
A High-Throughput, Adaptive FFT Architecture for
FPGA-Based Space-Borne Data Processors

Kayla Nguyen, Jason Zheng, Yutao He and Biren Shah
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109-8099

(818) 354 - 5185
{Kayla.Nguyen, Xin.Zheng, Yutao.He, Biren.N.Shah}@jpl.nasa.gov

Abstract—Historically, computationally-intensive data pro-
cessing for space-borne instruments has heavily relied on ground-
based computing resources. But with recent advances in func-
tional densities of Field-Programmable Gate-Arrays (FPGAs),
there has been an increasing desire to shift more processing
on-board; therefore relaxing the downlink data bandwidth re-
quirements. Fast Fourier Transforms (FFTs) are commonly-
used building blocks for data processing applications, with a
growing need to increase the FFT block size. Many existing FFT
architectures have mainly emphasized on low power consumption
or resource usage; but as the block size of the FFT grows, the
throughput is often compromised f rst. In addition to power and
resource constraints, space-borne digital systems are also limited
to a small set of space-qualif ed memory elements, which typically
lag behind the commercially available counterparts in capacity
and bandwidth. The bandwidth limitation of the external memory
creates a bottleneck for a large, high-throughput FFT design with
large block size. In this paper, we present the Multi-Pass Wide
Kernel FFT (MPWK-FFT) architecture for a moderately large
block size (32K) with considerations to power consumption and
resource usage, as well as throughput. We will also show that
the architecture can be easily adapted for different FFT block
sizes with different throughput and power requirements. The
result is completely contained within an FPGA without relying
on external memories. Implementation results are summarized.

I. INTRODUCTION
In recent years, the trend in digital signal processing (DSP)

applications for space-borne instruments is to migrate more
data processing power on-board using digital logic devices
such as f eld programmable gate arrays (FPGAs). Compared
to software-based processing that has been heavily relied
on in the past, this trend allows real-time processing for
computation-intensive algorithms. A major part of this growth
requires an increase in the performance of the on-board Fast
Fourier Transform (FFT) core. The improvements in FFT
capabilities provide a more accurate processing on-board; thus
leading to less downlink bandwidth required, which is a highly
desired trait in the space industry.
There have been a number of papers describing small-size

FFT designs optimizing for low power consumption and high-
speed operation of 16-point [1], 256-point [2], and 1024-point
[3] FFTs. A good amount of discussion is found in literature
focusing on the optimization of computational building blocks
of FPGA-based FFTs such as multipliers [4] and reducing the
number of memory references [5].

This paper will describe the architecture and implementation
of a 32,768 (32K) complex input FFT that meets stringent
latency requirements within the resource availability of the
Xilinx Virtex-5 XC5VFX130T FPGA. We f rst discuss the
architectural options and comparisons for 32K FFTs along
with the overall data f ow scheme. A deeper description of the
hardware design for the Radix-2 butterf y structure, the FIFO
memory, and the twiddle factors follow. Next, adaptability
schemes to meet different requirements are proposed for the
Multi-Pass Wide Kernel (MPWK) FFT. Finally, resource usage
results and power consumption estimations are provided.

A. Requirements
The processing power for a future space mission requires a

32K FFT plus a 32K inverse FFT (iFFT), each to be performed
within 156us on a Xilinx XC5VFX130T FPGA. The data
processing requirements constraints are listed in Table I.

TABLE I
DATA PROCESSING REQUIREMENTS AND CONSTRAINTS

Parameter Requirement
FFT size 32K Complex Input FFT

+ 32K Complex Input Inverse FFT
Maximum Latency 156us
Input Data Speed 64MHz
FPGA Technology Xilinx XC5VFX130T
Available # of 36K BRAM blocks 298 / 10.728Mb
Available # of DSP48 blocks 320

Since both the FFT and iFFT must f t onto one FPGA, the
FPGA resources must be split between the FFT and the iFFT
blocks. Therefore, there are 156 BRAMs (5.36Mb) and 160
DSP48 blocks available for the FFT calculation.

