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ABSTRACT

Aerospace problems are highly multidisciplinary. Four or
more major disciplines are involved in analyzing any
particular vehicle. Moreover, the choice of implementation
technology of various subsystems can lead to a change of
leading domain or reformation of the driving equations. An
excellent example is the change of expertise required to
consider aircraft built from composite or metallic structures,
or those propelled by chemical or electrical thrusters. Another
example is in the major reconfiguration of handling and
stability equations with different control surface configuration
(e.g., canards, t-tail v four-post tail).

Combinatorial problems are also commonplace anytime that a
major system is to be designed. If there are only 5 attributes of
a design to consider with 4 different options, this is already
1024 options. Adding just 5 more dimensions to the study
explodes the space to over one million. Even generous
assumptions like the idea that only 10% of the combinations
are physically feasible can only contain the problem for so
long. To make matters worse, the simple number of
combinations is only the beginning. Combining the issue of
trade space size with the need to reformulate the design
problem for many of the possibilities makes life exponentially
more difficult.

Advances in software modeling approaches have led to the
development of model-driven architecture. This approach uses
the transformation of models into inferred models (e.g.
inferred execution traces from state machines) or the skeletons
for code generation. When the emphasis on transformation is
applied to aerospace, it becomes possible to exploit redundancy
in the information specified in multiple domain models into a
unified system model. Flurther, it becomes possible to
overcome the combinatorial nature of specifying integrated
system behavior by manually combining the equations
governing a given component technology. Transformations
from a system specification combined with a system-analysis
mapping specification enable one-click combination of domain
analyses. This is a flexibility that has been missing from many
engineering codes, which often entangle design specification
and physical examination much more than is required to
conduct the analysis.

This capability has been investigated and cultivated within the
DARPA F6 program by a team of JPL and Phoenix
Integration engineers building the Adapatable Systems Design
and Analysis (ASDA) framework. By embracing system
modeling with SysML and the Query-View-Transformation
(QVT) language, the ASDA team has been able to build a
flexible, easily reconfigurable framework for building up and
solving large tradespaces. Examples of application and lessons
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learned in building the framework will be described in this
paper. In addition, the motivation will be laid for various tool
vendors to develop open model description standards while
being able to maintain competitive advantage through
proprietary algorithms and approaches. These standards will
also be compared to the underpinnings of model-driven
architecture and the OMG standards of the Meta-Object
Facility (MOF), SysML, and QVT.

INTRODUCTION

This paper describes the results of extending the use of
model transformation from the software domain into the
systems engineering domain. Through the use of
transformation techniques, multiple analyses can quickly be
tied together according to the rules developed in a system
model. This section will discuss background on these
techniques and the rationale for their use.

The bulk of the work described is the direct product of a
task performed for the DARPA F6 program. The DARPA
F6 (Future, Fast, Flexible, Fractionated, Free-Flying
Spacecraft United by Information Exchange) program is
working to prototype and understand the use of fractionated
spacecraft. The task undertaken at JPL, called the Adaptable
Systems Design and Analysis tool, is intended to help
DARPA validate the business model that has been used to
justify and promote the idea of fractionation in spacecraft
design and deployment. There is currently no flow between
the ASDA team results and design constraints upon other F6
teams working to create an integrated flight demonstration.
However, once the demonstration has proven the feasibility
of fractionation, the intent is to use the ASDA tool to
demonstrate utility and guide further optimization of new
spacecraft.

Fractionation is the approach of taking the various functions
of a spacecraft and splitting them up among multiple smaller
spacecraft to achieve several benefits, including shorter
development cycles and higher responsiveness to changing
conditions. These spacecraft are typically also envisioned to
be flying in a close proximity formation. For example, the
task of downlinking observation data to a ground station
may be allocated to one type of spacecraft, while functions
associated with generating these data are allocated to
another type. In another instance, a large radar aperture may
be simulated by many small receivers kept within formation
flight.



