

American Institute of Aeronautics and Astronautics

1

 The Evolvable Advanced Multi-Mission Operations System
(AMMOS): Making Systems Interoperable

Adans Y. Ko, Pierre F. Maldague, Tung Bui, Doris T. Lam, and John C. McKinney
Jet Propulsion Laboratory, 4800 Oak Grove Dr. Pasadena, CA 91109

{Adans.Y.Ko, Pierre.F.Maldague, Tung.Bui, Doris.T.Lam, John.C.McKinney}@jpl.nasa.gov, 818-354-4321

The Advanced Multi-Mission Operations
System (AMMOS) provides a common Mission
Operation System (MOS) infrastructure to
NASA deep space missions. The evolution of
AMMOS has been driven by two factors:
increasingly challenging requirements from
space missions, and the emergence of new IT
technology. The work described in this paper
focuses on three key tasks related to IT
technology requirements: first, to eliminate
duplicate functionality; second, to promote the
use of loosely coupled application
programming interfaces, text based file
interfaces, web-based frameworks and
integrated Graphical User Interfaces (GUI) to
connect users, data, and core functionality; and
third, to build, develop, and deploy AMMOS
services that are reusable, agile, adaptive to
project MOS configurations, and responsive to
industrially endorsed information technology
standards.

I. Introduction
HE Advanced Multi-Mission Operations
System (AMMOS) [http://ammos.jpl.nasa.gov/aboutammos/]

provides multimission tools and services that
enable mission customers to operate at a lower
total cost to NASA while maintaining
comparable or higher reliability and performance
than would be the case if these customers
acquired their own unique tools and services.
The AMMOS tools offer a wide range of MOS
capabilities for NASA Deep Space missions,
which cover navigation and mission design,
planning and sequencing, spacecraft analysis,
mission control, data accountability, downlink,
and science instrument products delivery. The
primary motivation for the evolution of AMMOS
has been to meet the challenges of NASA
missions such as science observatory, small
body, surface explorer, comet sample return,
formation flying, orbiter and surface
Rover/Lander relay, and ultra-long life missions.

As a result of its evolution over the last decade
or two, the AMMOS system has succeeded in
keeping up with the changing functionality
required by NASA missions. While this
evolution has addressed changes in functional
requirements, so far it has not taken advantage of
improvements that are now possible thanks to
new emerging IT standards and technologies.

In this paper, we focus on a study that we
conducted to evaluate and, if possible,
demonstrate the benefits of adopting some of the
recent IT technologies and standards that are
missing from the existing AMMOS system. In
our study, we concentrated on the Planning and
Sequencing subsystem of AMMOS, and we
developed a prototype that successfully
demonstrates the feasibility of refactoring the
AMMOS legacy system into a pervasive system
that is responsive to emerging IT technologies
and standards. When confronted with choices in
the course of designing the prototype, we based
our decisions on four broad principles: 1)
refactor the legacy system to support software
reuse instead of writing new applications; 2) use
COTS and GOTS common infrastructure
services; 3) adopt uniform data definitions across
the AMMOS system; and 4) adopt industrial
standards that support portability for deploying
the new system.

II. Legacy System Crisis
There are many reasons that can cause a legacy
system modernization effort to fail [1]. We
illustrate several of them in the next few
paragraphs. We note in passing that the
shortcomings of the AMMOS legacy system
should not be viewed as specific to the particular
teams involved in designing and maintaining
AMMOS; on the contrary, the AMMOS
experience is typical of large, long-lived systems
that have to evolve under a number of
organizational as well as technical constraints.
The comments below would apply to any of
these other systems as well.

T

American Institute of Aeronautics and Astronautics

2

The first difficulty that stands in the way of
modernization concerns the lack of up-to-date
documentation. While the initial set of
requirements, design, users’ guide, and test
reports documents satisfied all the criteria for
delivery of AMMOS to its customers,
incremental improvements were seldom
documented with the same care as the initial
delivery. There are several reasons for this,
among which we cite the smallness of the
maintenance team compared to the size of the
initial design team and the piecemeal nature of
the funding available for incremental
improvements. As a result, interaction with
domain experts is often the best option to
perform “as-is” system analysis on legacy tools.

