
The Value of SysML Modeling During System Operations:
A Case Study

Abstract—System models are often touted as engineering tools
that promote better understanding of systems, but these
models are typically created during system design. The
Ground Data System (GDS) team for the Dawn spacecraft took
on a case study to see if benefits could be achieved by starting a
model of a system already in operations.

This paper focuses on the four steps the team undertook in
modeling the Dawn GDS: defining a model structure,
populating model elements, verifying that the model
represented reality, and using the model to answer system-level
questions and simplify day-to-day tasks. Throughout this
paper the team outlines our thought processes and the system
insights the model provided.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. ESTABLISHING A MODEL 2
3. MANAGING COMPLEXITY 6
4. COMPLEX DATA FLOWS 8
5. FORCING CLEAR THINKING 9
6. MODELING’S ADVANTAGES OVER
TRADITIONAL APPROACHES 9
7. CONCLUSION ... 10
ACKNOWLEDGEMENTS 10
REFERENCES ... 10
BIOGRAPHIES .. 11

1. INTRODUCTION

The design of a GDS used to support spacecraft mission
operations is never truly finished. While its basic
functionality may satisfy the customers’ needs initially, the
system will continue to evolve. Even during the operational
phase, a project’s GDS will continue to be shaped as
automation of data processing tools affects system
performance, cyber security concerns drive adoption of new
operating system patches and upgrades, and personnel
changes occur both in the people using and the people
maintaining the system.

The GDS for JPL’s Dawn spacecraft is no exception.
Planning for a simultaneous upgrade of the Dawn GDS
hardware and operating system software initially proved to
be a complex task, especially because those responsible for

the original design were not involved in the upgrade.

In an attempt to manage the complexity of the upgrade and
gain further insight into how the original system worked, the
new GDS team undertook a case study to model relevant
pieces of the system. The team chose to use the Systems
Modeling Language (SysML) [1], a general-purpose
modeling language for systems engineering applications.
Goals of the model included: managing complexity,
explaining complex data flows, and forcing clear and logical
thinking about the system design.

While modeling methodologies like the Object-Oriented
Systems Engineering Method (OOSEM) [2] often involve
starting the model early in the system design phase, the
Dawn case study was different in that it used an
incremental, grass-roots approach that was very limited and
selective in scope. This case study was undertaken more
than two years into mission operations and the project had
neither the resources nor a compelling need to model the
complete system from beginning to end. Instead, the GDS
team focused our effort on capturing pieces of the design we
felt were most useful or important to specify during the
course of the upgrade and using SysML to explicitly
communicate this information.

Although the model began with a limited scope, its power to
easily answer complex system-level questions quickly
became apparent. Scripts were written which queried the
model and linked previously disparate system properties
with great success. As more system properties were linked,
more questions were answered. This in turn prompted
further questions, so more information was added.
Incrementally, the model grew.

Steps were taken to verify that the model represented
reality. The model was used to document changes in the
system as the system evolved. The model informed design
changes by answering questions like: If parts of the system
go down, which machines will be affected? Which
machines could be backups for each other? What is the
operating cost for a given hardware configuration?

This paper will address the goals of the modeling task, make
a judgment on how successfully they were achieved, and
highlight some new insights into the system that resulted
from the modeling process.

Chelsea Dutenhoffer
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-4811
Chelsea.Dutenhoffer@jpl.nasa.gov

Joseph Tirona
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

818-393-8203
Joseph.F.Tirona@jpl.nasa.gov

 978-1-4673-1813-6/13/$31.00 ©2013 IEEE
 1

Due to the sensitive nature of the data stored in the model
example diagrams were created for use in this paper. They
are representative examples of the diagrams used by the
Dawn GDS team but were created specifically for this
paper.

2. ESTABLISHING A MODEL
Defining a Model Structure for Software

The first step in establishing a model was to carefully design
a framework for capturing information in a consistent way.
Since the model’s purpose was to manage complexity
during GDS hardware and software upgrades, the logical
place to start was by defining a “GDS software delivery” in
SysML. A “GDS software delivery” already had an
accepted definition before the modeling task began: an
aggregation of one or more specific versions of software
elements from a core set of available elements, packaged
and tested to be deployed together.