II. DISCRETE FOURIER TRANSFORM METHODS

An N sample Discrete Fourier Transform (DFT) is def ned
as:

X(k) =

N−1∑

n=0

x(n)ωnk
N ,

where k = 0, 1, ..., N − 1 and ωN = e−j2π/N , also called the
“twiddle factor” [6]. By using this def nition to calculate the
DFT, the number of operations needed is O(N2) [7]. For a
large size N , a simplif cation is needed to reduce the number
of operations.
A. Fast Fourier Transform
In 1965, Cooley and Tukey published a convenient and

fast algorithm to compute the Discrete Fourier Transform
on a computer [7], and the algorithm is called the Fast
Fourier Transform (FFT). The number of operations required
is reduced to be proportional to Nlog(N) compared to the
traditional method that required N2 operations. The simplest
and common form of the Cooley-Tukey FFT algorithm is the
Radix-2 algorithm. Figure 1 shows the data f ow for an 8-point
decimation-in-frequency FFT using Cooley-Tukey’s Radix-2
algorithm. Note that the input to the FFT structure is in normal
order, while the output is in reverse binary order.

Fig. 1. 8-point Radix-2 FFT Using the Cooley-Tukey Algorithm

B. Singleton’s Parallel FFT Architecture
Using the Cooley-Tukey FFT algorithm as a reference,

Singleton devised the parallel FFT architecture in 1967 [8]
in which the traditional FFT data f ow diagram is rearranged
such that each stage has the same geometry (see Figure 2).
This arrangement allows the implementation of the FFT to
have sequential data access, as well as being able to use the
same butterf y every pass (refer to Figure 4).

Fig. 2. Singleton’s Rearranged Data Flow Graph for an 8-point FFT

An alternative data f ow graph showing the butterf y number
in each of the FFT stages is shown in Figure 3. Notice that with
each stage of the FFT pass, butterf y B1 takes instantaneous
inputs from a0 and a4, and the outputs are mapped to the f rst
and second outputs, which is similar for butterf ies B2, B3, and
B4. This arrangement allows the three stages to be collapsed
down to one stage with four butterf ies, as illustrated in Figure
4. The data passes through the single structure of butterf ies
three times to complete the 8-point FFT.

Fig. 3. Singleton’s Data Flow Graph for an 8-point FFT Alternate View

Fig. 4. Singleton’s Data Flow Graph for an 8-point FFT Collapsed Stages

C. Singleton’s Single Butterf y Method

Singleton’s single butterf y method further simplif es the
FFT architecture by collapsing the four butterf ies in Figure 4
into one butterf y, as shown in Figure 5. The inputs are divided
into two FIFOs, the f rst four inputs (a0, a1, a2, a3) are stored
into the f rst FIFO, while the last four inputs (a4, a5, a6, a7)
are stored into the second FIFO. The output are denoted as
xb,1,k and xb,2,k, where b is the butterf y number from Figure
4 and k is the FFT stage number from the set {1, 2, 3} for an
8-point FFT.

Fig. 5. Singleton’s Single Butterf y Data Flow Graph for an 8-point FFT

The data and FIFO arrangement for the single butterf y
method is illustrated in Figure 6. At time t0 (Figure 6(a)),
we assume that all of the data a0-a7 is f lled into FIFO0 and
FIFO1 in sequential order. Notice that FIFO0 is 1.5 times
larger than FIFO1. At time t1 (Figure 6(b)), the butterf y has
processed inputs a0 and a4, and have produced outputs x1,1,1

and x1,2,1 which are stored into FIFO0. At time t2 (Figure
6(c)), the butterf y has processed inputs a1 and a5, and the
outputs x2,1,1 and x2,2,1 are stored into FIFO0. At this point,
the need for a larger FIFO size for FIFO0 can be seen. At time
t3 (Figure 6(d)), the butterf y has processed inputs a2 and a6,
and the outputs x3,1,1 and x3,2,1 are stored into FIFO1. This
is the f rst step where an output of the butterf y is store into
FIFO1. At time t4 (Figure 6(e)), the butterf y has processed
inputs a3 and a7, and the outputs x4,1,1 and x4,2,1 are again
stored into FIFO1.