The second difficulty is related to the already
long history of the AMMOS system. Over time,
many design uncertainties have accumulated
with respect to design decisions, data integrity,
and the use of programming scripts as a quick-
fix method for integrating monolithic
applications that were not designed to work
together. It is a daunting or even impossible task
to resolve these uncertainties.

The third difficulty concerns the sporadic use of
technology offered by the open source software
community. Although technology reuse is of
course a good idea, the decisions to use such
technology were usually made by individual
developers, with little attention paid to software
engineering issues that would have required
communications across all AMMOS subsystems.
As a result, success stories of open source
software technology infusion into the legacy
system have been accidental and heroic.

In practice, AMMOS legacy tool maintenance
consists mostly of repairing isolated defects,
keeping up with a changing environment (e. g.
OS upgrades), and performing incremental
enhancements to improve mission operation
efficiency. Due to the long history of AMMOS,
its legacy tools have grown bigger in size over
the last decades and they are expected to grow,
on the average, by a factor of two to three every
decade [2]. Unfortunately, as these changes
accumulate over the years, AMMOS has become
brittle and increasingly complex, resulting in its
deteriorating structure. The increasing size of its
code makes AMMOS less maintainable and
sustainable. This situation also limits AMMOS
legacy tool development to a small pool of
personnel qualified to perform the task, exposing

AMMOS to the risk of a single point of failure
[3].

In view of the many pitfalls that we have just
presented regarding the AMMOS legacy
modernization effort, it is clear that the AMMOS
legacy tools are in imminent danger of becoming
un-maintainable and unsustainable. It has
become urgent to put the AMMOS legacy
system on a modernization path that properly
addresses systems engineering issues while
maintaining a healthy and cautious awareness of
the challenges that can derail a modernization
effort of this scope.

III. AMMOS Legacy Systems
Modernization

A. System modernization framework
In defining our approach to the modernization of
the AMMOS legacy system, we have adopted
some elements of the Risk-Managed
Modernization (RMM) [4] methodology. The
methodology comprises five main steps: 1)
Identify key stakeholders; 2) Understand
requirements; 3) Create business cases; 4)
Understand the legacy system; 5) Define the
target architecture.

In conducting our modernization activities, we
also adopted a reengineering and architectural
view that is part of the “horseshoe model” of
software analysis and evolution [6]. Accordingly,
three basic processes will be used to evolve
existing AMMOS legacy systems:

1. Reconstruct one or more higher-level, logical

descriptions of the AMMOS legacy systems
from existing artifacts

2. Transform the logical descriptions into “to-be”
and improved logical descriptions

3. Refine improved logical descriptions down to
the level of source code

B. Business Drivers and Stakeholders
The Multimission Ground Systems and Services
(MGSS) organization (http://ammos.jpl.nasa.gov/moremgss/)
at NASA/JPL is a program office that manages
AMMOS. Its primary business objective is to
develop AMMOS so as to offer NASA missions
the following advantages and benefits:

• Reduce the overall cost to NASA; Project does not

have to pay for the development of the AMMOS
core capability

American Institute of Aeronautics and Astronautics

3

• Reduce the average development time for
individual projects; Project adaptation of AMMOS
takes less time than development

• Reduce mission risks with more stable and mature
software. Most AMMOS elements have been
maintained and improved over a number of years
and have been used by a variety of NASA projects
in a variety of situations. Many bugs have been
discovered and resolved

The following is a list of AMMOS key
stakeholders, who have a vested interest in
AMMOS legacy system modernization:

• AMMOS system engineers, s/w architects, and

s/w developers who design and maintain the
AMMOS. They make decisions on design trades,
analyze new functional requirements, and promote
consistency of AMMOS interfaces within
subsystems and with external systems

