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Abstract—We introduce mixed integer programming and 
heuristic scheduling for space communication networks in this 
paper. The considered communication network consists of 
space and ground assets with the link dynamics between any 
two assets vary with respect to time, distance, and telecom 
configurations. One asset could be communicating with 
another at very high data rates at one time and at other times, 
communication is impossible, as the asset could be inaccessible 
from the network due to planetary occultation. Based on the 
network’s geometric dynamics and link capabilities, the start 
time, end time, and link configuration of each view-period are 
optimized so that the resulting schedule meets the objectives 
and satisfies the operation constraints imposed by the missions. 
Mathematical framework for the constrained optimization 
along with the software, Mars Relay Network Planning Tool 
(MRNPT), was developed in 2003 at Jet Propulsion 
Laboratory. In this paper, we broaden the study to include 
communication networks whose nodal elements can 
simultaneously support multiple spacecrafts and vice versa. 
Sample scenarios include multiple combinations of ground 
stations at a DSN site can form an antennas array to track a 
spacecraft and conversely a single ground station can support 
multiple spacecrafts simultaneously. Such unique network 
capabilities make the schedule optimization problem more 
challenging. Namely, the number of passes between a 
spacecraft and a set of ground stations soars from linear to 
exponential. As a result, the search space for the network 
optimization using start times and end times grows intractably. 
The new framework, casted in this paper as a mixed integer 
problem, provides the means to keep the search space 
dimensions to the linear order.  The difficulty is now in the 
court of the optimization process.  Traditional methods such as 
the Sequential Quadratic Optimization (SQP), used in 
MRNPT, are time-consuming and do not guarantee a global 
solution. In this paper, we propose to solve the constrained 
optimization problem in two phases. The first phase uses 
heuristic methods such as the ant colony method, particle 
swarming optimization, and genetic algorithm to seek a near 
optimal solution among a list of feasible initial populations. 
The final optimal solution can be found by using the solution of 
the first phase as the initial condition to the SQP algorithm. 
We demonstrate the above problem formulation and 
optimization schemes with a large-scale network that includes 
the DSN ground stations and a number of spacecraft of deep 
space missions.   
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1. INTRODUCTION 

In this study, we consider a dynamic space communications 
network problem where links between any two nodes are 
constantly changing. One example of such network is a 
network that consists of the Mars surface assets, the Mars 
relay orbiters, and the ground stations within the Deep 
Space Network (DSN). The links can be momentarily 
unavailable due to planetary occultation and their 
communication performances can vary significantly due to 
the communication distances and the propagation losses 
caused by the atmospheres (both Earth and Mars). Based on 
the geometric information and the communication 
configurations, view-periods between two communication 
entities, and the time-dependent performances of the links 
can be computed in advance. A network scheduling function 
is required to optimize the start times and end times of the 
tracks between the communication entities so that certain 
network objectives are met, and without violating the given 
network and mission constraints. Examples of scheduling 
objectives include maximizing network data throughput and 
minimizing tracking times. In this paper, we cast the 
aforementioned network assets scheduling problem into a 
constrained optimization problem along the timeline.  This 
type of problem is known to be very challenging, and many 
of the scheduling problems can be shown to be NP-complete 
with respect to the number of entities to be scheduled and 
the time span.   