(a)

(b)

(c)

(d)

(e)

Fig. 6. FIFO scheme for Singleton’s Single Butterf y Method. (a) Time t0,
input data. (b) Time t1, a0 and a4 processed by the butterf y. (c) Time t2, a1
and a5 processed by the butterf y. (d) Time t3, a2 and a6 processed by the
butterf y. (e) Time t4, a3 and a7 processed by the butterf y.

III. MULTI-PASS WIDE KERNEL FFT (MPWK-FFT)
ARCHITECTURE

Using Singleton’s single butterf y method, the calculated
latency for a 32K-point FFT is 245,760 cycles. To meet the
latency requirement of 156us with this method, the FPGA
clock would need to operate at 1.5GHz. Operating an FPGA at
this speed is not only impractical, but unachievable. The slow
throughput of this method is due to the fact that there is only
one butterf y calculating 32,768 operations 15 times. In order
to reduce the number of operations in the butterf y, the Multi-
Pass Wide Kernel structure is developed. The MPWK-FFT
structure allows users to expand Singleton’s single butterf y
structure into a wide kernel of multiple butterf ies in parallel.

A. Architecture Comparison
In order to determine how many parallel butterf ies are

needed in the MPWK-FFT architecture, a comparison between
the limitations of the Xilinx XC5VFX130T FPGA and FFT
latency is performed. Figure 7 shows the comparison between
latency vs. the number of real multipliers. From the f gure, the
maximum number of multipliers is shown by the vertical line
(160), and the maximum allowable latency is shown in the
horizontal line (156us). A comparison between 16 butterf ies,
32 butterf ies, and 64 butterf ies schemes are performed. The
only scheme which meets both constraints is the 32 butterf ies
scheme.

B. 32K MPWK-FFT Data Flow Diagram
The proposed architecture of the 32K Radix-2 Complex-

Input MPWK-FFT, shown in Figure 8, is a combination of

Fig. 7. Comparison between the Number of Multipliers versus Latency at
64MHz with Optimal Shaded Region

Singleton’s structure in Figure 4 and Figure 5. The proposed
structure contains 32 butterf ies in parallel and 64 complex data
FIFOs to store the input and use as memory storage between
stages. The inputs to the structure is divided in 64 groups,
with input data f lling the FIFOs in normal order as shown in
Figure 8. The output is valid in reverse binary order after the
data passes through the structure 15 times.

Fig. 8. MPWK-FFT Data Flow Graph for 32K FFT

C. 32K MPWK-FFT Hardware Architecture
The overall 32K MPWK-FFT architecture is shown in

Figure 9. The major functioning blocks are: the 32-butterf ies
structure, the 64 FIFOs for the real inputs, the 64 FIFOs for the
imaginary inputs, the complex twiddle factor memory storage,
and the FIFO logic.

Fig. 9. Modular View of 32K MPWK-FFT Architecture

1) Radix-2 Butterf y Structure: Each radix-2 butterf y (B1,
B2, etc.) in Figure 8 is shown in detail in Figure 10. The
interface signals are:

a. Two real inputs - a0r and a1r

b. Two imaginary inputs - a0i and a1i

c. One real and one imaginary twiddle factors - cr and ci

d. Two real outputs - x0r and x1r

e. Two imaginary outputs - x0i and x1i

The outputs are given as:

x0r = a0r + a1r

x0i = a0i + a1i

x1r = cr(a0r − a1r) − ci(a0i − a1i)

x1i = ci(a0r − a1r) + cr(a0i − a1i)

Each butterf y contains two complex multiplications, or
equivalently four real multiplications. For a butterf y structure
with 32 butterf ies, the total number of multipliers used is 128.