• Project MOS/GDS system engineers, who provide
AMMOS with project-based concepts and
requirements that reflect the needs of Mission
Operations Systems (MOS)

• MGSS Program Managers, and MGSS Program
Element Managers, who establish funding
guidelines, “make buy” decisions, or resourcing
decisions

C. Requirements
1. MGSS AMMOS near term goals

• Incorporate technological advances into the

AMMOS to maintain reliability and compatibility
with future mission flight and ground systems

• Streamline the Mission Operations System (MOS)
Uplink Process from activity planning through
execution of commands on board the spacecraft by
automation and generalized process improvements

• Provide end-to-end data accountability
• Provide tools and services for complex planning

missions
• Fully automate flight system monitoring

2. AMMOS legacy systems pain points

The following pain points were constructed from
stakeholder interviews and mission-generated
documents of the “AMMOS lessons learned”
variety.
Quality Attributes Pain Points
Affordability† Tool expenditures for duplicate functionality

development.
Configuration is labor intensive.

Adaptability† Much manual configuration.
Adaptation requires in depth knowledge.

Modifiability &
Extensibility†

Software changes overly impact the system
Too many interfaces
Hard to add or delete applications

Interoperability† Different models needed for different
subsystems, 50% overlap in information.

Too many vocabularies to have to know
Information definitions are hard to reuse

Deployability† Monolithic nature of the applications
precludes combining them into integrated
GUI clients resulting in awkward
workarounds and inefficient Ops procedures.
Multiple deployments of the same AMMOS
application and automated operational scripts,
each accessed via a different endpoint.

Security†† No centralized credential database with
consistent interfaces.
No clear process for integrating new people.
No process for de-provisioning accounts.
No formal policy or process for managing
transitions between access signatories.
Lack of support and control over the
procurement and management of browser
security certificates (X.509).

Table 1: AMMOS Legacy Systems Pain Points
†Ko, A. and Fonseca, S. unpublished: “AMMOS Value Proposition”, 2008.
††Tan, K., Pajevski, M., Ramah, G., Hotz, H., and Ko, A. unpublished: “AMMOS
Security Pain points, 2009.

D. Prototype Study Business Case
The purpose of the prototype was to
demonstrate, in the context of the EPOXI
mission (http://epoxi.umd.edu/1mission/bios.shtml), the use of a
messaging bus-based architecture to enable a
planning and modeling tool, the Activity Plan
Generator (APGEN) [5], to also display actual
data alongside with the predicted values.

The following requirements summarize the
purpose of the Sequencing Revitalization
Prototype:

1. The MPS system shall be accessible from the web.
2. The MPS system shall present itself to the user as

an integrated database of all desired data.
3. The MPS system shall present many views of the

same integrated database:
a. Activity perspective
b. Resource perspective
c. Sequence perspective
d. Command perspective
e. Science perspective.

4. The MPS system shall include interfaces to the
S/C via uplink and downlink services.

5. The MPS system shall provide closed loop
correlation of S/C telemetry with planning and
sequencing information.

6. The MPS system shall support collaboration with
remote teams.

E. Understanding the Legacy System
Understanding the AMMOS legacy tools is key
to modernization. We used the “Reconstruction”
process from the horseshoe model to guide us in
the reconstruction of the AMMOS Mission
Planning and Sequencing (MPS) legacy system.

American Institute of Aeronautics and Astronautics

4

There are three abstract levels of reconstruction:
code level, functional level, and architectural
level. We focused on the function-level
representation to perform our legacy systems
reconstruction. The emphasis of function-level
is represented by s/w components, relationships
among functions, data and files. From the very
beginning, we collected software artifacts from
the existing AMMOS.

From the existing AMMOS legacy system, a list
of AMMOS MPS software components and a set
of AMMOS MPS Software Interface
Specifications (SIS) were identified. They are
listed in Table 2 and Table 3 respectively.