A metamodel lays out the hierarchical and compositional
structure of a model. It defines basic relationships between
elements of given types. The team used stereotypes to
define the system’s hierarchy. A stereotype is defined as a
method of “[extending] an existing metaclass, and …
[enabling] the use of platform or domain specific
terminology or notation in place of, or in addition to, the
ones used for the extended metaclass”. [4]

Figure 1 shows the software metamodel for this case study:

Figure 1 - Software Metamodel

Figure 1 shows that a Software_Delivery stereotype is an
aggregation of Software elements. Slots for stereotype

properties are also shown. For example, a
Software_Delivery has a Delivery Date, a GDS Delivery
Version (which represents the version number the team
assigns to the whole aggregation), and a License Cost
(which is related to the Operating System that the delivery is
built for). The general Software element has a slot for a
Version property. No specific software names have been
defined in this diagram, the metamodel view simply sets up
basic model elements and relationships for more specific
use later.

The next step was to use the metamodel’s structure to model
one generic GDS delivery containing all possible software
elements, as shown in Figure 2. Specific names of software
elements have now been included; in this case, the names
are “SoftwareA”, “SoftwareB”, and “SoftwareC”.

Figure 2 – Generic GDS Delivery

The elements in Figure 2 build upon the metamodel shown
in Figure 1. For example, Generic_Software_Delivery is a
SysML block of stereotype Software_Delivery, so it will
have all the properties and relationships that the
Software_Delivery stereotype has. Likewise, SoftwareA,
SoftwareB, and SoftwareC are blocks of stereotype
Software and will each have a Version number property.
Figure 2 shows the next layer in specification after the
metamodel and contains a superset of all available software.

The name on each arrow in Figure 2 represents a SysML
part property of the Generic_Software_Delivery. For
example, SoftwareA is a part property of
Generic_Software_Delivery, meaning that some version of
SoftwareA is part of the delivery. No version identifiers
have yet been specified either for the complete software
delivery or for any Software element’s version.

 2

With the definition of a generic GDS software delivery
established, the team then added another layer to the system
specification by representing a specific software delivery.
The “Specific_Software_Delivery_V1” shown in Figure 3
inherits all of the generic pieces of software that make up
the “Generic Software Delivery” via the generalization
relationship.

Figure 3 - Specific Software Delivery Inheritance From
Generic Software Delivery

Figure 4 illustrates the use of SysML’s redefinition concept.
Redefinition is defined as a “change [in the] definition of an
existing feature” and was used to differentiate new GDS
deliveries and software versions from their previous/generic
counterparts shown in Figure 2 and Figure 3. [3] For
example, in Figure 4 SoftwareB_V1 redefines Software_B
and is a specific part of the delivery
Specific_Software_Delivery_V1. The “V1” designation
added to “Specific Software Delivery” is the version
number for this aggregation of software elements.

Figure 4 – Specific GDS Delivery

It then follows that each specific software delivery would
inherit generic software components from “Generic
Software Delivery”. Although the software delivery shown
in Figure 4 includes one version of each allowable software
element, any given delivery is not required to contain all
allowable elements. This was important because the team
delivers far more partial “point” deliveries than full
deliveries.

New versions of each software element are modeled as
separate blocks from any other element, including prior
versions of the same piece of software. This is due to the
nature of the software included in GDS deliveries. Some
software organizations deliver their elements as complete
installs with each version, but other organizations deliver
only overlays, which are installed on top of older versions of
the same software. A project could use versions 1 and 3 of
a software element and choose never to install version 2, so
we needed a way to represent multiple versions of the same
software layered on top of each other. Redefinition of
properties provided the team with the freedom to more
accurately capture the system.

Defining a Model Structure for Hardware

With the software modeling structure established, the next
step was to define a metamodel for the GDS hardware
elements. This metamodel is shown in Figure 5:

 3

Figure 5 - Hardware Metamodel

Like the software metamodel discussed in the previous
section, the hardware metamodel describes the building
blocks of the system and relationships between these
elements. It also allowed the team to categorize and
hierarchically group sets of properties that were useful to
track for different hardware element types.

For example, all NASA property is assigned a property
number, so the Hardware stereotype has a slot for a value
called “NASA property number” as shown in Figure 5. The
Hardware stereotype is specialized into Network Device and
Non-Network Device, each of these stereotypes will inherit
the property number slot from its parent. Then Network
Device is further specialized into Physical Machine and
Virtual Machine, each of these stereotypes will inherit the
property number slot as well.