2) FIFO Memory and Logic: There are 64 FIFO blocks to
store the real data and 64 FIFO blocks to store the imaginary
data, totaling to 128 FIFOs. Referring to Section II-C and
Figure 5 as reference for an extension into 32 butterf ies, the
output x0r and x1r of B1 f rst f lls FIFO0 for 512 samples,
then it starts to f ll FIFO1 for 512 samples until the end of
the current stage (see Figure 8). In order for the output of

Fig. 10. Radix-2 Butterf y Structure

each butterf y to go to the correct FIFO block, routing logic
is placed in the FIFO logic block. Since FIFO0, FIFO2, etc.
is f lled f rst with the output of the butterf ies at twice the rate
of data read from the FIFO, even FIFO depths must be larger
than odd FIFOs by 50%. We calculate the depth of each FIFO
using equations 1 and 2. Even FIFOs have depth:

DFIFOeven =
1.5N

2 × Nbutterflies
, (1)

which comes out to be 768 deep for an FFT size of 32K. Odd
FIFOs have depth:

DFIFOodd =
N

2 × Nbutterflies
, (2)

which comes out to be 512 deep for an FFT size of 32K.
Therefore, the total amount of memory needed to store the
data is 768×64+512×64 = 81, 920 samples. Using the 36K
blocks of BRAM, each sample (real and imaginary solutions
from the FFT are stored independently) contains 36-bits for
a total memory size of 2.95Mbits.

3) Twiddle Factors: In order to achieve the required latency
of 156us, each twiddle factor must arrive at the multiplier
within one clock cycle. Thus, the twiddle factors are stored
in an internal ROM lookup table inside the FPGA. For the
32 butterf ies MPWK-FFT architecture, 32 strings of real
twiddle factors and 32 strings of imaginary twiddle factors
are required. Each string has 512 entries, corresponding to the
depth of each FIFO. Each twiddle factor sample is 18-bits
wide. This corresponds to a total memory size of 18 × 32 ×
2 × 512 = 589.9Kbits.

IV. ADAPTABILITY OF MPWK-FFT ARCHITECTURE

The block size of the MPWK-FFT architecture can be
easily changed by adjusting two parameters. These parameters
include the depth of the input FIFO and the width of the
butterf y kernel. These two parameters, in turn, will decide the
number of multipliers, the number of passes, and the latency.
As with the 32K block size, the resource usage, throughput,

and peak dynamic power can be traded through different
conf gurations of the parameters for all block sizes. To help
understand the trades, a case study of a 16K FFT is provided
in this section.

A. FIFO Depth
The f rst way to change the block size of the MPWK-FFT

is to increase or decrease the depth of the FIFO blocks. For
example, to change the 32K block size FFT to a 16K block
size, one can reduce the depth from 512/768 (odd/even blocks)
to 256/384. As a side effect, the number of passes is also
reduced from 15 to 14.
Since the width of the kernel is not changed, the number

of multipliers remains the same from the 32K block size. For
the same reason, the input/output routing of the kernel is the
same as the 32K FFT. On the other hand, as the number of
passes is decreased by 1, and the number of data points per
pass is halved, the latency is only 14×256

15×512
= 47% of that of

the 32K FFT.
We now refer to this approach as the depth approach.

B. Kernel Width
Instead of changing the depth of the FIFO, the width of

the kernel can be changed to accommodate the new size.
Following the example of the 16K FFT, keeping the FIFO
depth f xed at 512/768, the width of the kernel can be halved
to 16 butterf ies.
As a result of the smaller kernel width, the number of

required multipliers is also reduced by half. Consequently, the
input/output routing of the kernel must be adjusted accord-
ingly. For example, the f rst butterf y’s input used to feed from
FIFO #1 and #33; it now should feed from FIFO #1 and #17.
Fortunately the routing change can be arranged in a systematic
and straightforward fashion.
On the other hand, the number of passes is reduced by 1 but

the number of data points per pass remain the same. Hence
the latency of the 16K FFT is only 512 clocks less than the
latency of the 32K FFT, which corresponds to a decrease of
only 7%.
We now refer to this approach as the width approach.