The considered communication network consists of 
spacecraft and ground stations with the link capabilities 
between any pairs of communication entities vary with 
respect to time, distance, and telecom configurations. A 
spacecraft could be communicating with a ground station at 
high data rate at one time and at other time, communication 
is impossible, as the spacecraft could be inaccessible from 
the network due to planetary occultation. The dynamic 
nature of space communication presents unique challenges 
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in efficient planning and scheduling of network resources to 
support multiple spacecraft in flight. The Mars Relay 
Network Planning Tool (MRNPT) was developed in 2003 at 
Jet Propulsion Laboratory with the goal of finding an 
optimal schedule for communication between different 
orbiters and surface assets at Mars and the DSN ground 
stations.  Communication link resource predicts between 
any two assets within the network are generated by the 
operational Telecom Forecaster and Predictor tools 
developed at JPL. MRNPT uses Sequential Quadratic 
Optimization (SQP) to generate an optimal schedule that 
meets the objectives and constraint requirements as imposed 
by the DSN and the missions. The objectives for network 
optimization could range from maximizing network data 
throughput, minimizing tracking time, to minimizing end-
to-end data deliver latency, and the constraints could include 
mission requirements, operation restrictions, and non-
overlapping tasks, etc. A hypothetical scenario considered in 
a previous paper [3] consists of a pair of Mars Exploration 
Rovers (Spirit and Opportunity), the relay orbiters (Mars 
Odyssey and Mars Reconnaissance Orbiter) and the 
designated ground stations, one at each DSN site. In this 
paper, we broaden the study to include spacecraft that 
require support from multiple network elements, and 
network elements that can simultaneously support multiple 
spacecraft. For example, a DSN site with multiple ground 
stations that can be allocated to track a spacecraft using 
antenna arraying. Similarly, a ground station with Multiple 
Spacecraft Per Antenna (MSPA) capability can be used to 
support multiple spacecraft simultaneously. These unique 
network capabilities make the schedule optimization 
problem more challenging. Its solutions no longer depend 
on start times and end times, but also the particularly 
assigned network assets.  As a result, the problem 
formulation belongs to a class of mixed integer optimization 
problems. In this paper we derive the mathematical 
formulations for the constrained mixed integer optimization 
problem, and we develop efficient analytical and numerical 
techniques to find the optimal solution. Since solving the 
constrained optimization using the SQP method is time-
consuming with no guaranty that the solution is a global 
minimum, we propose to solve the constrained optimization 
problem in two phases. The first phase uses heuristic 
methods to seek a near optimal solution among a list of 
feasible initial populations. The final optimal solution is 
then found by using the solution of the first phase as the 
initial condition to the SQP algorithm. We demonstrate the 
above problem formulation and optimization schemes with a 
large-scale network that includes the DSN ground stations 
and a number of spacecraft of deep space missions.  

Next we outline the 2-step approach that we develop to 
solve the constrained optimization problem.  As discussed 
earlier, that the MRNPT developed in [2][3] uses the SQP, 
which is a deterministic optimization process that requires 
updating the Hessian of the Lagrangian at every iteration. 
Like all gradient schemes, depending on the objective 
function of the problem and the initial guess, the iterative 
solution could converge to a locally optimal solution (a sub-

optimal solution). Moreover, the SQP process is time-
consuming; therefore, it is important that the initial guess is 
selected cautiously.  In this paper, we propose to use the 
Particle Swarming Optimization (PSO) method to construct 
the best possible initial guess before feeding it to the 
FMINCON algorithm. The PSO method starts by using the 
Monte Carlo method to generate randomly a set of 
n feasible solutions (called particles) with uniform 
distribution between the upper and lower bounds. Each 
particle in the PSO scheme is regarded as a bird soaring 
over the feasible domain. As it flies, each bird keeps track of 
its personal best (local) solution as well as the flock‟s best 
(global) solution, and tends to gear towards those directions. 
Thus the next iterative solution is constructed by perturbing 
its current location and velocity plus two small, but random 
(uniform distribution) pushes, one towards its personal best 
and the other towards the flock‟s best. The PSO method 
provides an efficient and yet easy-to-use approach that 
heuristically constructs a feasible starting guess (the best 
among the locations the flock have been through). 

PSO shares many commonalities with the Genetic 
Algorithm (GA), such as generating random initial guesses, 
and searching for the optimal solution by computing and 
comparing the values of the objective function. While all 
chromosomes in the GA share the search information with 
each other (with O(n2 ) complexity), each PSO particle 
shares only its personal best and the flock‟s best (with 
O(n) complexity).  

In most cases, the schedule attained by the PSO algorithm is 
very close to the global optimal and thus the SQP process 
converges effortlessly. The PSO method is extremely fast 
because it requires only the evaluation of the objective 
function (no gradient approximation); however, it spends 
most of its time on constructing the initial flock of feasible 
solutions. Our immediate tasks include expediting this 
process by breaking the problem into smaller independent 
sub-problems, and by taking advantage of the structure of 
the constraints to generate the feasible solutions more 
effectively.  The Ant Colony algorithm will also be studied.     