MPS Mission Planning and Sequencing

Subsystem
 Mission Planning Tools

APGEN Activity Plan Generator

SOA Science Opportunity Analyzer

 DSN Scheduling Tools
CAST Common Allocation Scheduling Tools

 Sequence Generation Tools
SEQGEN Sequence Generator

 Command Translation Tools
SEQTRAN Sequence Translation / Macro Assembler

Tool
SLINC1 Spacecraft Language Interpreter and

Collector 1
SLINC2 Spacecraft Language Interpreter and

Collector 2
CTS Command Translation Subsystem

VMLCOMP1 VML Compiler, Type1

VMLCOMP2 VML Compiler, Type2

 Sequence Virtual Machine Simulation Tools
OLVM1 Off-Line VM Engine,Type1

OLVM2 Off-Line VM Engine,Type2

 Sequence Execution Tools
VMLFC1 VML Flight Component, Type1

VMLFC2 VML Flight Component, Type2

 MPS Utilities
SEQREVIEW Sequence Review Tool

SEQADAPT Sequence Adapter

 VML-to-SATF Converter

RSFOS Re-Engineered Space Flight Operations
Schedules Software

CTSCOM CTS Component

PAPS Persistent Apcore Server Software

MPS Editor MPS Editor

ULSGEN Uplink Summary Generator

Table 2: Mission Planning and Sequencing S/W
Components

SIS/Product Provided By Used By

7-Day Schedule DSN

Common
Allocation
Scheduling
Tools

APCORE
XMLRPC In-situ Planning Activity Plan

Generator
APGEN
Adaptation File

Activity Plan
Generator

Activity Plan
Generator

APGEN Plan File Activity Plan
Generator

Activity Plan
Generator

APGEN User
Defined Function User Activity Plan

Generator
Spacecraft
Language
Interpreter and
Collector 1 Command Packet

File
 Spacecraft

Language
Interpreter and
Collector 2

DSN

Spacecraft
Language
Interpreter and
Collector 1

Command
Translation File
(cmdxlt)

Command
Translation
Subsystem

Spacecraft
Language
Interpreter and
Collector 2

Command
Translation
Library (libxlt)

Command
Translation
Subsystem

Sequence
Adapter

Computed
Coverage Hours

Common
Allocation
Scheduling Tools

User

Conditions File Sequence
Generator

Sequence
Generator

Conflict Report
Common
Allocation
Scheduling Tools

User

Context Variable
Definition File MPS Editor Sequence

Generator

 (Multiple files) Sequence
Generator

MPS Editor

 (Multiple files) Sequence Adapter Sequence
Adapter

Coverage Gaps
Common
Allocation
Scheduling Tools

User

VML Compiler,
Type2 CTSCOM API

CTS Component
 Command

Translation
Subsystem

Environmental
File for SEQ MPS Editor MPS Editor

 (Multiple files) Sequence
Generator

Sequence
Generator
Sequence
Adapter Flight Rules

Model File

Sequence Adapter
 Sequence

Generator

Master File
Common
Allocation
Scheduling Tools

Common
Allocation
Scheduling
Tools

American Institute of Aeronautics and Astronautics

5

Multimission
Activity
Dictionary
Language

In-situ Planning

MPS Editor

 Plan file,
Adaptation file

Activity Plan
Generator

Activity Plan
Generator

 (Multiple files) MPS Editor MPS Editor

 Sequence file RSVP-ROSE Sequence
Generator

Off-Line VM
Engine, Type2 Offline Virtual

Machine Log file
 Off-Line VM

Engine, Type1

User

Out of View
Report

Common
Allocation
Scheduling Tools

User

Activity Plan
Generator PAP API
In-situ planning

Persistent
APcore Server
Software
Sequence
Review Tool
Re-Engineered
Space Flight
Operations
Schedules
Software