Note that hardware metamodel shown in Figure 5 includes
the same Software_Delivery stereotype from Figure 1,
which allows mapping between hardware elements and the
software installed on them. The Network Device stereotype
has a slot for a Software Version; this Software Version is
then set to the name of a GDS delivery. For more
information see the “Linking Software and Hardware
Elements” section below.

The hierarchy shown in Figure 5 was the result of careful
thinking and the progression of this hierarchy shows the
modelers’ progression in their understanding of the GDS.
At the beginning of the modeling task, the team had already
been supporting the operation of this hardware for more
than a year and had developed a mental model of it over
time. Due to the nature of the required support, the team

was used to thinking primarily about where the hardware
was located. It makes sense then that initial versions of this
hierarchy were location-based, separating machines that
were physically at JPL from those in use at remote partner
sites.

As the team came to better understand the system, we began
to abstract it. At this stage the team changed the hardware
metamodel hierarchy to be venue-based by separating
development, test, and operational hardware regardless of its
location. The team eventually found that many of the
hardware properties we wanted to capture were the same
across these development, test, and operations partitions.
The boundaries between the hardware metamodel
stereotypes were not clean enough. The team then realized
that for our implementation, the best way to partition the
hardware was by physical properties that did not change,
like whether or not a component could access the network.

To identify the full list of value properties that should be
included in the model, the team turned to JPL’s existing
institutional hardware databases. These databases store
various parameters about each piece of hardware, and
together almost completely describe each hardware
component. The only information these institutional
databases lack is which software versions are deployed on
each piece of hardware. Initially the team planned on
capturing only the most important of these properties in the
model. However, since the team wanted the model to
become an authoritative source for all information about the
GDS system we decided that the model should include the
superset of all information that already existed in these
databases. This later proved to be a good decision, because
the model contained diverse information that could be used
to answer system-level questions the team had not originally
considered.

The architecture of the hardware and software metamodels,
combined with the large quantity of hardware information
stored in the model itself, allowed the team to write scripts
to query the model and return information. These scripts
determined which pieces of hardware are connected to each
other, produced lists of hardware with similar properties,
and summed things like maintenance costs. Each of these
will be discussed in detail in later sections of this paper.

Populating and Updating Model Elements

The first step in populating the model was to create
relationships to show each of the specific software
deliveries. Due to the small number of elements and simple
relationships, the team populated the necessary deliveries by
hand. Populating the model with hardware information
proved to be a much more complicated task. Each hardware
element can have dozens of properties, and the risk of
humans introducing errors was too great. The team needed
a different solution.

The existing institutional databases that store hardware
information can output their contents as comma-separated

 4

value (CSV) files, and the modeling tool used by the team
was able to automatically populate model elements using
these CSV files along with the hardware metamodel. This
made initially populating the model with all the system’s
hardware elements fast and simple. The CSV import/export
process is bi-directional, meaning CSV files can also be
exported from the model and imported into institutional
hardware databases in order to keep them in sync.

Information from JPL’s hardware databases was imported
into the model only once. From that point forward, all
updates were made in the model and exported to the
institutional databases as necessary. The team wanted the
model to be the one authoritative source containing the
superset of all information about the system, so continuing
to maintain this information outside of the model would
have created opportunities for information in different
sources to diverge.

Each of the institutional databases provides a specific view
of the system, but the source of this data is disparate and
prone to inconsistencies between various databases. For
example, a common inconsistency was two different
databases showing conflicting IP addresses for a single
computer. During the import process the team found and
corrected many of these inconsistencies to make the model
accurately represent the system. This points to one
advantage of the model: although information in the model
can be viewed in many different ways to match the existing
database views, it always comes from the same source.
Two views of the same model cannot have conflicting
information in them. This process validated the model as an
authoritative source for the project’s hardware property
information, which has proven to be incredibly useful for
simplifying routine tasks like performing yearly hardware
inventories.

In addition to the import/export features, the modeling tool
the team used provided a built-in table wizard to view and
edit properties in a spreadsheet format as shown in Figure 6:

Figure 6 - IP Address Table Wizard Example

The team was used to seeing information in a spreadsheet
format similar to the table shown in Figure 6, so having this
view available helped ease the transition to the model. This
table is a very convenient view to show large amounts of

information at one time and was used to spot-check
elements to make sure they had been imported properly.