The rest of the paper is organized as follows: Section 2 
provides an overview of the mission usage of a space 
communication network, using the DSN as an example.  
Section 3 outlines the link-capability-driven network 
planning approach.  Section 4 describes the setup of the 
network optimization problem.  Section 5 discusses the 
heuristic optimization schemes that generate a near optimal 
solution.  In Section 6, we demonstrate the problem 
formulation scheme and the network optimization approach 
using the DSN and a number of spacecraft of deep space 
missions.  We provide concluding remarks in Section 7.   

 
2. NETWORK MISSION SUPPORT 

In this section, we use the DSN as an example to illustrate 
how a space communication network supports flight 
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Figure 5 – Timelines of the number of links for a week in 
2019 at Canberra, Goldstone, and Madrid. 

 
3. NETWORK PLANNING APPROACH 

We consider the network planning and scheduling as a 
resource optimization problem.  A key resource of a space 
communication network is the mission data throughput 
generated by the network.  Currently the DSN planning 
approach emphasizes fulfilling the mission-by-mission 
tracking time requirements agreeable between DSN and 
individual missions (based on their own network coverage 
and communication link analyses). As the link performance 
between a ground station and a spacecraft changes 
according to the elevation angle and weather condition, it is 
possible that a ground station would see multiple spacecraft 
during a period of time, and the link during that time would 
favor one mission over the others in terms of the 
supportable data return and the tracking time required to 
downlink a planned volume of science data. Also when a 
conservative mission overestimates its tracking time for a 
given pass, the unused network resource cannot be easily 
and timely passed on to another mission in need1.  There is a 
lack of flexibility and there is inherit inefficiency in the 
current planning process. In this paper, we propose to 
perform network planning and scheduling not just based on 
individual mission requirements on antenna tracking-time, 
but also on the pair-wise communication link performances 
between the ground stations of the network and the 
spacecraft.  A similar approach was described in [1].  As we 
will demonstrate in later sections, this approach enables 
global optimization of network resource, both in terms of 
maximizing mission data throughput and minimizing 
network tracking time. This approach, though promising, is 
a major departure from the current network planning 
process, and imposes additional programmatic and logistical 
requirements to the flight projects as well as the DSN.  
More analysis is needed to determine its feasibility.   

 
1 This is analogous to a telephone service that requires the callers to specify 
the call durations before each call.   

Next we describe the key aspects of the above link-
capability-driven network planning approach.  Assuming 
that the spacecraft communication system design and 
trajectory information is known, the pair-wise coverage and 
link capability between the DSN ground stations and the 
spacecraft in flight can be computed a priori. We can 
predictively construct a timeline of the supportable data 
rates between a spacecraft and a receiving ground station. 
Such a link prediction can be highly dynamic; it could be 
momentarily unavailable due to planetary occultation; and 
when the spacecraft and the ground station is in view, the 
supportable data rate could vary significantly due to slant 
paths, spacecraft activities and orientations, and the 
propagation losses caused by the atmosphere. Figure 6 
shows an example of an aggregate of link capability 
timelines, one for each mission, as viewed by one DSN 
ground station. Note that due to the Earth rotation, each 
mission has at most one pass per day with a DSN site. The 
communication performance, when computed with respect 
to another ground station within the same DSN site, could 
be altered due to different antenna sizes. In addition, due to 
the DSN operation capability of Multi Spacecraft Per 
Aperture (MSPA), when Mars is in view, a DSN ground 
station can support up to 3 spacecraft at Mars‟s vicinity.  
Also the DSN antenna arraying capability allows arraying 
up to 4 34-m ground antennas to support a spacecraft.   The 
link-capability-driven network planning takes into account 
all the pair-wise timelines of link capabilities and the unique 
network operation models (e.g. arraying and MSPA) to 
generate an optimal network support plan that maximize 
mission data throughput and minimize network tracking 
time.  