Predicted Events
File

Sequence
Generator

MPS Editor

RAP Book DSN

Common
Allocation
Scheduling
Tools

RAP Raw FIle DSN

Common
Allocation
Scheduling
Tools

In-situ Planning MPS Editor
MPS Editor RSVP-ROSE

Rover Markup
Language

 RSVP-ROSE In-situ Planning

SEQGEN User
Defined Function User Sequence

Generator
Table 3 MPS Software Interfaces Specification (SIS)

It is important to represent the existing MPS s/w
artifacts using a standard modeling language (we
chose UML 2.0), because doing so will enable
effective communications between stakeholders
and will facilitate the mapping between legacy
and to-be systems. An effort is underway to
capture the as-is structure of the entire AMMOS
system through UML diagrams. In the next few
figures, we illustrate some of the results of that
effort. Our selection of diagrams highlights the
planning and sequencing function within
AMMOS, which was also the focus of our
prototype work.

Figure 1 below is a UML representation of the
MPS subsystem hierarchical structure, while
Figures 2 and 3 depict MPS planning,
sequencing and command translation tools.

Figure 1: Mission Planning and Sequence Subsystem

(MPS) hierarchical structure

Figure 2: Planning and Sequencing tools

Figure 3: Command Translation tools

American Institute of Aeronautics and Astronautics

6

The following is a brief functional description of
MPS tool sets:

1. Planning tools:
• Search for science observation opportunities

within given trajectory and viewing
constraints

• Generate mission plan with science and
engineering activities

• Provide Multimission Resource Scheduling
Service (MRSS) for generating DSN and relay
network communication windows by
optimizing ground resources with respect to
mission uplink and downlink strategies

• Provide mission configurable in-situ Planning
tools to support a fast turnaround mission
tactical planning session (~ 4 to 6 hours
turnaround time)

• Validate mission plan based on resource usage
and S/C constraints

2. Sequencing tools:
• Design and generate sequences of S/C

activities, real time commands, and DSN
keywords

• Model changes in spacecraft states due to
sequence commands in order to generate event
predictions

• Validate command sequences based on
spacecraft flight rules and constraints

3. Command Translation tools:
• Translate sequence commands from command

mnemonics to binary to be radiated to
spacecraft

AMMOS not only has a large number of
monolithic tools, it also has an immense set of
complicated s/w interfaces among AMMOS
tools. Among these interfaces, 90% are file-
based Software Interface Specifications (SIS),
and 10% are Applications Programming
Interfaces (API) or XML-based interfaces.

Based on MPS interfaces specifications in Table
3, a set of UML model diagrams were developed
to show different interface relationships among
MPS s/w tools. Figure 4 shows MPS tools
external interfaces; Figure 5 shows MPS tools
internal interfaces; Figure 6 shows Activity Plan
Generation (APGEN) tool interfaces; Figure 7
shows Sequence Generation (SEQGEN) tool
interfaces; and Figure 8 shows Command
Translation tools interfaces.

Figure 4: MPS tools external interfaces

Figure 5: MPS tools internal interfaces

American Institute of Aeronautics and Astronautics

9

Our choice of architectural focus was largely
dictated by the need to comply with Mission
Operations requirements and, in particular, with
those requirements that seem to relate most
directly to the architecture of the future SEQ
system. Those requirements were discussed in
Section III D.

C. Refactoring Strategy

The process that was used in refactoring of
APGEN into the APcore server is discussed
below.

In order to migrate towards a server architecture,
the GUI element was deleted from the design,
along with the communications between GUI
and other APGEN subsystems. To replace the
deleted elements, a new subsystem was
introduced. This subsystem is implemented by
the XmlRpcServer class, available from the
open-source C++ implementation of the XmlRpc
protocol.

The old GUI module was replaced by an
XmlRpc server, which handles requests from the
client and sends replies to it. The new
communications channels between the
XmlRpcServer module and the internal modules
of APcore are functionally similar to those
present in the old architecture. But now, those
channels relay information from and to the
XmlRpc client, instead of relaying information
through the monolithic APGEN GUI.