C. Resource, Latency, and Dynamic Power Trade
From Sections IV-A and IV-B, we see that the trade between

the depth and the width is fundamentally a trade between
latency and multiplier usage. The faster the FFT needs to be,
the more multipliers are required, and vice versa. Note that
the total size of the FIFO is the same for a f xed FFT block
size, regardless of the trade.
As for the dynamic power consumption of the two ap-

proaches, trading depth for width is almost a fair trade.
Assuming that the multipliers’ clocks can be individually
turned off while idle, reducing the depth shortens the amount
of active time of the multipliers by half, but uses twice as many
multipliers as the approach of reducing the width. As long as
both approaches can meet the throughput requirements levied
on the FFT, the average dynamic power or energy consumption
is not expected to differ between the two approaches.

However, there is a difference with respect to the peak
dynamic power consumption; specif cally the depth approach
uses roughly twice the peak dynamic power as the width
approach. Although the average dynamic power is roughly
the same, the higher concentration of heat dissipation of the
depth approach (due to dynamic power) could lead to a higher
die temperature, and therefore higher static (leakage) power
consumption.

D. Load Balance
The static power consumption of an FPGA with a f xed

die area is largely tied to the die temperature, which, in turn,
can be determined based on ambient or case temperature and
the distribution of the heat resulting from the dynamic power
dissipation of the FPGA. Spatial and temporal concentration
of such dynamic power creates local hotspots that increase the
die temperature and consequently static power consumption.
To reduce the hotspot creation, a third adaptation approach

is presented. This approach is similar to the width-reduction
approach in that the FIFO depth is not changed, and the kernel
width is reduced by half. However, the difference is that the
work done by each butterf y is carried out by two butterf ies in
an alternate fashion. Each butterf y from the width approach
is replaced by two butterf ies with a multiplexer on the output
ports. This is referred to as the load-balance approach.
Compared to the width and depth approach, the load-balance

approach does not reduce the overall resource usage, latency,
peak or average dynamic power. However, this approach
spreads the heat dissipation of a single butterf y to two
butterf ies. So the dynamic power consumed per individual
butterf y/multiplier is effectively reduced by half. As a result,
both spatial and temporal concentration of the dynamic power
dissipation is reduced. We believe that this will lead to a lower
die temperature and therefore lower static power.

V. APPLICATION AND RESULT

The adaptive FFT architecture presented in this paper will be
part of ISAAC iCore library, and is expected to be conf gured
in an FPGA-based data processing hardware such as iBoard
[9].
The motivation of ISAAC (Instrument ShAred Artifact for

Computing) technology [10] is to provide a highly capable,
highly reusable, modular, and integrated FPGA-based common
instrument control and computing platform that can be shared
by multiple Earth Science and Planetary Exploration instru-
ments. This reusable framework offers an unprecedented com-
bination of adaptability, computation power, I/O bandwidth,
digital interface standards, and data processing capability in
a single common low mass/power and small form factor
platform with signif cantly reduced non-recurring cost and risk
to Earth Science instruments such as SMAP Mission (Soil
Moisture Active-Passive) and other future NASA Planetary
Exploration instrument of diverse requirements.
ISAAC’s unique technical innovations are embodied in

its six key components: iBoard - the FPGA-based hard-
ware substrate; iCore - the library of Register-Transfer-Level

(RTL) Intellectual Property (IP) cores implementing common
computationally-intensive instrument control and computing
functions, such as the MPWK-FFT presented in this paper;
iPackage - the collection of software functions that imple-
ments common non-computationally-intensive instrument con-
trol and computing functions; iBus - the standard and unif ed
hardware/software interface; iBench - the suite of benchmark
instrument data streams for performance validation and tuning
of a completely-conf gured system; and iTool - the integrated
tool-chain providing a familiar and end-to-end design f ow
for digital system designers. Collectively, ISAAC provides
instrument electronics designers with a reusable and integrated
framework that enables to conf gure a complete instrument
control and computing system on a per-application-basis to
match various instrument requirements.