4. NETWORK OPTIMIZATION PROBLEM SETUP 
In this section, we describe the problem formulation of 
optimal scheduling for a communication network and using 
the DSN as an example. Let us build the mathematical 
formulations for optimization process. Suppose within the 

communication network, there are  spacecraft. Note that 
within each DSN site, there are several ground stations. One 
can consider optimizing the communication network based 
on the passes to the individual DSN site or on the entire 
DSN. However, there are scenarios that require planning 
over the entire DSN. For instance, a mission may require a 
certain amount of data volume per day and may be flexible 
and may not care from which ground station the data are 

received. Let  be the number of ground stations within 
the communication network.  For the finite duration that we 
consider, we can search for all view-periods between the 

 spacecraft and the DSN sites, and we denote this 

number to be .  For a particular kth view-period, 

, which is planned to support the ith spacecraft, 

, we can compute the earliest start time  and 

the latest end time  from the spacecraft trajectory, the 
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and an example of its shape is shown in Figure 8. With the 

penalty function, the integer variable can now be 

continuous and bounded by . The size of 

the penalty is an input parameter, denoted by , and the cost 
function is expressed as 

  



gsN

k

kgsPxJxJ
1

)( )()()( 

 . (5) 

Figure 8 –Profile of a penalty function applied to the cost 
function to handle the integer variables as continuous 
variables. 

Next we discuss the incorporation of mission and 
operational constraints into the optimization problem: 

I. Communication in a view-period must happen 
within the view-period itself: 

T0
(k )  t0

(k )  t f
(k )  T f

(k ) . (6) 

II. The ground station number is bounded by 

 1 gs(k )  Ngs . (7) 

III. Each pass must be longer than a minimum pass 
length Tmin  

 t f
(k )  t0

(k )  Tmin . (8) 

IV. If gs(k1 )  gs(k2 ) (ground stations are identical), 
then transmission time cannot overlap :   

 [t0
(k1 ) t f

(k1 )][t0
(k2 ) t f

(k2 )]  . (9) 

V. Each mission is required to achieve certain value of 
throughput:   

 DV (
r
x (k ) )

k1

sc(k )  i

N p

  DVreq
(i ) . (10) 

It should be pointed out that these are a few missions and 
operational constraints that we consider. Additional ones 
can be incorporated in a similar fashion. The constraints (6)- 
(8) can be translated into linear and bounded constraints: 

 BxA 
 , (11) 
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The constraints (9) and (10) are employed as a nonlinear 
constraint 
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 g2
(i )(

r
x)  DVreq

(i )  DV (
r
x (k ) )

k1

sc( k )  i

N p

  (17) 

5. HEURISTIC OPTIMIZATION SCHEMES 
The resulting scheduling formulations turn into a 
constrained optimization problem, whose solution procedure 
is NP-complete. In other words, as the number of 
communication nodes or time span increases, the optimal 
solution cannot be solved in polynomial time and becomes 
intractable. Classical mathematical programming techniques 
such as gradient-descent methods, conjugate direction 
methods, and nonlinear programming can provide a 
solution, but often may yield a sub-optimal one depending 
on its initial guess. To ensure that we start with a good 
initial solution, in this paper, we propose to find an initial 
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solution that is „reasonably good‟ using heuristics 
optimization techniques, then we feed the result into a 
traditional optimization method to attain the final solution. 
Such hybrid scheme is a good approach in two aspects; first 
heuristics schemes are flexible and computationally efficient 
to allow sampling of a sufficiently large portion of the 
search space in reasonable time, and second many classical 
mathematical methods guarantee convergence to the optimal 
solution if the initial solution is reasonably close to the 
optimal solution.   

Motivated by social behavior of organisms such as bird 
flocking and fish schooling, the Particle Swarm 
Optimization (PSO) algorithm is introduced by J. Kennedy 
and R. Eberhart in 1995 as a tool for optimization. In 
principle, the PSO starts out with a swarm of  particles 

 in a hyper-dimensional search space and a 
metric that can measure the fitness of its members. The PSO 
algorithm stochastically mimics the social behaviors and 
psychology of birds and fish when they are out to hunt for 
food. At any time, the individual particle  tries to 
improve itself by migrating to a better ground based on the 
knowledge of its personal best  position (its own 
experience) as well as the group‟s best  position 
(social interaction). During its flight, each particle adjusts its 
position as follow, 

 Xn(t 1)  Xn(t)Vn(t 1) , (18) 

 Vn(t 1)  coVn(t) c1[Pn(t) Xn(t)] c2[Gn(t) Xn(t)] . (19) 

The term  in equations (18)-(19) is referred as the 
current velocity of the particle. The terms on the right hand 
side of equation (19) are known as the particle‟s momentum 
(to prevent excessive oscillations), cognitive component 
(environment familiarity), and the social component 
(successes of others).  is fixed constant while  and  
are random numbers between 0 and 1 at each instant.   

