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NASA Carbon Flux System
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NASA Carbon Flux System

NASA satellites NASA models/ NASA inverse Inverse
—— - assimilation modeling GEOS-Chem
Atmos — Anthropogenic
winds =
(u,v)
FF, land-use,
Terrestrial chemical production
CASA/ | }
i (yi = Fi(x) " (S}) " (yi — Fi(x)) + (%0 — xa) "S; " (%0 — Xa)
CASA- e :
GFED
EVI, FPAR,.. (MODIS) NEE Satellite CO2 sensors

OSTM/ Jason-2 sea level anomalies

(GOSAT, TES, AIRS)

Independent tests

o 50 100 150 200 250 300 350

Sealevel — IS T TTT TTTTTTTITTTTT] -
anomalies (cm) -10 -8 R -2 0 2 4 6 8 10

NASA

chlorophyll, altimetry, Air/sea CO2
... (MODIS, JASON) exchange




NOBM and ECCO2-Darwin

NASA Ocean Biogeochemical Model (NOBM):

* A biogeochemical processes model, coupled to the

* Poseidon ocean model

* Driven at the surface by the Modern Era Retrospective-analysis for Research
and Applications (MERRA)

* QOcean color data is assimilated using MODIS-Aqua chlorophyll.

Estimating the Circulation and Climate of the Ocean, Phase Il (ECCO2):

* ECCOZ2 data syntheses are obtained by least squares fit of a global full-depth-
ocean and sea-ice configuration of the Massachusetts Institute of Technology
general circulation model (MITgcm), coupled to the

* MIT ecosystem model (Darwin), and

* amarine carbon chemistry model

 The ECCO2 ocean solution assimilates a variety of satellite and in-situ data,
including Jason altimetry, AMSRE-E sea surface temperature, and Argo
temperature and salinity profiles.
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Data Assimilation Approach

Least squares method based on computation of model Green’s functions.

Previously used for, e.g., ocean circulation estimates (Stammer and Wunsch, 1996; Menemenlis et al., 1997; 2005),
atmospheric tracer inversions (Enting and Mansbridge, 1989; Tans et al., 1990; Bousquet et al., 2000),
ocean carbon inversions (Gloor et al., 2003; Mikaloff Fletcher et al., 2006; 2007),
and joint ocean-atmosphere carbon dioxide inversions (Jacobson et al., 2007a; 2007b).

GCM: s(t+1) = M[s (t), X]

Data: y=H[s]+n =G[x]+n

Cost function: J = (G [x]-y)" (G [x] - y)

Linearization: y-G[x,] = G(x-x,)+n

Solution: x = x,+(G'G)1G"(y-G [x,])

s(t) is the ocean model state vector at time t
M represents the numerical model

X is a set of control parameters,

here the weight of different initial conditions

y is the available observations
H is the measurement model
G is a function of M and H

n is additive noise

J is an unweighted cost function,
i.e., itis assumed that <nn™ = |

G is a kernel matrix whose columns are
computed using a GCM sensitivity experiment
for each parameter in vector x.

Subscript “b” represents baseline GCM
integration used to linearize problem.

Control parameters that minimize cost function J
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ECCO2-Darwin sensitivity experiments
(or model Green's functions)

The four ECCO2-Darwin integrations differ in their initial conditions
(IC) for dissolved inorganic carbon (DIC), alkalinity (Alk), and oxygen:

CCSM: From previous integration with CCSM biogeochemical
model

KS: DIC blended from Key et al. and Sabine et al. data sets,
Alk from GLODAP, O, from World Ocean Atlas 2009

BLEND: Blend of modified CCSM and KS initial conditions
NOBM IC: DIC and DOC from NOBM, Alk and O, from BLEND

Each column of the kernel matrix G is computed as the difference
between perturbed and baseline integration (CCSM) sampled at the
location and time of the observations (blue lines in previous slide)



Simulated surface pCO, (monthly mean July 2009)
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LDEO pCO, data for 2009 and 2010.



Optimizing biogeochemical initial conditions
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Simulated air-sea CO, fluxes (global integral)
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Summary and Planned Work

Long spin-ups of high-resolution ocean biogeochemical models
are problematic because of computational cost and model drift.

This leads to unrealistic air-sea carbon flux estimates.

A simple, physically-consistent data assimilation approach based
on model Green's functions (forward sensitivity experiments) has
been used to reduce model-data mismatch.

Ongoing work:
— Computation of additional

model Green's functions is
underway.

— Use additional in situ and
satellite (e.g., color) data
constraints.

— Use adjoint method to
increase number of control
parameters.