Evaluating the merit of fractionation is not a straightforward
problem. There are many inefficiencies introduced by
fractionation, such as the need to launch highly redundant
mass for multiple sets of structures, batteries, control
electronics, etc. On the other hand, the relative simplicity of
the individual spacecraft may reduce technical, cost, and
schedule risk. Making many copies of smaller integrated
circuits may be more inexpensive than doing one-offs of
more exquisite designs. Yet, although the marginal cost
drops, the total buy is almost always larger than buying an
individual. Of course, it is also far easier to build
redundancy and flexibility into a fractionated architecture
than a unified one. But laying out all of the considerations
still leaves the grand question: what are the real magnitudes
of these different effects on a given fractionated
deployment?

Answering this question via analysis or simulation requires
some way of covering the whole space of possible
combinations of functional assignments to different
spacecraft and the resulting impacts on spacecraft
requirements. While there may be clever mathematical
approaches to make the problem more tractable, in most
cases it looks like some fraction of the aforementioned
combination space must be sampled and simulated. With
typical engineering analysis frameworks, this rapidly
becomes an impossible feat.

This paper presents the use of a technique called model
transformation in order to keep the dimensionally of the
problem posed here from growing too rapidly. Rather than
dealing with a need to make analytical configurations in
numbers of the order of the number of combinations, which
grows exponentially, this technique grows in size more like
the order of the number of individual choices to be made.

The goal in this paper is to acknowledge that compute time
may still rise with the number of possible combinations, but
to introduce a technique that can address the potentially
large compute time. However, it is recognized that compute
time is relatively inexpensive, while the human cost of
manually building analyses to deal with the huge range of
architectures and discrete combinations is a true problem.
Here, we aim to use advanced development techniques, like
model transformation, to reduce the amount of time human
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analysts must work to deal with alternative cases. This is
not a magic bullet — the computer still must deal with the
exponential growth in the trade space, but the human
designer / analyst has the problem of specification relaxed to
something more like O(n) from O(n®).

BACKGROUND: MODEL TRANSFORMATION

The technique of model transformation is beginning to
appear more often in the literature of systems, mechanical,
and aerospace engineering. Before its penetration into new
domains, the use of model transformation was primarily in
the areas of software engineering. An example approach is
that of the Open Modeling Group (OMG)'s Model-Driven
Architecture (MDA) [1]. The crux of this approach is a
transformation language called Query-View-Transformation

(QVT) [2].

In the software world, transformation has been successfully
used to turn data from one format into another, and to
support the direct generation of software code. An example
of the first use is the use of XSLT to convert data encoded
in one XML schema to another encoding. Another example
can be seen in UML tools that can directly create computer
code.

For the purposes of other engineering domains, the promise
of transformation is in the mapping of outputs or model
specifications from one analysis tool into inputs for another.
An example of this can be seen in previous work to go from
a systems specification model into Simulink or Modelica to
support dynamical simulation [3]. A key benefit of
transformation is to render what has often been a weakness
into a strength. Rather than having information in multiple
files, transformation allows for the bootstrapping of
information from one set of models into the construction of
others. In the multiple file approach, there are as many
opportunities for error as there are pairwise connections
between redundant files. The redundancy of information
between contributing analyses becomes a facility for reuse
rather than this error source when transformation is used.

The key to defining a regular, computable transformation
between models is to use metamodels to define mappings
between model elements. This is illustrated in the diagram

Target Metamodel

conforms

Target Model

Figure 1. Core elements to perform a one-way transformation.
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Figure 2. Mapping between Daughtership Bus and Thermal Model..

below, Figure 1. In it, there are two meta models with
relationships established between them. A model A,
conforming to metamodel MMA, can then be written as a
new model B with conformance to metamodel MMB, or
vice versa. The benefit of the extra level of indirection is
that the transformation can be made generic. If many
models are made according to the same metamodel (which
may happen if many firms are submitting designs to
DARPA eventually), then each can be transformed in the
same way.

