Space Network Time Distribution and Synchronization
Protocol Development for Mars Proximity Link

Simon S. Woo", Jay L. Gao®
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

and

David Mills*
Electrical and Computer Engineering, University of Delaware, Newark, DE 19716

ABSTRACT

Time distribution and synchronization in deep space network are challenging due to long propagation delays,
spacecraft movements, and relativistic effects. Further, the Network Time Protocol (NTP) designed for terrestrial
networks may not work properly in space. In this work, we consider the time distribution protocol based on time
message exchanges similar to Network Time Protocol (NTP). We present the Proximity-1 Space Link Interleaved
Time Synchronization (PITS) algorithm that can work with the CCSDS Proximity-1 Space Data Link Protocol. The
PITS algorithm provides faster time synchronization via two-way time transfer over proximity links, improves
scalability as the number of spacecraft increase, lowers storage space requirement for collecting time samples, and is
robust against packet loss and duplication which underlying protocol mechanisms provide.

Nomenclature
NTP = Network Time Protocol
DSN = Deep Space Network
TC Packet = Time Correlation Packet
PITS = Proximity-1 Space Link Interleaved Time Synchronization
FSN = Frame Sequence Number
SpNTP Packet = Space NTP Packet

I. Introduction

NOWING and maintaining accurate time is especially critical for correct operation of computer systems that

are designed for space explorations. In particular, spacecraft at great distances from Earth require high-
precision time information for navigation and communications purposes. Typically, an on-board computer carries a
space clock or mission-elapsed time counter (SCLK); however, a clock can be skewed and drift due to external
environmental effects such as radiation, temperature fluctuation, relativistic effects, as well as internal heat
generated from software or hardware overloading. Inaccurate timing can cause other temporary or permanent
cascading subsystem failures, resulting in unpredicted and undesired behaviors. In space missions, correcting and

"Member of the technical staff, Communication Architecture and Research Section of the Jet Propulsion Laboratory,
4800 Oak Grove Drive M/S 238-420, Pasadena, CA 911009.

" Senior Member of the technical staff, Communication Architecture and Research Section of the Jet Propulsion
Laboratory, 4800 Oak Grove Drive M/S 238-420, Pasadena, CA 91109.

T Professor, Electrical and Computer Engineering at the University of Delaware, Newark, DE. 19716

1
American Institute of Aeronautics and Astronautics

synchronizing spacecraft clocks is made even more challenging due to long propagation delay from Earth. A
common method for time synchronization is to perform offline processing on Earth by comparing time correlations
between the spacecraft and Earth. This time correlation process requires manual resources on Earth and can
introduce inaccuracy in time distribution and synchronization due to additional time lag for data processing and
coordination. As the number of spacecraft increases, it is envisioned that intrinsic, ubiquitous, and distributed time
synchronization and distribution in mission critical InterPlanetary communications and networks, will be necessary.

A task to develop reliable and effective space network time synchronization and distribution methods has been
initiated at JPL. These methods can be applied for proximity communication scenarios in order to improve the
overall network clock accuracy. This work addresses and provides the fundamental capability to distribute time
when no direct communication link is available between Earth and remote spacecraft, for instance when a spacecraft
is on the back side of the Mars. Therefore, we consider the in situ time distribution service for the future Mars
Network where we can provide time information in GPS-denied or GPS-unavailable areas with a NTP based
approach.

In addition, it may not be possible to equip every spacecraft with a high precision clock due to cost or design
issues. Some missions may not require high precision time information all the time and course time synchronization
is enough for some applications. In these cases, it is possible to equip some number of spacecraft acting as primary
time servers to provide time distribution service to other secondary spacecraft similar to the Network Time Protocol
(NTP) based approach which is widely used in terrestrial networks. As the number of spacecraft increase, we believe
that this approach will provide effective time distribution architecture.

Currently, CCSDS Proximity-1 Space Link Protocol defines and provides service for time sample collection and
exchange between spacecraft. The detailed algorithms for processing these time samples in order to discipline the
spacecraft clocks are left for the users to develop.

=Time Server
PR
\

i
FAEAY .
S 1 ~
) I ~
h 1 -~
/ \ -
¥ \ .