When the XmlRpc client is a GUI application,
the resulting combination of Client and Server is
essentially equivalent to the monolithic version
of APGEN. We say "essentially" because there
are features of APGEN that may be missing from
the Client, based on particular Mission
requirements; conversely, the Client may exhibit
features that were missing (or poorly
implemented) in the legacy APGEN GUI.

D. Design Decisions

The main design decision made during prototype
development addressed the need to define a clear
boundary between the business layer and the
expert layer. Specifically:

1. The business layer should be responsible for all
transactions that can be expressed in a generic

way, i. e., without invoking expert knowledge.
When using the phrase “business layer”, we
include generic items such as a relational
database for holding systems and engineering
data.

2. The expert layer should be responsible for any
data processing requiring expert domain
knowledge, i. e., knowledge that lies beyond the
scope of business-oriented systems.

Our initial design did not conform to this design
principle in several areas:

1. The Persistent APcore Server (PAPS) server,
which we planned to inherit from SEQ software,
implements a business function and therefore
does not belong in the expert layer of the
prototype

2. Communications between MPS applications
was traditionally implemented by the
applications themselves, using ad-hoc methods.
In reality, orchestrating communications
between expert helpers is a business function
that should be handled within the business layer

The PAPS server was inherited from existing
SEQ software, which belongs in the expert layer
of the prototype. Generally speaking, invoking
and configuring a helper application to support a
new user session is a generic responsibility that
can easily be implemented using Enterprise-style
technology. On a more technical level, the legacy
PAPS application has the undesirable feature of
creating one new local (server-side) directory for
each new session. This was done to
accommodate legacy code that wrote and read
files assumed to reside in a local directory.

E. Prototype Demonstration

The prototyping effort resulted in functional
web-based and client-server implementations of
the design principles outlined above. The key
components of the prototype can be described as
follows:

1. The J2EE Glassfish framework from Sun
Microsystems was selected for implementing
planning and sequencing services

2. A relational database (MySQL) was chosen as
the main repository of planning and sequencing
information

3. The GMSEC messaging bus from GSFC was
chosen to provide the vehicle for telemetry
information

4. The AMMOS planning application APcore was
selected as the legacy application to be
refactored into the prototype

American Institute of Aeronautics and Astronautics

10

5. A generic web browser (Firefox) was used to let
users access planning and sequencing services
through the LAN

6. As a specialized alternative to a generic web
browser, a thin GUI client called System Viewer
(SV) was implemented in C++ using the open-
source package gtkmm

The Glassfish framework provides a self-
contained and efficient way to implement the
workflow processes that we wanted to
demonstrate with our prototype:

1. The user logs into the system and chooses a
specific mission

2. Presented with several plans available for the
previously selected mission, the user selects
one

3. The plan selected by the user is displayed in
one of several perspective: activity-based,
resource-based, telemetry-based

4. The user makes changes to the plan and asks
the system to validate the modified plan

5. The system displays to the user the updated
values of the various S/C resources, taking the
change into account

6. The user requests telemetry data in order to
compare actual resource values to the ones just
predicted

The decision to use two client applications
(Firefox and SV) was dictated by our desire to
explore some of the basic design tradeoffs that
are typical of modernization efforts. A web
browser based solution is attractive because the
browser itself is available and does not need to
be recoded. However, the protocols supported by
the browser (e.g. Javascript) are not as efficient
as the lower-level graphics frameworks available
to custom-made GUI applications (e.g. gtkmm).

The use of a generic database to store planning
and sequencing mission data forced us to address
the issue of mapping legacy Software Interface
Specifications into more standard database
schemas. We were able to accomplish this
mapping without losing any information, so that
the database could provide legacy applications

with data expressed in legacy format if
necessary.