The final piece of this story is wrapped within the
motivation for creating the Systems Modeling Language
(SysML). The motivation behind SysML was to capture the
definition of a system within a model rather than within
static documents. This model would contain constraints
upon implementations that are acceptable to the customer
(requirements) and the structure of the system to be built,
and its desired behaviors. However, there are not many
aspects of analysis that are included in defining SysML. So
rather than wanting for a grander language, the approach
taken in this paper is to blend the best of SysML,
specification, with the best of many other engineering tools,
which is developing and executing models geared to
analysis. Model transformation is the bridge between these
two worlds.

It is worth emphasizing this final point. System
specification (even if many constraints and equations for
analytical models are specified) alone is not sufficient.
Analytical models, no matter how powerful or how
excellent the simulator, alone are not sufficient. Without a
good data structure behind them, attempts to integrate
analytical models becomes hard to track and understand.
This is why tools like Simulink and Modelica solvers are
very popular in engineering work - it is much easier to
understand an analysis when contextualized directly by
configuration information. And of course a specification of
structure and behaviors by itself does not provide the
predictive capabilities engineers require. Thus both are
important.

APPROACH: TRANSLATING SYSTEM
SPECIFICATION INTO ANALYSIS SPECIFICATION

As stated before, the driving problem in defining an analysis
tool for the DARPA F6 is the sheer number of possibilities
that must be considered, driven by the combinatorial nature
of sizing and simulating multiple, interacting spacecraft in
multiple potential system architectures. In order to get some
traction on this problem, it must be possible to reduce the

number of configurations a human designer must develop
while still maintaining a comprehensive set of design
alternatives.

The strategy for the ASDA team has been to leverage three
powerful tools: SysML, model transformation, and Phoenix
Integration's ModelCenter software. ModelCenter is a tool
that has brought integration between multiple engineering
tools into the commercial market. In addition, it provides a
series of tools for doing systematic exploration of
parametric trade spaces, such as the Design of Experiments
and surrogate modeling. The question from the beginning
was how to extend this level of sophistication in dealing
with parametric studies into dealing with combinatorial
ones.

The key pattern to enabling this exploration is to truly
separate analysis from specification, but then to leave
pointers between the two. This is illustrated in Figure 2. In
Figure 2, there are separate descriptions of a Daughtership
Bus and the Thermal Model that will be used to analyze it.
This means that the Thermal Model will be invoked any
time that a Daughtership Bus or a bus that is specialized
from it is used in a studied cluster.

In Figure 3, a generic type of cluster element, in this case a
spacecraft, is defined to be connected to a given analysis.
The diagram shows the path that is traced to apply this
pattern to any specializations of the defined

component. Thus, a spacecraft of type Daughtership,
Mapper, Imager, Mothership, or F6 Enabled Spacecraft will
all introduce this module into the analytical problem. The
engineer is then free to specify as many spacecraft as
desired, confident that the appropriate analyses will find
their way into the integral problem.

If there are multiple types of spacecraft, say a daughtership
(a client spacecraft that can take observations but not
downlink) and a mothership (a spacecraft that provides
ground station links for client spacecraft), then there will be
multiple copies of the analysis in ModelCenter. Each of
these copies provides a place for different inputs to lead to
different outputs. The core of this approach is to utilize the
concept of inheritance for associating generic cluster
elements to different types of analysis.

Another piece of the pattern is to capture the relationships
between analyses, if they happen to be instantiated in an
integrated analysis. These relationships are captured in
SysML using standard Parametric diagrams as shown in
Figure 4. If a particular analysis on either side of the
connections happens to not be instantiated in the integrated
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Figure 3. Inheritance path from generic description to specific type for application of analysis.

analysis, the link is not made and the parameter becomes a
user-defined input value instead. Since the SysML Binding
Connector is bi-directional, directionality is implied by the
use of an Information Flow item of type “DirectionBlock.”
parameter connections.