Long Héul Space Network
Timk Synchronization

K Y Padu.is NOT available
Pass is available 3 T

— Time Server

Time Client

Time Client Local Proximity Space Metwork

Time Synchronization over
Prox-1 Radio (PITS)

Figurel. Time Distribution for Deep Space Network

The primary objective of this work is to present an efficient, distributed, and reliable Space Network Time
Distribution and Synchronization Protocol that provides accurate time synchronization and distribution service
which can be directly infused into the Electra radio that implements the CCSDS Proximity-1 Space Data Link[1]. A
proposed algorithm, Proximity-1 Space Link Interleaved Time Synchronization (PITS) [2] by Mills, has been
designed to operate over the CCSDS Proximity-1 Space Link Protocol with minor modifications to its Medium
Access Control (MAC) Sublayer. PITS can utilize both hardware-timestamps provided by the radio as well as soft-
timestamps provided by a higher layer of the protocol stack for improved precision. Earth-disciplined vehicles can

2
American Institute of Aeronautics and Astronautics

operate as primary PITS servers while other spacecraft as secondary PITS servers or clients. PITS allows two-way
time transfer between a primary server and a secondary server using the Supervisory Protocol Data Unit (SPDU) of
Proximity-1 Protocol so that time information can be efficiently distributed. The secondary servers can distribute
time information to the rest of the network in similar manner. Therefore, PITS can potentially provide the following
benefits: 1) faster time synchronization via two-way time transfer over proximity link between spacecraft, 2)
improved scalability as the number of spacecraft increase, 3) lower storage space requirement for collecting time
samples, and 4) robust operations against packet loss and duplication which underlying protocol mechanisms
provide.

This paper describes the current progress of implementing and validating the correctness and design of the PITS
algorithm and protocol at JPL considering the Mars Proximity link communications scenarios as a baseline for
analytical evaluation and simulation. We reveal interesting and important design issues. Also, preliminary
simulation and testing results will be described.

II. Time Stamping Principles

One way to achieve clock synchronization between two nodes is based on message based time information
exchanges, where this approach used in NTP is widely adopted for terrestrial network time synchronization. A node
that has accurate time information is defined as a time server. A node who wants to be synchronized to a time server
is a time client. It is the time distribution service requester. Generally, a time server and a time client exchange time
information several times and find relative time differences to each other. To better illustrate the time
synchronization process, we denote node A as a time server and node B as a time client for convenience in Fig 2.
We assume that the paths from A to B and B to A are symmetric during the time synchronization process. This
means that the distance stays the same and link characteristics are stochastically equivalent. We assume that one
way light time (OWLT) is half of the round trip time (RTT) delay. We precisely define 7 as a transmit-timestamp
of node A when A sends time packet to node B where typically time information is encapsulated in the network time
protocol (NTP) packet. We define 7, as a receive-timestamp of node B when node B receives the NTP packet from
node A. Similarly, 7; and T, are the transmit-time stamp at node B and receive-timestamp at node A respectively.
When each node obtains the four consecutive timestamps: (i.e.: T}, T>, T3, and T, for node A and T3, T,, Ts, and T
for node B in Fig 2), RTT and offset can be calculated using the following equations:

For A,
- offset =%{[(T, - T)]+[T5- L]} (1)
- delay =[Ty -T\]-[Ts-T>] (2)
For B,
- offset = B{[(Ty - T)]+[Ts—Ts]})
- delay =[T¢ - T3] - [T5s— Tx] 4)

B : time client

TN

A time server

Figure 2. Illustration of offset and round trip calculation between A and B

As shown in Fig. 2, it requires collecting four consecutive timestamps in order to calculate the round trip time (RTT)
delay and relative time difference at each side. Therefore, we need to complete all A>B, B>A, and A>B

3
American Institute of Aeronautics and Astronautics

transmissions successfully in order to compute the correct RTT and offset. We define the NTP process as the time
that node A transmits NTP packets to node B till both A and B successfully collect four consecutive timestamps.
The number of samples to collect or the duration of collection time highly depends on the Clock Discipline
Algorithm. For the scope of this work, the details of the Clock Discipline Algorithm and grooming algorithm are not
discussed. In reality, it is not trivial to obtain the accurate transmit and receive-time stamps due to various hardware
constraints. However, there are some general principles that are typically employed to minimize timestamping
errors [2]:

-Inbound and outbound Time Packet sizes should be known to each other in advance and the NIC should provide
reliable/accurate data rate

-The propagation delay measured from the first bit sent in a packet to the first bit received on each direction of
transmission must be the same

-T'1 and 73 must be captured from the preamble timestamp, where a preamble timestamp is captured as near to the
start of the packet as possible (the preferred point follows the start-of-frame (SOF) octet and before the first octet of
the data)

-T2 and T4 must be the captured from the trailer timestamp, where a trailer timestamp is captured as near to the end
of the packet as possible (on transmit the preferred point follows the last octet of the data and before the frame check
sequence (FCS) on receive the preferred point follows the last octet of the FCS) : Also, different combinations of
preamble and trailer timestamp can be available at the sender and receiver. In order to provide the high accuracy of
time stamping, it is strongly recommended that each side agrees on what type of time stamping strategy it will
employ in advance. If hardware is not available to timestamp the packet, less accurate software-timestamp (or
driver-stamp) by software or driver is also available.

-A software timestamp is captured as close to the system I/O call as possible: More details on techniques to obtain
and approximate time stamps are further explained in [2]. In [2], Mills suggested that if the delays are reciprocal
(delays on inbound and outbound are the same or statistically equivalent) and the packet lengths the same, software
timestamps are equivalent to hardware timestamps.

For CCSDS Proximity-1 Space Link Protocol, the data rate between the orbiter and the landed asset can be different.
Therefore, time stamping strategy should be agreed upon in advance.

III. CCSDS Proximity-1 Space Data Link and its Time Correlation and Distribution Services

CCSDS Proximity-1 Space Link Protocol is used for communicating between a Mars orbiter and rovers and has
demonstrated the successful communications capability over a Mars proximity link. In this section, we briefly
summarize and describe the existing Time Services in CCSDS Proximity-1 Space Link Protocol and compare the
existing on board time service with the proposed PITS algorithm.

Time Service in CCSDS Proximity-1 Space Link Protocol

Currently, CCSDS Proximity-1 Space Link Protocol defines the Time Collection, Time Correlation, and Time
Distribution services [1], where Time Services can be used for time correction, synchronization, and time-derived
ranging measurements purposes. First, we assume that two spacecraft A and B collect time samples as follows:

Time Collection Service

1. Spacecraft A initiates the Time Distribution service and radiates Supervisory Protocol Data Unit (SPDU)
frames to spacecraft B where the vehicle controller (VC) initiates the ‘Time Distribution service’ and the
MAC layer sets the details of the duration of time collection interval, 7, or the number of samples, n,
parameters. Time samples frames SPDUs are sent with Expedited QoS service and not as Sequence
controlled QoS.

4
American Institute of Aeronautics and Astronautics

We assumed that the C&S physical layer in CCSDS Prox-1 provides the capability of time-tagging the
trailing

bytes of the ASM synch which is also used in the PITS algorithm. Both the sequence numbers as well as

the time tag of each transmitted and received frame are stored in the Sent-time and Received-time buffer at

the MAC layer respectively.

2. Both spacecraft A and B collect and store 1) the transmitted and 2) received time and the 3) sequence
number of the time sample SPDUs for duration T or the number of samples » which are specified in the
Time Sample field in SPDU.

Time Correlation Service

3. Then, initiator A creates Proximity Time Correlation (TC) Packets SPDU which contains the time tag,
frame sequence number (FSN), and time tag direction and sends it to B. Then, B can calculate the time
correlation. After that, B creates Proximity-1 TC Packet and sends TC Packets to A. Finally, A can
compute the time correlation as well.

Time Distribution/Transfer Service

4. After completing time sample collection, the Universal Time Coordinated (UTC) time transfer process
begins using the TIME DISTRIBUTION (UTC Time Transfer) directive over the Proximity link by
creating Time Transfer (TT) Packet SPDU. This packet contains the correlation between UTC and the
recipient’s clock. (However, we believe that this time directive requires additional processing time and this
may not reflect the accurate time offset.) Each creates Time Transfer (TT) SPDU containing the time
correlation information and exchanges with each other.

