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Abstract—An end-to-end sample acquisition and caching 
system has been built and tested with capabilities 
applicable to sample acquisition and caching for a 
potential 2018 mission to Mars to collect samples for 
eventual return to Earth. The system provides full 
capability to robotically perform the end-to-end sample 
acquisition and caching process including placing a 
sample tube in a coring bit, attaching the bit to the 
sampling tool, coring a rock and acquiring the core 
sample in the tube, transferring the bit to the caching 
mechanism, removing the sample tube from the bit, 
sealing the filled sample tube with a plug, and storing 
the tube in the sample cache canister.   This paper 
describes the hardware and robotic steps for the sample 
acquisition and caching process. 
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1. INTRODUCTION 

NASA and the European Space Agency are working 
together on a Mars 2018 Joint Rover Mission to potentially 
send a rover to Mars to perform in-situ exploration and to 
collect samples for return to Earth in a subsequent mission.  
It is anticipated that NASA’s contribution to the mission 
would include the sample acquisition and caching (SAC) 
subsystem which would acquire rock core and soil samples 

and store them in a sample cache canister.  The canister 
would be placed on the ground after being filled with rock 
and soil samples.  A subsequent mission would retrieve the 
cache canister and load it into a Mars Ascent Vehicle 
(MAV) which would launch and release the cache canister 
into passive orbit around Mars.  A third mission would 
rendezvous with the cache canister and return it to Earth [1].  

The architectural concept of the SAC subsystem was 
described in a prior publication [2].  A prior implementation 
of the subsystem with a subset of capabilities is described in 
[3].  

Key preliminary requirements for the SAC subsystem are 
listed below.  A larger list of preliminary requirements can 
be found in [3].  These requirements were generated in 
anticipation of similar mission requirements but actual 
mission requirements have not yet been specified.  

 
 

Figure 1: Integrated sample acquisition and caching 
prototype subsystem 
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• Acquire cores approximately 1.1 cm diameter and 
7 cm long. 

• Store 28 acquired samples in the cache canister. 

• Store 3 sample blanks in the cache canister. 

• Be able to store 7 additional acquired samples 
available for exchange with samples stored in the 
cache canister. 

• Be able to place the cache canister on the ground 
after all the samples have been collected. 

• Allow for the cache canister to be removed from 
the rover by an external robotic system in the event 
that the rover becomes inoperable.  

• Acquire cores including unmodified surface rind or 
from rock with an abraded surface.  

• Be able to eject a bit that is stuck in a rock. 

• Survive catastrophic slip conditions, i.e., if the 
rover slips down the slope uncontrollably during 
sample acquisition. 

• Store samples in individual, sealed sample tubes. 

• Fill the cache canister such that it could be returned 
to Earth (i.e. close-packed). 

• Measure the sample with 75% volume or mass 
accuracy.  

• Minimize sample contamination to satisfy 
Planetary Protection and Contamination Control 
requirements.   

 

The system described in this paper is a proposed technology 
readiness level (TRL) 4 version of the subsystem that will 
satisfy the requirements for the SAC subsystem for the 
proposed 2018 mission.  The system hardware is shown in 

Figure 1. The paper is organized as follows.  Section 2 
describes the system architecture, Section 3 describes the 
sampling tool, Section 4 describes the robotic arm, Section 
5 describes the caching mechanism, Section 6 describes the 
software environment, Section 7 describes experimental 
results with the system, and Section 8 provides conclusions.  

2. SAC SYSTEM ARCHITECTURE 
The Sample Acquisition and Caching subsystem is 
implemented using the Integrated Mars Sample Acquisition 
and Handling (IMSAH) architecture [2].  The IMSAH 
architecture was developed to meet the anticipated mission 
requirements.   The IMSAH architecture is made up of three 
elements, the Sample Acquisition Tool (SAT), the 
Instrument Deployment Arm (IDA), and the Sample 
Handling, Encapsulation, and Containerization (SHEC) 
mechanism.   The sample acquisition and caching process is 
depicted in Figures 2 and 3.  

Key elements of the IMSAH architecture are listed below. 

• The sample is acquired directly into its sample tube 
in the coring bit; this eliminates the risks associated 
with handling raw samples of unknown geometry.  

• Bit change-out is used to transfer the sample from 
the coring tool to the sample caching mechanism.  

• Rotary percussion is used for coring into rocks; 
rotary percussion requires low weight on bit, does 
not induce bit walk, and allows for robust hole start 
relative to rotary drag alternatives.  

• Tool deployment, alignment and feed is 
accomplished using a five degree-of-freedom 
(DOF) deployment arm. 
 

 

 
 

Figure 2: IMSAH coring tool deployment 

 
 

Figure 3: Bit change-out and sample transfer 
configuration 
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7. END-TO-END SAMPLE ACQUISITION AND 

CACHING  
The sequence for the demonstration of end-to-end sample 
acquisition and caching is listed below. 

1. SHEC: Remove empty sample tube from cache 
canister. 

2. SHEC: Move sample tube to below bit. 

3. SHEC: Insert sample tube into bit. 

4. SHEC: Rotate bit chamber to bit port. 

5. IDA: Move SAT to SHEC bit port. 

6. IDA/SAT/SHEC: Dock and attach bit to SAT. 

7. IDA: Remove bit from SHEC. 

8. IDA: Deploy SAT to sampling location. 

9. IDA/SAT: Hole start. 

10. IDA/SAT: Core. 

11. SAT: Core-breakoff. 

12. IDA: Remove SAT bit from hole. 

13. IDA: Move SAT to SHEC bit port. 

14. IDA: Insert bit into SHEC bit chamber. 

15. IDA/SAT/SHEC: Release bit into SHEC. 

16. IDA: Move SAT away from SHEC. 

17. SHEC: Remove sample tube from bit. 

18. SHEC: Insert plug into sample tube and measure 
sample. 

19. SHEC: Transfer and insert sample tube into the 
cache canister.   

 

 

The integrated hardware system for the demonstration is 
shown in Figure 1 and the demonstration of sample 
acquisition and caching is shown in Figures 9-24.   

 

 

 

Figure 9: Remove sample tube from cache canister 

 

 

 

Figure 10: Insert sample tube in bit 

 

 

 

 

 
 

Figure 8: Software modules 
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Figure 11: Rotate bit carousel to position bit chamber at 
bit port and dock SAT with bit 

 

 

 

Figure 12: Remove bit from bit chamber in bit carousel 

 

 

 

 

 

 

 

 

Figure 13: Deploy SAT to rock  

 

 

Figure 14: Core, break-off core, retain core, and remove 
core bit from hole  
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Figure 15: Dock bit in bit chamber 

 

Figure 16: Align bit with transfer arm and remove sample 
tube 

 

Figure 17: Measure sample 

 

 

 

Figure 18: Insert plug in sample tube 

 

Figure 19: Store filled sample tube in cache canister 

 

Figure 20: Open cache lid to prepare to remove cache 
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Figure 21:  Dock with cache canister 

 

 

Figure 22: Remove cache canister  

 

Figure 23: Place cache canister on the ground 

 

 

 

Figure 24: Release cache canister on the ground 
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8. CONCLUSIONS  

A TRL 4 sample acquisition and caching system that 
supports end-to-end sample acquisition and caching for a 
potential 2018 Mars mission has been developed.  The 
system represents the first system that would provide all the 
functionality needed for robotic end-to-end sample 
acquisition and caching for the 2018 mission.    
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