Once a good initial solution is found from the PSO 
algorithm, we will use a mathematical optimization method 
to find the final solution. There are many commercial-off-
the-shelf software tools that are capable of solving such a 
problem. Specific software, which we have used, includes 
MATLAB‟s optimization toolbox and the ILOG 
Optimization Suite. In this paper, we implement with 
MATLAB‟s FMINCON, which uses Sequential Quadratic 
Programming (SQP).  

6. OPTIMAL COMMUNICATION SCENARIOS 
For the proof of concept, we consider in this scenario a 
network of 20 spacecraft that is in view with a DSN site. We 
assume that the DSN site has three pre-allocated ground 
stations to handle these spacecraft. As shown in Figure 9, 
the ground stations typically see multiple spacecraft at any 
one time.  The supportable data rate profiles of the 
spacecraft-ground station pairs can vary greatly due to the 
different link configuration, range, and weather condition as 
seen by each pair.  The dotted vertical lines over any view-

periods signify the regions where overlapping view-periods 
occur. Our objective in this simulation is to optimally assign 
for each view-period the optimal start time and end time so 
that (i) the achieved network data throughput is maximized, 
(ii) the individual mission data volume requirements are 
met, (iii) each ground station supports one spacecraft at any 
one time (non-overlapping pass), (iv) each pass must be 
sufficiently long to ensure efficient usage of a ground 
station, and (v) each pass must start and end within its 
bounds. The dimension for the search space is 60 in this 
scenario. There are 20 linear bounds, 60 upper bounds, 60 
low bounds, and 23 nonlinear constraints (3 non-
overlapping and 20 mission data volume). In seeking for an 
optimal solution, the PSO algorithm is used with 200 
randomly generated particle elements. The process for both 
PSO and FMINCON with 200 iterations takes about 2482 
seconds. Note that the computation of the nonlinear 
constraints is time consuming. The results of the optimal 
schedule for the three ground stations are displayed in 
Figure 10. The blue lines indicate the view-periods and the 
red lines indicate assigned passes after the scheduling. The 
achieved data volume for each scheduled pass is also 
shown. The optimal results contain passes that includes the 
entire view-period with respect to a single spacecraft, as 
well as passes generated by the constrained optimization 
scheme that de-conflicts and splits the overlapping view-
periods into disjointed time intervals, each assigns to a 
spacecraft.   

7. SUMMARY  
In this article, we describe a framework and the 
mathematical formulation for optimizing communication 
network using mixed integer programming. The design in 
this paper yields a system that is much smaller, in search 
space size, when compared to the earlier approach [2][3]. 
Our constrained network optimization takes into account the 
dynamics of link performance within the network along 
with mission and operation requirements. We introduce a 
unique penalty function that transforms the hard problem of 
mixed integer programming into the more manageable 
problem of searching in a continuous space. We propose to 
solve the constrained optimization problem in two stages: 
first using the heuristic Particle Swarming Optimization 
algorithm to get a good initial starting point, and then 
feeding the result into the Sequential Quadratic 
Programming algorithm to achieve the final optimal 
schedule. We demonstrate the above planning and 
scheduling methodology using a tracking scenario of 20 
spacecraft and 3 ground stations of a Deep Space Network 
site. Our approach and framework have been simple and 
flexible so that problems with larger number of constraints 
and network can be easily adapted and solved. 
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Figure 9 –Profiles of the link predicts of 20 missions to 
ground stations 1 (top), 2(middle), and 3(bottom). 

Figure 10 –Optimal schedule of 20 missions to 3 ground 
stations. 
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