5. After receiving TT SPDU, a receiving spacecraft updates the clock based on the time correlation
information. Therefore, A and B simultaneously exchange the time-tags during this process.

In order to achieve higher accuracy in timestamping, several additional important observations are made in [1]
regarding the existing time services such as a priori knowledge about time collection buffer size and known internal
signal path delays. Also, [1] recommends the simultaneous collection of TC packets in both directions. In this work,
we like to address solutions to some of these described issues within the PITS protocol.

IV. PITS algorithm

PITS is a general time exchange protocol which defines how to exchange time information between two spacecraft.
PITS provides one possible way of implementing efficient and reliable time packet exchange that can be used for
CCSDS Proximity-1 Space Link Protocol Time Collection, Correlation, and Distribution services. The core
functionalities of PITS are similar to the ones used in terrestrial NTP [3]. However, the PITS algorithm is designed
to be used for time synchronizing and distribution between a Mars orbiter and landed assests over the CCSDS
Proximity-1 Space Link with minimal modifications. PITS is benficial when the direct time synchronization from
Earth to rover is difficult.

Further, PITS can automatically cope with packet drops and reception of duplicated packets. Therefore, there is no
worry for harmful or defective time samples, since the collected time samples are checked by the underlying
protocol logic. This can be achieved by cross-checking the stored state variables and received time information in
the Space NTP (SpNTP) packet. More details are described in [2]. Therefore, this check routine can be easily
implementable with existing time tagging methods and can be placed into the MAC Sublayer.

5
American Institute of Aeronautics and Astronautics

In particular, we assume that a Mars orbiter carries an accurate on board clock and has in flight time distribution
capability to distribute time to landed assets. We assume that the relative movements of orbiter and rovers are
stationary during the time synchronization process as before. PITS can operate in the three modes: 1) Basic Mode
and 2) Interleaved Mode, and 3) Broadcast Mode and the more details are described in [2]. In this work, we focus on
the Basic and Interleaved Modes.

Proximity-1 Space Link Interleaved Time Synchronization (PITS)

The goal of PITS is to provide the method of capturing and exchanging timestamps more accurately and reliably in
order to minimize time difference between the timestamp tagged at the spacecraft and true clock information. In the
PITS algorithm, time information is exchanged via Space NTP (SpNTP) and this time information can be easily
encapsulated as a SPDU. Time information contains the origin timestamp, receive-timestamp and transmit-
timestamp as shown in the following Fig. 3.

Header torg trec txmt

Figure 3. Space NTP (SpNTP) Packet
A time server and a time client exchange the SpNTP packet that contains the following three fields in the payload,
torg © OTigin-timestamp
* t. :receive-timestamp
Lo - transmit-timestamp
These timestamps are updated with new time information when a new SpNTP packet is generated. In addition, each
server and client has the following three state variables in the spacecraft memory to store the timestamps received
from SpNTP packet:
* rec :receive-timestamp
e dst : destination-timestamp
* qorg : origin-timestamp
* borg : origin-timestamp used for Interleaved Mode
Updating state variables with time information received from SpNTP is slightly different for Basic and Interleaved
mode and is explained in the next section.
Basic Symmetric Mode
The example of packet exchanges between two spacecraft using Basic Symmetric Mode is given below. The
payload in SpNTP packet as well as state variables at the time server and client are shown at each time instant. The
state variables and packet payload updates occur according to the transmit and receive process. In particular, the

time in blue boxes indicate the system clock, where the time that is stamped either at transmission or reception of
SpNTP packet.

6
American Institute of Aeronautics and Astronautics

rec *tl *tl *tj *rs
dst
org - _ -
)
L ls
Lo 0 t ty t
Lo *1 * 1 * 15 *1

rec 0
dst 0

mg-

Figure 4. Illustration of Basic Process showing SpNTP packet and state variables|2]

—
Ih

A server A initiates the synchronization process by sending a SpNTP packet to B as shown in Fig. 4, where this is
defined as Transmit Process and pseudo codes [2] are given in Fig. 5. The flow diagram shown in Fig. 7. is another
description of Transmit Process in Fig. 5. Initially, each #,,, and t,.. stores receive state variable, rec, and destination
timestamp state variables, dst, respectively as shown in Fig. 6. Just before transmitting an origin timestamp, state
variable aorg stores the current time, clock in the
information.