Linking Software and Hardware Elements

After the system hardware and software were both modeled,
the two were connected in order to denote which GDS
delivery a piece of hardware had installed on it at any given
point in time, as shown in Figure 7:

Figure 7 - Software and NFS Allocation

Figure 7 shows a hardware element of type Network Device
called Computer1 that has a Software Version called
Software_Delivery_3 installed on it. By looking at the
Software_Delivery_3 block, a person looking at the diagram
(or a model query script traversing relationships between
model elements) can clearly see exactly which software
elements and versions are installed on Computer1.

Note that this portion of the model is dependent upon the
accuracy and depth to which the system’s software and
hardware were modeled. As new software deliveries
became available, the modeling team needed to update these
properties onto the model’s hardware elements. At first it
sounded like this would make updating the model after a
software delivery more time-consuming, but it proved to be
a good way to ensure all the hardware had been updated
appropriately. Paper deployment checklists were replaced
with model-generated reports. With the model elements in
place, the team was now ready to verify them.

Model Verification

A model that describes a particular system is only useful if it
can be proven that the model accurately describes the
system. The model elements and properties need to be
verified against the actual system hardware and software.

The GDS team already had an automated checkout script
that would run on all the project computers and return a
single XML file listing the values of several hardware and

 5

software properties on all the machines. A similar script
was written to query the model and return a second XML
file in the same format as the existing checkout script
output. The team ran both scripts, then looked for
differences in the resulting XML files and resolved all
conflicts. This process can be repeated on a regular basis to
ensure that the model continues to properly reflect the
system as both evolve.

Once the model was set up, populated, and verified, it was
time to start using it to analyze the GDS system.

3. MANAGING COMPLEXITY
Viewpoints Developed to Manage Complexity

After laying the groundwork by defining the system and its
elements, several viewpoints needed to be developed to
provide useful information about the system. In this
context, a “viewpoint” is defined as a diagram that shows a
particular subset of information from the model in order to
convey specific details of the system.

The important thing to note about these viewpoints is that
they are products of the initial model architecture and data
population. Since the subset of information being expressed
has already been documented in the model, “creating a
viewpoint” is often just a matter of selecting which pieces of
information are important to display and dragging them onto
a new diagram. As the model became more complete, more
and more useful views were identified and created. This
section gives examples of views that the team found to be
useful, and which factors prompted their creation.

Hardware Locations

The GDS hardware and software upgrade that prompted this
modeling task was the last one before the Dawn spacecraft’s
first science phase. The GDS team needed to ensure that an
adequate, reliable, and stable hardware and software system
was in place before the science phase began.

One of the first steps of the GDS hardware upgrade was to
condense hardware previously located in two separate
rooms down to one room. This one room had resource
limitations like a limited number of power circuits and
Ethernet ports. The GDS team had to determine if the
room’s existing resources were sufficient. At the time, the
only way to do this was to trace cables under desks and
behind cubicle walls to find all the power and Ethernet
ports, then determine which ones were already in use. The
task proved to be time-consuming and the team realized it
would be useful to capture this information in the model so
that it could be referred to again in the future. Figure 8
shows the resulting diagram:

Figure 8 - Hardware Locations

The hardware location view, shown in Figure 8, came out of
this hardware consolidation task and is one of the more
useful views of the system. The next time users want to add
hardware the GDS team can quickly determine if the room
can support new hardware. Each port is automatically
color-coded by the modeling tool based on its connection
type. This allows the team to see at a glance what ports are
in use and why.

The hardware locations internal block diagram (IBD) in
Figure 8 clearly shows locations nested inside each other:
JPL at the top level, and SysML blocks at the next
hierarchical levels represent buildings, then rooms, then port
boxes, then ports. Each port box contains three Ethernet
ports. Each port represents one available Ethernet
connection; hardware that uses a particular Ethernet
connection is nested inside the appropriate port. Finally, for
computers with monitors attached, the monitors are shown
nested inside of each computer.

Traceability from a computer to its monitor is easily
overlooked but is extremely useful for inventory purposes.
Non-networked devices like computer monitors can be very
difficult to find during the annual inventory because there is

 6

no way to ask a monitor what its location is. Devices on the
network can be logged into remotely; from there it is easy to
determine an IP address and map that to an Ethernet port.
Having this monitor-to-machine mapping has helped the
GDS team track down several monitors quickly.