The system description is specified in SysML. The analysis
set is captured and connected in ModelCenter. The bridge
between the two is a custom QVT transformation that takes
a UML model and renders it into an XML file that
ModelCenter can recognize as one of its own model

files. This transformation carefully counts the number of
copies of each type of analysis that is required by the
specification of the cluster (how many of what type of
spacecraft), and how they will need to interchange
parameters. This transformation greatly reduces the number
of connections a person must specify (only defining the
connection between parameters) and leverages those
connections for many cluster analysis configurations.

One of the chores of the transformation is to deal with how
the cardinality of source and target analyses must be
reconciled. The issue arises because of the strategy taken to
deploy analyses into ModelCenter. If there are two types of
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spacecraft, taking the mothership / daughtership example,
then an analysis on each of these types will likely require
different parameters. This is facilitated by making multiple
instances of the same analysis type in the ModelCenter
model. Multiple cases of connecting parameters from
multiple instances of the same analysis type to a single
analysis instance of a given type are illustrated in Figure 5.

In general, the maps between parameter sets that must be
accommodated are one-to-one mappings, many-to-one, one-
to-many, and many-to-many. Multiple strategies are used,
including the mapping between collections (e.g., many
copies of a scalar value assigned to indices in an array),
combination operators (e.g., the mass summation or "roll-
up") or some other deterministic mapping. One rule for
mapping that has been applied is to assign an index to
individual spacecraft that is used to keep vectors of
parameters properly aligned. This is shown in Figure 6 with
the notation label of “Launch Order,” although in the SimPy
implementation, it more closely approximates the order in
which different spacecraft are ordered to be built (longer
builds would make this no longer the launch order).

By combining a disciplined, object-oriented approach to
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Figure 4. Parametric connections in SysML.
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Figure 5. Multiple cases for parameter mapping.

instantiating analyses from the system specification and the
resulting connections required between parameters, the
ASDA code base provides a powerful platform for
computing on combinatorial problems.

APPROACH: INTEGRATION AT MULTIPLE
LEVELS

A variety of insights have been gained about model
transformation via work on the F6 ASDA tool. The essence
of them is about the relationship between a system's
specification and the requirements of its analysis. An
underspecified system cannot be analyzed, and it is
important to be careful not to add aspects to a system’s
specification purely to support analysis. Doing so will make
the analyses brittle and the specification muddled with extra
information.

As shown below in Figure 6, a common idiom in the
Integrated Model-Centric Engineering (IMCE) patterns
below is the mapping between components of a system and
their intended functions. While certainly not a one-to-one
mapping, there is often a correlation between the
decomposition of functions and the way that a system is
broken up into constituent components.

«mission:Component» = |

«mission:performs»
e

For initial sizing, most analyses typically assume some
basic functional use. For example, a solid state recorder is
usually called upon to store data. So sizing models include
parameters such as instrument data rates and downlink
opportunity frequency to estimate required storage. These
functions are not currently called out in the SysML ASDA
model; the implicit connection between component and
function in the analysis via parameters is used. A more
specialized function of the solid-state recorder may be to
serve as working memory for the spacecraft flight computer.
In this case, the function may apply a need for new
parameters in the analysis, such as latency in memory reads
and writes. In this case, the function would be called out
explicitly in the model, with the analysis description bound
to the connection between the two.

An important consideration for this approach is the
difference between a traditional use of a component, and a
non-traditional one. For example, a pair of solar panels can
be used to generate power (the traditional function), but can
also be used to generate a solar pressure torque (a non-
traditional or even deleterious function). Analyses that do
not consider this repurposing have the potential to ignore
important effects, or to encode their definitions in
parameters that are hard to map to these alternative cases.

«mission:Function» =]

My Spacecraft

Watch Area

Figure 6. “Component performs Function” in SysML.
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Figure 7. SysML cluster representation concept.