After SpNTP packet transmission, t,,,, contains the clock

Uy = rec
L. = dst
If(x==0) {
aorg = clock
Lo = G0Tg
} else {
if (xx>0) {
aorg = clock
xlm‘ = bor, g
} else {
borg = clock

Lo = QOTE

[* basic mode */

[* interleaved mode */

X ==X

Figure 5. Pseudo codes of Transmit Process for 1) Basic and 2) Interleaved Mode

7
American Institute of Aeronautics and Astronautics

rec = t_\‘ﬂll
dst = clock
Tl = rorg
TZ = tre('
T3 = Lome
T,=dst
If(b1=0)
rec=t,,
If(T,==0||T,==0)
SYNC
else if (T, != aorg)

BOGUS

Offset B - A

0="% [(T,-T)) + (T; - Ty]
Delay ABA
d=(T,-T)-T,-T,)

Figure 6. Pseudo codes of Basic Receive Process

Upon reception of a SpNTP packet at B, B updates its state variable rec, dst, and org and transmits SpNTP packet
with new time information according to the Receive Process. The pseudo codes and flow chart of Receive Process
are provided in Fig. 6 and Fig. 8, respectively. After receiving a SpNTP packet from A, rec state variable in B stores
ton: timestamp from the received SpNTP packet. Also, dst, state variable stores the current received clock at B.

In addition, each temporal variable 7, T5, T3, and T stores the f,,,, tec, tun and , dst respectively to compute the
offset and round trip delay described in Eq. (1) through (4) as shown in Fig. 6. This received process is also
described in the flow chart in Fig 8. Therefore, the Transmit Process occurs just before transmitting a Space NTP
packet and the Receive Process occurs right after receiving a SpNTP packets [2].

8
American Institute of Aeronautics and Astronautics

Initialize

NTP time distribution service session

v

Initialize
pkt.torg = peer->rec;
pkt.trec = peer->dst;

¥

buffer

Capture timestamp and stored into

¥

Transmit Packet

¥

Update state variables
peer->org = timestamp
pkt.txmt = peer->aorg;

¥

Wait to receive

Receiver

the packet from

/N

If received from B

If not received from B within the
predefined time,

¥

Capture the rx time stamp and store
into buffer

Figure 7. Flow Chart of Basic Transmit Process

9

American Institute of Aeronautics and Astronautics

Initialize : NTP time distribution service session

Initialize : peer->rec = pkt.txmt;

J

Wait until you receive the Space NTP packet from Sender

V
Capture the received-timestamp and stored into buffer

y

Update the following state variables:
peer->dst = captured time

t1 = pkt.torg;
t2 = pkt.trec;
t3 = pkt.txmt;

t4 = peer->dst;

¥

Create new Space NTP packet w/ new
time information

y

Capture transmit-time stamp and
stored into buffer

y

Transmit Packet

A

Update State Variables as follows:
peer->xmt = pkt.txmt;

|

Figure 8. Flow Chart of Basic Receive Process

Interleaved Symmetric Mode

First, the SpNTP packet used in the interleaved mode has the same format as the one used in the Basic Mode. This
provides the backward compatibility when each Basic Mode or Interleaved Mode has to switch to another mode. On
the other hand, interleaved mode has one more state variable, borg. This, borg, holds the original timestamp every
odd (or even) time and aorg also holds the same information for every even (or odd) time as shown in Fig.5.