Cost Rollup

Once the team added Ethernet port tracking to the model,
there was an unintentional but very useful side effect: the
model could now track all the costs associated with a
particular hardware configuration. Each active port has a
monthly fee associated with it that varies based on the port’s
purpose. For example: Ethernet ports on different subnets
cost different amounts, there are additional charges
associated with VOCA boxes (used for radio
communications), and different models of machines have
different hardware and software warranty costs.

Previously these charges have been difficult to track
because there was no itemized bill to the project; just one
final sum that goes through the cost account was typically
given. A common occurrence was that a computer was
moved without the GDS team remembering to deactivate
the Ethernet port and confirm that the deactivation request
went through, so the project continued to get charged for an
unused port without realizing it. However, if the model
accurately represents the GDS system, a script can be
written to sum up these expected port charges to compare
them to the actual bill that the project received. This
allowed the GDS team more insight into where their money
was going and allowed them to catch discrepancies.

Figure 9 shows the same metamodel seen in Figure 5, but
this time red boxes highlight the attributes of the hardware
metamodel that are summed by the cost rollup script.

Figure 9 – Cost Script’s Targets

The cost rollup script traverses the model and sums the
appropriate costs depending on the machine type. For
virtual machines that the project leases, the script sums the
Lease Cost, Port Cost, and Software_Delivery’s License
Cost. For Physical Machines, the script sums Hardware
Support Cost (warranty), Port Cost, and License Cost.

Scripts like the cost rollup mentioned above and the disk
space query mentioned later were written in Jython. The
modeling tool allowed for scripting in a preset list of
languages: AppleScript, BeanShell, Groovy, JRuby,
JavaScript, Jython, and QVT Operational. Jython was
chosen because of the large library of Java classes that came
with the tool for free and the authors’ familiarity with
python.

The modeling tool had intuitive ways of running these
scripts as macros, which could be called easily with shortcut
keystrokes. After the initial learning curve of understanding
which Java libraries to call in each scenario, writing the
scripts themselves took about anywhere from one to several
hours, depending on the complexity of the task.

Tracking and Planning Configurations

Another big task for the GDS team is managing disk space.
The project has multiple network file system (NFS) servers
that house most of the disk space used by the flight team.
The team knew they would need to procure additional disk
space before the hardware/software upgrade, but didn’t
know how much would be necessary. The Dawn GDS team
generally purchases a large quantity of disk space at a time,
which is held in reserve and slowly allocated to the flight

 7

team as necessary. It was important to understand up-front
how much disk space might be required, so that the team
could take advantage of economies of scale.

In order to prepare for the disk space purchase the GDS
team went through an exercise to understand how much disk
space the flight team was already using in order to predict
future needs. It was clear through this exercise that there
needed to be a better way of capturing disk space
information, so the team decided to add the NFS servers to
the model.

It was also suggested that tracking the project’s required
disk space throughout the life of the mission might help
future projects predict their needs too. Figure 10 shows the
method the team came up with for showing disk space
configuration.

Figure 10 shows that each NFS server has a Total Size slot
that is used to track the server’s total amount of disk space.
Each NFS server is divided into volumes, and each volume
has an allocation of disk space. Additionally, different NFS
volumes are mounted on or accessible from different
computers. Capturing which computer was dependent upon
which NFS server was important.

Figure 10 - NFS Partitions

Scripts were written to query the NFS model and answer
three different questions: How much disk space on any
given NFS server was in use, and how much total disk space
did it have? If an NFS server needed to be taken offline for
maintenance, which computers would be affected by the
outage? Which NFS servers can any given computer access
in the current GDS configuration? Each of these questions
had come up at times and finding answers was always a bit
challenging. The model has definitely helped with disk
space management.

4. COMPLEX DATA FLOWS
Once the team saw that the model could successfully be
queried, we began to look for other opportunities to use
modeling to document the system. One of the first
opportunities we found was the documentation of complex
data flows.

The team knew that during the planned hardware/software
upgrade some parts of the Dawn testbeds would need to be
upgraded, and other parts would need to stay as they were.
The team had to prove that the upgraded and legacy
machines would still be able to interface with each other.
The first step was to map out all the elements in the testbeds
and their interfaces, as shown in Figure 11.