The use of a messaging bus allowed us to easily
integrate uplink (planning and sequencing) with
downlink (telemetry) applications. In the actual
demonstration of the prototype to MGSS
personnel, it is probably this part of the
demonstration - comparing predicted vs. actual
state values for various S/C resources - that
provided the most convincing evidence in favor
of the SOA approach.

A demonstration of the planning and sequencing
prototype can be arranged by contacting the
authors.

V. Conclusion
In this paper, we have demonstrated the
feasibility of modernizing the AMMOS legacy
tools by building a prototype that includes a set
of refactored AMMOS Mission Planning and
Sequencing tools. We have successfully used
Risk-Managed Modernization methodology and
the Horseshoe model for guiding AMMOS
legacy system activities. The prototype design
has also demonstrated a successful refactoring
and consolidation of AMMOS monolithic
applications, and a significant re-design of a
subset of MPS tools into web-based, J2EE-
compliant Mission Planning and Sequencing
services. We have described in detail our first
step towards an SOA layered architecture
concept implementation of AMMOS. The
prototype has shown that reusable component
design and use of COTS shared infrastructure
enable loosely coupled system-to-system
interoperability. Our future plan is to
demonstrate an example of system-to-system
interoperability and collaborative systems
integration based on the GSFC GMSEC
architecture and on the JPL DISA architecture, in
the context of evolving AMMOS and AMMOS
legacy system modernization.

Acknowledgments
We would like to acknowledge the many individuals who participated in the development of the AMMOS "as-is"
architecture UML and SysML models and EPOXI mission operation scenario, their valuable insights and thoughts
in the AMMOS system, Mission Operations System (MOS), architectural views standards, UML and SysML
modeling strategy to support AMMOS model based system engineering practices. The individuals are too numerous
to mention here for their contributions to this effort. Nonetheless, I wish to acknowledge the excellent work done on
the AMMOS UML/SysML models and on the AMMOS “as-is” architecture concept prototype work by the

American Institute of Aeronautics and Astronautics

11

following individuals, to whom I extend my special thanks: Steve Wissler (EPOXI S/C Team Chief and Flight
Director), Mark Dutra, Kathy Rockwell, and Will Sun. Last but not least, I am grateful for the support of MGSS
management, which special thanks to Dave Linick, Andy Dowen, and Ben Smith.

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

References

[1] Seacord R.C., Plakosh, D., and Lewis, G. A., “Modernizing Legacy Systems”, Addison Wesley, Boston, 2003, pp. 6-7.
[2] Muller, H. A., Wong, K., and Tilley, S.R., “Understanding Software Systems Using Reverse Engineering Technology”, The
62nd Congress of L’Association Canadienne Francaise pour l’Avancement des Sciences Proceedings (ACFAS), 1994, pp. 41-48.
Vol. 26. No. 4.
[3] Lehman, M. M. and Belady, L., “Program Evolution: Processes of Software Change” London: Academic Press, 1985.
[4] Seacord R.C., Plakosh, D., and Lewis, G. A., “Modernizing Legacy Systems”, Addison Wesley, Boston, 2003, p. 28.
[5] Maldague, P., Ko, A., Page, D., and Starbird, T., “APGEN: A multi-mission semi-automated planning tool”, First
International NASA Workshop on Planning and Scheduling, Oxnard, CA, 1998.
[6] Seacord R.C., Plakosh, D., and Lewis, G. A., “Modernizing Legacy Systems”, Addison Wesley, Boston, 2003, pp. 58-59.
[7] Ko, A., Maldague, P., Page, D., Bixler, J, Lever, S, and Cheung, K.M., “Design and Architecture of Planning and Sequence
System for Mars Exploration Rover (MER) Operations, AIAA SpaceOps Conference, Montreal, Canada, 2004.
[8] McVittie, Thom, “DSMS Software Architecture Overview: Web-based GDS,” Working Draft (Internal Document), Jet
Propulsion Laboratory, California Institute of Technology, September 14, 2004.
[9] Estefan, J. A., “The Importance of Architecture Governance for Achieving Operationally Responsive Ground Systems”,
GSAW08 Architecture-Centric Evolution (ACE) Working Group Session, April 2, 2008. 
[10] Sprott, D., Dodd, J., and Gilbert, M., “Introducing Service Architecture and Engineering”, CDBI Journal, July/August 2006,
p. 6. 
[11] Butler, J. and Ellis, D., “Enhancing the Enterprise Architecture with Service Orientation”, CDBI Journal, October 2007.