On the other hand, one can consider the discrete event
simulation that is used to simulate the cluster

functioning. Here, the roles of individual spacecraft are
open to be assigned. The mothership-daughtership approach
that is the team's main example is defined by what
motherships and daughterships do. There are predefined
patterns of relationships between them.

The two examples have an important difference. For the
sizing models, it was sufficient to make a ModelCenter
analysis copy for each type of spacecraft to be sized. These
copies would then have general links between their
parameters by the transformation. On the other hand, the
discrete event simulator needs additional information on

how different spacecraft types interact. There is only one
copy made of the discrete event simulator in ModelCenter
because it simulates the whole cluster, not just a spacecraft.
Links between parameters on individual spacecraft analyses
must be linked to the integrated analysis. But, it is also
important to create the behavioral links and expected
connections between spacecraft within the description of the
scenario to be simulated.

The links within the scenario imply a new requirement for
analyses of interactions between multiple elements that are
also analyzed individually. In programs such as Spice (a
circuit simulator) or Simulink, the connections are specified
in a data structure called a net list. What this means is that

Figure 8. ModelCenter integrated analysis excerpt.



the transformation process must be allowed to not only
specify connections between ModelCenter components but
also to specify (or ideally, enhance, since the user may want
to encode connections by hand before the transformation)
the net list of the analysis input file. Manipulating
parameter and analytical connections together allows for the
complete specification of an integrated analysis from
individual parts via transformation from a specification.

RESULT: EXTENSION OF MODELCENTER
DRIVERS INTO COMBINATION SPACE

As a result of the ability of transformations to quickly make
new combinations of analyses from cluster definitions,
developers at Phoenix Integration have created a new
ASDA tool. The ASDA tool serves as a front-end for
defining parameter values and the order of execution of the
multiple models created from the transformations written by
the JPL portion of the team. This tool is a direct analog of
tooling that ModelCenter has offered for investigating the
affects of design parameter choices on system outcomes,
except that it deals with choices in cluster

topology. Different topological choices are made by
looking up different input files generated by the
transformation machinery.

The connection between the SysML configuration and
ModelCenter can be seen in Figures 7 and 8. A set of
SysML Blocks are shown as elements of a cluster in Figure
7. In Figure 8 is the deployment of this cluster topology into
an integrated analysis workflow in ModelCenter.

The benefits of the transformation can be seen when
considering the time needed to encode a new cluster type.
For a cluster of 5 spacecraft (three different types), roughly
150 links are created. For clusters with 5 types of spacecraft,
more than 600 links were created. To rebuild this set of
connections by hand would be a very time-consuming, and
likely error-prone, ordeal. With the transformation
apparatus, roughly half an hour is required to define the new
cluster configuration and begin generating alternatives. This
was recently proven out in configuring a five-spacecraft
cluster into a 19-spacecraft cluster in rapid fashion.

Another acceleration of rework for extending or improving
the model was made apparent when adding new types of
analysis to the model. Most of the way through the first
Option Period of the ASDA task, individual subsystem
models were put aside in favor of an analogy-based
approach to finding performance values from spacecraft bus
catalogs. Only the patterns for interconnecting between the
spacecraft performance and the rest of the simulation were
affected. This allowed the team to focus on interpreting the
new models properly in their new context, rather than
chasing as many missed connections as might have been
necessary in a more literal approach to analysis integration.

As mentioned before, the ASDA tool approaches the
traversal of combination space by providing a driver for
loading and executing multiple integrated analysis

specifications. The transformation apparatus makes it
feasible to generate these combinations with sufficient speed
to properly populate the ASDA tool with configuration files.