10
American Institute of Aeronautics and Astronautics

Another important aspect in the Interleaved Mode is that the transmit-timestamp is captured right after the
SpNTP packet has been sent unlike Basic Mode. Hence, the current transmit-timestamp is sent in the next transmit-
timestamp, Z,,; , using the next SpNTP Packet transmission, whereas the receive-transmit timestamp is immediately
available as soon as a packet has been received. The following figure provides the example of exchanging space
packets with the Interleaved Mode. In Fig 9, the first transmit-timestamp, ¢, at A is actually being sent at the second
round, at time #5. The first transmit-timestamp of B, #;, when B transmits packet to A for the first time, is sent in the
following transmission time at #;. On the other hand, the received timestamp, ¢, at B is immediately encapsulated
and sent in the following SpNTP packet transmission unlike transmit-timestamps. Therefore, the new receive-
timestamp and the transmit-timestamp information from the other side are interleaved and available at every other

round.
rec 0 0 t4 t4 :12
dst A 2
B aorg 0 1 [i
/2 f\ /e f\ Z1o £ 4
f Iy ts Iy ly Iy I3
tmg 0 0 12 !4 rﬁ tﬂ !IO
Lrec 0 5 iy I I Lo P
Lot 0 0 t Iy ts 15 ty
A rec O fz tz té tﬁ t][) tm
dst 0 ty [P
aorg t t t ty ty
Round 1 < » Round3

Round 2

Figure 9. Illustration of Interleaved Process showing SpNTP packet and state variables[2]

11
American Institute of Aeronautics and Astronautics

If(x>0)

T, =aorg
else

T, = borg
T, =rec
TS = t_\:mr
T,=dst
rec=t,,
dst = clock
if (1, == 0 [| T,==0 || Ty, ==0) {

SYNC
y elseif (7, !

BOGUS
}

=0 &&t,, =T,

Figure 10. Pseudo codes of Interleaved Receive Process

On the other hand, the synchronization duration of Interleaved Mode takes two more rounds to achieve the time
synchronization because of sending the transmit timestamp in the next packet transmission round. However,
interleaved approach provides more accurate time stamping since it captures the timestamp right after packet has
actually been sent. Therefore, with twice as many time packet exchanges, the Interleaved Mode can achieve more
accurate time information since it can capture the time that is closest to the real packet transmission time.

In addition, PITS can detect and filter possible errors caused from receiving duplicate or lost packets by
comparing the stored state variables and current received timestamp information in the SpNTP packet. Further, PITS
is able to detect and autonomously recover from these unexpected events that can possibly occur during the time
synchronization process, providing additional level of protocol protection. Therefore, these features allow detecting
logical protocol errors that cannot be checked by mere CRC checks. Further, a protocol automatically restarts new
synchronization process after detecting errors or loss. The details are provided in [2].

The existing time collection method in CCSDS Prox-1 allows collecting a number of data samples that can be
averaged over for Time Correlation calculation. However, this approach cannot resolve if there are bad time samples
or lost time packets. Once Time Collection Service begins, the existing approach would not able to control or stop
the process or cannot validate the collected time samples on the fly. However, PITS is capable of checking the
correctness of received samples on the fly and ignore if time samples are detected faulty.

The key differences between the proposed PITS algorithm and the conventional CCSDS Proximty-1 Time

Collection services are described in Fig. 11, in terms of protocol interactions and time packet exchanges. As shown
in the following figure 8, in the existing time collection service, a time server keeps sending SPDU frames until the
requested time interval or to collect the number of samples. A time client passively timetags the received SPDU
frames. On the other hand, in PITS, when a time client sends back the new SPDU frames as soon as it receives the
SPDU sent from a time server. The SPDU time information is updated according to the piggybacked Transmit
Process and Receive Process. In this way, PITS provides much more intact time information between a time server
and a client. The time stamps collected at the server and the client are tightly coupled together. Therefore, each
spacecraft needs to switch back and forth between Transmit and Receive Process accordingly when it transmits and
receives Space NTP packet. PITS will require additional latency to send SPDUs back and forth to collect time
samples. PITS time collection occurs concurrently whereas, in the existing approach, one waits until the completion
of the other.