Author Biographies

Mr. Adans Y. Ko is a Software Engineer in Ground Software Architecture and System Engineering Group at JPL. Currently, he
is the Multi-Mission Ground System and Services (MGSS) Software Architect for Advanced Multi-Mission Operation System
(AMMOS), and he is responsible for Ground System software architecture for the current and future AMMOS. He was a system
engineer and development manager for the AMMOS Mission Planning and Sequencing Subsystem (MPS) over 10 years. He has
in-depth knowledge of the Multi-mission Ground Data System uplink tools, which include mission planning, sequence generation,
and sequence flight software. In the private sector, he was a project manager for credit card systems for the Navy at CitiBank
Development Center, Los Angeles, CA and a Principle Engineer for e-Commerce Consulting at MarchFirst Consulting Firm, in
Los Angeles, CA. He received NASA “Turn a goal to reality” award for his work on technology infusion of AMES planning and
scheduling technology to AMMOS planning and sequencing legacy system. He has also received NASA’s Exceptional Service
Medal for his work on Voyager’s Onboard Computer Command Subsystem for missions to Uranus and Neptune. He got his
B.S.C.S. degree from Utah State University, Logan, Utah in 1982 and his M.B.A. degree from University of California, Los
Angeles in 1993.

Dr. Pierre F. Maldague is a senior member of the Mission Systems Engineering Section at JPL. Currently, he is the Cognizant
Programmer for the planning tool APGEN; he has also made major contributions to the design and implementation of sequence
tools such as SEQ_REVIEW (a smart editor/translator for sequencing information) and SOA (Science Opportunity Analyzer). Dr.
Maldague holds a Ph. D. in Theoretical Physics from M.I.T. After exploring his research interests in Quantum Mechanics at
Purdue University and I.B.M., he joined Ford Motor Company in 1979 to work on computer-aided design, flame theory and
engine manufacturing. He left Ford in 1984 to work on a variety of projects that included machine vision, robotics, image
processing, and three-dimensional data visualization before joining Section 314 in 1993.

Mr. Tung Bui received the BS from California University of Irvine in 1994 and the MS from California State University of Long
Beach in 1999, both in Computer Science. In 2001 he joined the Jet Propulsion Laboratory to take part in designing and
implementing the Service Preparation Subsystem (SPS), a replacement of the Network Support Subsystem (NSS), on supporting
missions using end-to-end service-based architectures in a way to enable DSMS to deliver more efficient and cost-effective
support services to missions, eliminating unnecessary data interfaces, building direct user-DSN communication paths and pave a
way for future Service Management era.

Ms. Doris Lam joined JPL as a software engineer in 2008 after graduating magna cum laude from UCLA with a bachelor's
degree in Computer Science. She had worked as an undergrad at UCLA's Center for Embedded Networked Sensing lab, and likes

American Institute of Aeronautics and Astronautics

12

to work on and experiment with new technologies and frameworks. [In her free time she likes to read, play piano, learn to hang
glide, learn Japanese, and play catch up with friends and the latest gadget/tech news.]

Mr. John C. McKinney has over 40 years experience in Space System Ground Data and Mission Operations Systems
Management, operations and Systems Engineering in particular for NASA Deep Space Missions and multi-mission ground
support systems and services. Currently the Chief System Engineer for the Advanced Multi-mission Operations System
(AMMOS) at the Jet Propulsion Laboratory.