A. Resource Usage Results

Resource usage results are gathered for the Xilinx
XC5VFX130T. Results are summarized in Table II.

TABLE II
32K MPWK-FFT RESULT

Parameter Used / Available %
of LUTs 23,417 / 81,920 28%
of Registers 12,801 / 81,920 15%
of Slices 7,552 / 20,480 36%
of DSP48s 128 / 320 40%
of BRAMs 128 / 298 43%

Note that all of the resource usage percentage is less than
50%. The maximum achievable clock speed for FPGA speed
grade 1 is 103.4MHz and speed grade 2 is 114.6MHz, which
meets our input data rate of 64MHz. The 32K MPWK-FFT
has a total latency of only 120us while operating at a 64MHz
clock which meets the latency requirement of 156us.

B. Power Consumption Results

Power consumption estimation is made using Xilinx
XPower tool basing off of a clock running at 100MHz at
industrial temperature grade. The estimation is made for the
Xilinx XC5VFX130T for speed grades 1 and 2. The power
consumption results are shown in Table III.

TABLE III
32K MPWK-FFT POWER CONSUMPTION

Parameter XC5VFX130T-1 XC5VFX130T-2
Dynamic 3.1W 3.1W
Quiescent 2.4W 2.6W
Total 5.6W 5.7W

VI. CONCLUSION

The architectural design decisions for the 32K MPWK-FFT
presented in this paper are made based on the stringent per-
formance requirements given in Table I. The proposed design
meets the 156us latency requirement, while utilizing only half
of the Virtex-5 FX130T FPGA resources. Three adaptability
MPWK-FFT schemes are present for designs that require
either a different FFT size, different latency constraints, or
a different FPGA architecture. Two different approaches are
proposed to adapt the current FFT architecture to other block
sizes with consideration to constraints such as latency, resource
usage, and dynamic power. Adaptability with considerations
for die temperature is also discussed, and a third approach is
proposed that will lead to a more distributed heat dissipation
and lower leakage power. This proposed FFT architecture is a
part of the iCore library for the ISAAC technology.

ACKNOWLEDGMENT

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

REFERENCES

[1] M. Kannan and S. Srivatsa, “Low power hardware implementation of
high speed FFT core,” Journal of Computer Science, vol. 3, no. 6, pp.
376–382, 2007.

[2] B. S. Son, B. G. Jo, M. H. Sunwoo, and Y. S. Kim, “A high-speed FFT
processor for OFDM systems,” Circuits and Systems, IEEE International
Symposium on, vol. 3, pp. 26–29, May 2002.

[3] B. Baas, “A low-power, high-performance, 1024-point FFT processor,”
Solid-State Circuits, IEEE Journal of, vol. 34, no. 3, pp. 380–387, Mar
1999.

[4] L. S. Cheng, A. Miri, and T. H. Yeap, “Eff cient FPGA implementation
of FFT based multipliers,” in Electrical and Computer Engineering,
2005. Canadian Conference on, May 2005, pp. 1300–1303.

[5] M. A. Aboleaze and A. I. Elnaggar, “Reducing memory references
for FFT calculation,” International Conference on Computer Design,
Proceedings of, June 26-28 2006.

[6] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing. Prentice-Hall, Inc., 1975.

[7] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, April 1965.

[8] R. Singleton, “A method for computing the fast fourier transform
with auxiliary memory and limited high-speed storage,” Audio and
Electroacoustics, IEEE Transactions on, vol. 15, no. 2, pp. 91–98, Jun
1967.

[9] Y. He and M. Ashtijou, “iBoard a highly-capable, high-performance,
reconf gurable FPGA-based platform for f ight instrument digital elec-
tronics,” in NASA/ESA Conference on Adaptive Hardware and Systems,
vol. in Submission, June 2010.

[10] Y. He, C. Le, J. Zheng, K. Nguyen, and D. Bekker, “ISAAC a case
of highly-reusable, highly-capable computing and control platform for
radar applications,” in IEEE 2009 Radar Conference, May 2009.