12
American Institute of Aeronautics and Astronautics

=TT =i '__'1'_1

B (time Client) Far Isra f\z lm |
]
Lar i |Bl|e\2|
L-a L-L -2
A (time Server)
'-—1 '-—1'-—1 - =1 T T
B (time Client) Farr Taza ' A3 1 ‘M I Bl 'LBz I B3 |
. _d —a L _a
ow, T///
T T 1
[All Azl 'm Ia4 Fpgr1'e2 1 B3 0
L-a L....! - L.....! Lo L_oas L2

A (time Server)

Figure 11. A side-by-side comparison between the proposed PITS algorithm and the conventional CCSDS Proximty-1
Time Collection services

V. Integrating PITS with CCSDS Proximity-1 Space Link Protocol

The MAC Sublayer is the place that most of time services interactions occur in CCSDS Proximity-1 Space Link
Protocol, where the MAC Sublayer directly interacts and interfaces with Frame Sublayer, Coding and
Synchronization (C&S) Subayer, and Physical Sublayer. The MAC Sublayer has a capability to instruct the C&S
Sublayer to intercept a 24-bit ASM Sync marker used to delimit C&S frames, check CRC-32, captures a timetag
from the Spacecraft clock (SCLK), and store the frame type and sequence number from the 5-octet frame header.
Therefore, PITS can simply reuse the existing time collection capabilities for time tagging.

Therefore, MAC Sublayer can create SpNTP packets and encapsulate those into SPDU frames and transmit and
receive to and from the other remote MAC. In particular, each SpNTP Packet can be transmitted as an expedited
SPDU. Then, the SPDU that contains SpNTP packet is transmitted first with the current transmit and received state
variables followed by the SPDU header. After that, the transmit time tag buffer is read, converted to UTC and saved

13
American Institute of Aeronautics and Astronautics

in transmit state variables for the next message in the Interleaved Mode. Therefore, the state variables can be located
in the MAC Sublayer to store the received time information. Therefore, a SpNTP packet sent as a SPDU frame is
shown below:

ASM Header FSN CRC

Time Tag

Time Tag
Buffer

Figure 12. The proposed CCSDS Proximiy-1 Frame including SPDU SpNTP Packet

Note[2]: In this narrative the term time tag refers to a value derived from the SCLK, while the term timestamp refers
to a coordinated time scale such as Coordinated Universal Time (UTC). This is important since the buffering and
coding functions can delay a time fag in the frame data payload with many and varying seconds.

Other Considerations

Generally, Time Collection and Distribution service can be considered as a passive task, requiring periodic time
synchronization and distribution. Therefore, PITS will require small bandwidth to collect time samples. Also, PITS
requires relatively small storage space to store the state variables and time samples, whereas Time Collection
Services in CCSDS Prox-1 will potentially require a large on board buffer space to store the time samples which
need to be predetermined in advance and this space will grow as the number of sample sizes. Hence, this proposed
PITS algorithm can be used for In Situ Time Distribution Service, and provide sufficient bandwidth and memory
margin for other flight software and hardware operations.

VI. Implementations and Results

In this work, we designed the abstraction of the PITS model and implemented the software version of PITS mainly
using C and socket program. A socket program provides an abstraction where applications can get access to the
network and can read or receive remote data. In particular, for simplification, we used the software level clock, soft
timestamping, (or network layer timestamping) using “OS Kernel system call” method to timetag the receive and
transmit times. Through simulation, we have verified the functionality of the PITS algorithm by running PITS in
two Linux machines, one functioning as a time server who provides the time distribution service and the other being
a time client who requests the time distribution service as follows.

14
American Institute of Aeronautics and Astronautics

Server Running PITS Client Running PITS

Clock
disciplined

1 1 T l I by PITS

Emulate > i Allow mac_h\me
Time Service S — Flock to drift or
> Time Service impose random
offset by SW
* Collect time tag/seq # * Collect time tag/seq #
* Build time packet + Build time packet
* Read SW clock * Read SW clock
* TX/Recv via UDP * TX/Recv via UDP

Figure 13. Simulation Setup

Since we do not have actual CCSDS Proximity-1 Space Link Protocol hardware or emulator available for testing,
we could not test full integration interfaces and hardware timestamping strategy. However, we believe that software
implementation is adequate enough to capture the packet exchange behaviors disciplined by the PITS algorithm and
offset and round trip time estimates.

