone, the model is often so out-of-date that it’s easier to 
make a whole new model than to reuse the existing one.  In 
the model-based paradigm (Figure 5), the model is 
maintained throughout the entire lifecycle.  Instead of 
abandoning preliminary models used in early development 
once the requirements are established, the preliminary 
system model can be refined and specialized as the design 
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matures.  In contrast to many existing ad hoc methods, the 
inherent scalability of a SysML description allows the model 
to grow and evolve as detailed design information is added.  
Also, existing simulation tools can be tied in with the system 
models to get a richer and more complete view of the system 
than the current methods allow. 
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Figure 3 High Level View of Trade Study Process in a Model-Centric Environment 
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Information that is passed between different engineering 
roles is informally tracked and could be captured in a way 
that is more transparent to the user. This avoids the use of 
emails as a means of cataloging design information, a task 
for which email is poorly suited. Similarly, when the 
requested information is received, which could take some 
time depending on how significant a request it is, it can be 
checked against the request and additionally verified for 
other forms of completeness like units, etc. 

For example, Figure 6 shows manual model conversion 
performed by multi-body dynamics engineers and finite 
element analysis engineers. These engineers convert a 
design model generated from a specific tool (“NX”) to two 
different formats, each to be used by two separate tools 
(“ADAMS” and “Femap”). Such model transformations are 

time consuming and tedious. A model centric environment 

would automate this process, as well as capture these 
transactions and verify their correctness, completeness, etc. 

  
Figure 4 Ad Hoc Models During Requirements Development 
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Figure 5 Model Re-use Concepts to Support Requirements Development 

 
Figure 6 Patterns of Information Flow in Current Architecture 
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6. CONCLUSION  
JPL’s current engineering processes suffer from  
discontinuities at major lifecycle phase boundaries, between 
systems and subsystems teams, between technical and 
management domains, and from one project to the next. 
These discontinuities increase cost, stretch schedules, and 
increase both development and mission risk.   The goal of 
the IMCE Initiative is to facilitate an evolution to a more 
model-centric enterprise which should contribute to mending 
these gaps.   

We have begun the work to understand the scope of such a 
transition.  In the context of system architecting, this will 
involve delivering targeted, enabling capabilities into the 
JPL flight project development enterprise.  We are working 
to describe the current architecture of this enterprise, and 
how it should be evolved.  The IMCE Operations Concept is 
a key piece of this work, aimed at elucidating the concerns 
of the users of these capabilities.  Work on the Operations 
Concept is well underway and is already yielding valuable 
insights. 

During the coming year we plan to complete the operations 
concept work and provide the results in a form useful for 
architecting the needed changes to the flight project 
development enterprise.  Major elements of the work to go 
include: modeling additional relevant scenarios in other life 
cycle phases and to cover other areas of concern such as 
model building/reuse; studying our results to discover the 
essential patterns of the current architecture, how they 
should change in a model-centric environment, and what 
high level requirements are implied; and deliver all of this to 
the IMCE team as a fully-documented SysML model. 

It’s been said that nothing succeeds like success.  A 
corollary might be that nothing raises expectations for future 
success like past success.  Each successful mission of 
discovery answers important scientific questions.  It also 
creates many new questions, which are often more difficult 
to answer, requiring more capable observing platforms and a 
closer vantage point.  We must equip ourselves with more 
powerful tools and methods if JPL and its partners are to 
continue rising to these challenges. 
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