Another ability enabled by the framework is the ability to
rapidly shift between sets of analyses to be integrated for a
given cluster topology. The SysML model contains a
simple table that shows an analysis name, its location in the
Analysis Server, and an "ignore" flag. If there are multiple
analyses allocated to a given system aspect (or may simply
be analyses of different fidelities), one can be chosen as
representative while others are simply ignored. The
sensitivity of results can be evaluated not just with respect
to cluster topologies, but also with respect to favored
analyses. This is a powerful capability for examining
business models.

e Asthe ASDA tool is applied to System F6, the
transformation has shown itself as an enabler for
multiple features of the tool:Rapid change in the
basis of analysis by turning “on” one set of
analyses and turning “off” another

e Rapid inclusion of new definitions of cluster
elements

e Rapid (manual) generation of clusters with
different sets of elements and types of spacecraft,
payload, etc. considered.

As more of the ASDA toolchain is stood up, the
transformation in this paper will become part of a pipeline
that smoothly moves from the definition of clusters and
dimensions of topology to change to integrated analysis.

RESULT: FORCING FUNCTION TO INCREASED
ANALYTICAL REGULARITY

It has been observed in work on developing surrogate
models that building these models exercises legacy analysis
codes in ways never imagined. The process of developing
surrogate models becomes a de facto unit test of each
analysis, exercising it in a variety of corner cases.

The same is true with this approach to building up

integrated analyses. A variety of unexpected connections
and interplays creep into the framework. A great deal of
effort has gone into the end of the first Option Period for the
F6 task to ask the question "do these trends and effects

make sense?" For the discrete event simulation at the core of
the integrated framework, plotting and data capture tools
had to be developed in order to run various impacts and
effects to ground.

What this together means is that a framework that can drive
so many instances and configurations of analyses requires a
robust testing framework to go with it. While the ASDA
team has developed unit tests for multiple analyses, more
may be required. The transformation framework itself
provides the ability to do investigations on a number of n-
wise combinations. In fact, this capability was used to



quickly gain confidence in the use of analogy-based
spacecraft analysis tools at the end of the first option period.

A testing framework using these tools together looks like
the following. During the development of a given analysis,
unit tests are handmade to assure that individual calculations
and groups of calculations are being performed

properly. Then, single instances of these analyses can be
run within Designs of Experiments (DOE) in ModelCenter
for through checking. Then, pair- and n-wise sets of
analyses are created in ModelCenter framework using
transformation with certain analyses ignored. These sets of
analyses can also be examined with a DOE. Finally, the full
set of analyses are generated and both architectural and
parameters spaces can be explored for

verification. Validation against known data for different
individual spacecraft is also feasible.

The complicated interactions between multiple spacecraft
within the discrete event simulator also drove a need to
carefully log and curate runs from the simulation. A textual
log was driven to become a post-execution series of plots,
which in turn was made into a capability to write execution
traces for later examination in bulk. This plot capability has
become an important part of the post simulation workflow
to gain an application for the dynamics of the problem.

A post simulation approach would look like the following.
When many runs of different configurations are made,
aggregate plots similar to those in the Data Visualizer are
used to find general trends. Then time series for data, power,
and so forth are examined to understand how a given
scenario unfolded. Finally, individual parameters for a given
design case are examined to further understand the results.

SUMMARY

The ASDA team has now been working with model
transformation to build up its tooling to perform integrated
analyses for over a year. It is been found to provide a
powerful lever for dealing with the rapid-growing nature of
combinatorial problems in a real, time- and budget-limited
task. Now that there is a stable transformation codebase for
ASDA to work from, adapting analyses to different design
topologies can't be done in a fairly rapid fashion.

The transformation approach to integrating analysis around
changing system configurations is proving fruitful in
regularizing large design problems. In addition, it provides a
convenient platform to stand up integrated analysis

testing. As mentioned before, this has led to a reduction in
the time required to adapt to new analysis sets or system
cluster configurations. It has also pointed the way to
needing an equally regular testing suite to assuring the
quality of the results. This technique also helps to augment
and guide that testing suite.

In all, model transformation is a core part of the ASDA
approach and has proven itself a key to working with
engineering problems that have large combinatorial trade

spaces.
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