Figure 11 shows the connections between all the testbed
elements captured on a SysML internal block diagram
(IBD). Once the testbed was partially upgraded with new
hardware and software, users reported performance
degradation. This data flow diagram greatly assisted the
GDS team in identifying where race conditions could exist
or where software configurations needed to be adjusted to
account for the new equipment.

Capturing data flows in the model has many advantages
over a basic drawing tool. For example, the model can
perform type-checks between interfaces, so if a modeler
attempts to draw a connection between two incompatible
ports, for example 1553 and Ethernet, the model will flag it.

Figure 11 – Testbed Data Flows

Another advantage of modeling over other drawing methods
is that the model already contains information about all the
hardware and software the project uses, and that information
draws its truth from a single source. As computers’
properties like hostnames or IP addresses change, those
changes will be automatically reflected in all diagrams.
This both reduces the amount of work necessary to keep the
system description diagrams up-to-date and also reduces the
likelihood of inaccuracies since there are more opportunities
to notice a given mistake. Dawn’s prime mission is eight
years long, so there is risk of documentation becoming out-

 8

of-date. Capturing data flows in the model mitigates risk.

5. FORCING CLEAR THINKING
Eventually it felt natural for the team to turn to the model
whenever we ran into anything needing further clarification.
The act of modeling complex systems often forces the
modeler to ask questions that he or she never knew needed
asking. An example of this is how various pieces of
software on the same computer interact with each other.

Due to way the Dawn GDS has evolved over time, there are
a few cases where one tool is built specifically to call a
second tool with certain options/arguments. From time to
time, users will report a bug with the tool they’re using, but
upon further investigation, the GDS team will realize the
bug actually lies in a completely separate tool. Tracing
through all these tools can be complicated.

It is even more challenging when users request a new
feature be added to one tool, but the GDS team finds that the
change really has to be made in a different program. Now
the developer needs to understand how all the tools relate to
one another in case the new change breaks something else.
This process requires the GDS team to think clearly about
the interfaces between a set of programs, which is
something the modeling process is good at promoting. An
example diagram is shown in Figure 12.

Figure 12 – Software Sequence Diagram

The SysML sequence diagram in Figure 12 shows how one
software program calls a second, which then calls a third.
The descriptions on the arrows show what kind of
information is being passed between each program. Using
SysML forces the modeler to use unambiguous syntax.

6. ADVANTAGES OF MODELING OVER
TRADITIONAL APPROACHES

When describing any system as complex as a spacecraft
GDS it will always be necessary to create multiple views for
different audiences and purposes. These views are typically
created by several different authors using presentation or
drawing tools, so it is common for each to use their own

style conventions. A single arrow symbol can represent
hierarchy, data flow, control flow, etc. depending on which
diagram you look at or who created it. It’s up to the reader
to determine what each symbol means on each diagram and
to make sure their interpretation is correct. Instead, the use
of a standardized modeling language like UML or SysML
imposes a standard convention so that no matter which
diagram the reader is looking at, the meaning of each
symbol is unambiguous.

When using presentation or drawing tools to create system
views, one big challenge is maintaining consistency across
all the views, particularly since the system inevitably
changes over time. The advantage of a modeling tool over
these presentation or drawing tools is the model itself.

When diagrams are created using presentation or drawing
tools there is no connection between each view, which
allows for inconsistency. However, when using a modeling
tool, all the diagrams utilize the same underlying model
elements and relationships no matter who creates the
diagram. If element names or relationships change over
time, those changes are automatically propagated to all
system views. This reduces both the amount of work
necessary to keep the views up-to-date and the likelihood of
inaccuracy. Just as there is only one GDS system for a
given mission, there is also only one self-consistent model
representation of that system.

Traditional presentation or drawing tools also have no
understanding of their system elements. Through the use of
metamodels, a modeling tool understands basic information
about the system being described and can be the first line of
defense against inconsistency. For example the modeling
tool can perform type-checks between interfaces, so if a
modeler attempts to draw a connection between two
incompatible ports, like 1553 and Ethernet, the tool will flag
it.

During operations many GDS system engineers rely on
spreadsheets listing hardware properties to track their
systems. Spreadsheets are useful for viewing large
quantities of data at once or for passing information between
teams, however they also make it easy to miss mistakes or
inconsistencies. When different teams own different
spreadsheets that each describe part of a single system,
things get out of sync very quickly. A model enforces
consistency, but users are not forced to choose between the
traditional spreadsheet and a model. Once information is in
the model, generating an editable spreadsheet view from
that single source of truth is trivial, as was previously shown
in Figure 6.