We used, gettimeofday, for evaluating our PITS algorithm. The gettimeofday resolution, while not fixed by a
standard, may or may not be the same as the system clock’s resolution. These parameters vary between hardware
and operating systems, and also between machines with identical hardware and operating systems because these
parameters can be modified during operating system compilation and/or system boot in many operating systems.
Based on these assumptions, specifically, we have implemented the various subroutine calls used in Transmit
Process and Receive Process in Fig 4 and 5. The main part of developed subroutine works as follows: subroutine
call order at a receiver is when a packet arrives at the host the kernel will trigger the driver interrupt and call
inbound packet driver interrupt. This will occur at or near the network layer. Later, when the kernel passes the
packet to the network application layer, an operating system notification will trigger the call receive packet from
peer. Then at the protocol’s discretion, transmit packet to peer will be called, which will pass the return packet to the
kernel at the network application layer. Later, at or near the network layer the kernel will trigger the driver interrupt
and call outbound packet driver interrupt.

We chose two Linux machines that are physically close to each other, where not many computers are connected
in this network in order to minimize traffic caused by other machines. We initially drift the clock in the client
machine. Following is the simulation results that we collected for several experiments. As we can see, the computed
offset using Eq (1) and (3) between A and B at each side has almost the same magnitude but opposite sign. Both
calculated the RTT are about the same for 1000 different simulation runs.

x 10" B
351 x 10
251

e

L
2 w'v—‘v'llr" ||t e Il ¥ ol

e -
0.5 1 1 1 1 1 1 1 1 1 25 1 1 f ! 1 1 1 n f i

]
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Figure 14. Offset and Delay results obtained between two Linux machines

15
American Institute of Aeronautics and Astronautics

The results accurately estimates the offset and RTT. We have validated that the PITS algorithm and protocol is
working properly between two Linux machines. However, there were other services, OS kernel processes, and
network traffic that were generated from each Linux machines that can potentially impact the performance and we
could not completely isolate those. Therefore, we have seen some spikes or outliers. Therefore, soft timestamps
were fluctuating a bit. However, we have observed and demonstrated that on average, the PITS algorithm correctly
computed the RTT and offset.

VII. Future Work and Conclusions

In this work, we presented the framework to provide the on board time distribution capability at the spacecraft
which would be a used component for In Situ Time Distribution Service. We verified the correctness of the PITS
algorithm, validated the design, and provided the simulation results. As the number of space assets increases and the
mission become more complex, we believe that the proposed time distribution approach will be an extremely
effective method to distribute time to other spacecraft in proximity. Further prototype development and hardware
integration and testing will be interesting extensions of the proposed work to show the timing accuracy improvement
by exploiting the benefit of Interleaved Mode. This will further solidify the implementation and design issues arising
from integrating PITS with Proximity Radio. Also, future work may be necessary for time attack or incorporate with
security.

In particular, the proposed PITS can be extended to multi-spacecraft missions such as the Terrestrial Planet
Finder (TPF) mission at JPL to provide the periodic time updates. In addition, PITS can be considered an option for
the Space-Based Positioning, Navigation, and Timing (PNT) component. Therefore, PITS is expected to
significantly reduce the amount time and resources required for time synchronization and distribution services in
Mars proximity link while providing time information accuracy.

Acknowledgments

The authors would like to thank Dr. David Mills at University of Delaware for providing the PITS algorithm and
invaluable explanations. Also, the authors would like to acknowledge John Veregge at JPL for originally
implementing the PITS algorithm. The research was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration.

References

! CCSDS Proximity-1 Space Link Protocol, CCSDS 211.0-B-4: https://ccsds.org

2Mills, D.L., “Computer Network Time Synchronization: the Network Time Protocol on Earth and in Space”, to be published
in 2010.

? The Network Time Protocol (NTP), http://www.ntp.org/

16
American Institute of Aeronautics and Astronautics

	Nomenclature
	I. Introduction
	II. Time Stamping Principles
	III. CCSDS Proximity-1 Space Data Link and its Time Correlation and Distribution Services
	IV. PITS algorithm
	V. Integrating PITS with CCSDS Proximity-1 Space Link Protocol
	VI. Implementations and Results
	VII. Future Work and Conclusions
	Acknowledgments
	References