Dawn’s prime mission is eight years long, so there is risk of
the GDS system documentation becoming out-of-date. The
transition of personnel over the course of the mission makes
it even more important to maintain a single accurate
representation of the system. Capturing this information in
the model mitigates this risk.

 9

7. CONCLUSION

Overall the Dawn GDS modeling task was a success.
Initially setting up and revising the hardware and software
metamodels took the team a fair amount of thought, but
once the metamodels were in place model elements were
quickly populated from existing databases. The process of
importing model elements uncovered many inconsistencies
in the existing hardware databases, which were then
resolved.

Once the model was populated, it was used with great
success to help the GDS team manage complexity. A
diagram was established to track the locations of various
pieces of hardware as well as building resources. Scripts
were written to query information out of the model and give
the team more insight into costs and dependencies of the
project’s computers on other servers.

As the team became more comfortable with the model, we
continued to find new ways to make our job easier. The
model was used to understand and document complex data
flows within the system, and also to force the GDS team to
think clearly about the system’s interfaces.

The team’s approach of selective modeling as time and
money allowed worked well. Modeling the GDS piece by
piece provided incremental growth in functionality and the
team ended up with a fairly complete model by the end of
the study. Based on the insight the team gained through this
modeling process, we believe system modeling earlier in the
mission definitely would have been beneficial.

The team believes this case study shows that with
reasonable goals in mind, even a small team without a
significant amount of money to dedicate can see benefits of
system modeling. Most of the modeling and scripting in
this study was performed by an academic part time
employee working 10-20 hours per week over the course of
one year.

The team continues to use and refine the Dawn GDS model.
More work should be done to explore how to automatically
audit the model’s contents against the actual hardware in use
on a regular basis. At the moment verifying that the model
matches reality is one of the most onerous aspects of
maintaining the model.

Another goal of the team’s future modeling work is to
generate views that will be used to educate new members
coming onto the GDS team. Most system description views
generated during the mission’s design have become
outdated and would not be of much benefit for people new
to the project.

Lastly, parts of this GDS model are relevant to other
missions using similar software deliveries and hardware.
Being able to modularize the model and export it as a
baseline for other projects would be a key goal to strive for

in reducing the amount of redundant modeling work.

ACKNOWLEDGEMENTS
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

REFERENCES
[1] OMG SysML Specification v1.3. [June 2012]

http://www.sysml.org/specs/

[2] Lykins, Howard; Friedenthal, Sanford and Abraham

Meilich, “Adapting UML for an Object-Oriented
Systems Engineering Method (OOSEM),” Proceedings
of the INCOSE 2000 International Symposium,
Minneapolis, MN, Jul. 2000.

[3] Friedenthal, Sanford; Moore, Alan; and Rick Steiner. A

Practical Guide to SysML. Burlington, MA:
ELSEVIEW Inc., 2009. Print.

[4] OMG UML Specification v.2.4.1. [August 2011]

http://www.omg.org/spec/UML/2.4.1

 10

http://www.sysml.org/specs/
http://www.omg.org/spec/UML/2.4.1

BIOGRAPHIES

Chelsea Dutenhoffer has
been the Ground Data
Systems Engineer on the
Dawn project for the past
4 years. Her research
interests include the
application of model-
based systems
engineering techniques
and methods for
encouraging innovation
in system design. She

received a B.S. in Aerospace Engineering from Embry-
Riddle Aeronautical University and is currently pursuing
an M.S. in Mechanical Engineering with a concentration
in Engineering Design at the University of Southern
California.

Joseph Tirona is a member of
the System Verification and
Validation Group at JPL. He
has used MBSE to model
various aspects of Ground
Data Systems on a number of
flight projects, including the
Mars Science Laboratory
(MSL), Dawn, and the Orion
Multi-Purpose Crew Vehicle
Program. He is currently

working as a Systems Engineer doing V&V on the Soil
Moisture Active-Passive (SMAP) mission. He received a
B.S. in Mechanical Engineering from California
Polytechnic University, Pomona, where he is a graduate
student in the Mechanical Engineering Department.

 11

