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ABSTRACT 

 
An Automated Target Recognition system (ATR) was developed to locate and target small object in images and 
videos. The data is preprocessed and sent to a grayscale optical correlator (GOC) filter to identify possible regions-
of-interest (ROIs). Next, features are extracted from ROIs based on Principal Component Analysis (PCA) and sent 
to neural network (NN) to be classified. The features are analyzed by the NN classifier indicating if each ROI 
contains the desired target or not.  The ATR system was found useful in identifying small boats in open 
sea.  However, due to “noisy background,” such as weather conditions, background buildings, or water wakes, some 
false targets are mis-classified. Feedforward backpropagation and Radial Basis neural networks are optimized for 
generalization of representative features to reduce false-alarm rate. The neural networks are compared for their 
performance in classification accuracy, classifying time, and training time. 
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1.  INTRODUCTION 

In computer vision, research is undergoing for artificial systems to extract information from images. This will allow 
system to “see” and “understand” their environments. Despite many advances, artificial systems still fall short 
comparing to their biological counterpart. One of these systems, automated target recognition system (ATR), is in 
development for human-like performance to locate and target any object or feature in a given image or video. 
NASA/JPL has developed a multi-stage ATR system, which compose of a Grayscale Optical Correlation (GOC) 
filter on 512 x 512 pixel images for target detection adaptive neural network (NN) 1. The multi-stage system finds a 
good balance between speed and accuracy. The first stage GOC can detect and locate ROI of input scene relatively 
quickly, but with high false-alarm rate. Thus the second stage NN checks the ROI for verification on true-positive 
targets. The two-stages ensure speed by GOC and accuracy by NN 2. 

 
2. OT-MACH CORRELATION FOR TARGET DETECTION 

 
GOC uses the Optimum Trade-off Maximum Average Correlation Height (OT-MACH) algorithm 3, as in Eq. (1), 
for optimal scan of images to find locations of “regions-of-interest” (ROIs) that may contain potential targets. OT-
MACH performs the operations in the Fourier domain and finds correlations in an optical correlator 4. The OT-
MACH algorithm is created and optimized in a computer 5, and this simulation simultaneously balanced several 
conflicting performance measures: Output Noise Variance (ONV), Average Correlation Energy (ACE), Average 
Similarity Measure (ASM), and Average Correlation Height (ACH) 3. The filter is created to minimize the function:  
 
                                   E(h) = α (ONV) + β(ACE) – γ(ACH)            (1) 
              
1 e-mail: Thomas.T.Lu@jpl.nasa.gov , Tel: (818) 354-9513, Fax: (818) 393-4272 
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The coefficients α, β and γ control properties of the filter such as noise and distortion tolerance; thus they must be 
optimized to create the best filter for a set of images. The algorithm finds the optimized values for coefficient α, β 
and γ  for various application, and in this paper the coefficients are optimized for finding small boats.  Selections for 
coefficients α, β and γ are automated in a program to approach optimized OT-MACH performance in as little 
iteration as possible. The program approaches the optimum using adaptive step gradient descent algorithm 5. Before 
performing gradient descent, the program performs permutation to determine rough values of α, β and γ to minimize 
only converging to local maximum instead of a global maximum. The final values of the coefficients is determined 
based on performance metrics of Correlation Peak Height (PK) and Peak-to-Side lobe (PSR) Ratio, in which the 
ratio is correlated with the filter’s target detection in true positive rate and false positive reduction 4. 
 
 

3. TRAINING OT-MACH FILTER 
 
OT-MACH filter is a Fourier transform based filter, making it shift invariant, but sensitive to scale, rotation, 
perspective, and lighting conditions. Training images must provide representative samples to cover all the variation 
required for a general representation. Training sets are selected from different videos to represent the different 
angles and sizes of the boats. Some examples of the training boats with different sizes are shown in Fig. 1. Figure 
1(e) shows a challenging image of a small boat in a cluttered shore line background.  The task is to identify the boat 
as far away as possible without generating too many false alarms. 
 

                               
 (a)                                   (b)                                 (c)                                 (d) 

 

               
 
 (e)  

Figure 1: Examples of training set for OT-MACH. Training set must have taken account of different perspectives, sizes, and 
lighting conditions. Here we have (a) medium and (b) large size of white boats; and (c) medium and (d) large size of black boats; 

(e) an image (right side) of a boat against a shore line background. 
 
 

Besides training sets including different sides, sizes, and lighting conditions, all image trainings sets must be resized 
to 512x512 pixels, accepted by the OT-MACH filter. In this paper, about 5-10 boat models are used for training and 
3-5 boat images are used for testing the filters. The permutation and gradient descent are ran to find the optimal 
values for α, β and γ.  In the first stage of the ATR process, the OT-MACH identifies many ROIs in the image, as 
shown in Fig. 2.  Any object similar to the potential targets is marked with a red box (ROI).  The ROIs are sent to 
the next stage for verification.    
 

 
Figure 2: Images processed after OT-MACH filter. Potential “Regions-of-interest” are boxed with red boxes, with the desired 

target in purple dot. Each “Region-of-interest” is further processed and classified to determine if the “Region-of-interest” 
contains a target. 
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4.  FEATURE EXTRACTION WITH PRINCIPAL COMPONENT ANALYSIS 
  
The ROIs identified by the GOC stage represent small windows which contain possible target in the image. The 
dimensionality of these regions in pixel space is the area of the window of red boxes in Fig. 2. The data contained in 
the small window of ROI is too large for input into a neural network, and thus smaller but unique data for each ROI 
must are extracted for classification. In order to retain the information about target but in smaller set of pixel data, 
feature extraction technique must be applied on each ROI. Pixel data from each ROI may also contain “noise,” non-
boat data such as waves or background, and thus training sets are picked carefully with the least “noise”. Principal 
Component Analysis (PCA) algorithm 6 is used to extract features from ROI, with the top 18 vectors output from 
PCA used as the features for each ROI. 

 
 

5.  NEURAL NETWORK LEARNING 
 
After PCA feature extraction, we use a backpropagation feedforward neural network (BFNN) with Levenberg-
Marquardt algorithm 7 to train and classify the ROIs. In this paper two neural networks are compared, naming Radial 
Basis neural net 8 (RBNN) and BFNN.  
 
5.1 Backpropagation Feedforward Neural Network (BFNN) Training 
 
In a BFNN, we have input and output pairs{p1,t1}, {p1,t1},…,{pN,tN}, where PN are the inputs, in this case, the feature 
vectors from PCA; and tN are the corresponding targets, in this case we set boat targets as 1 and the other non-targets 
as 0.  A multi-layer BFNN is illustrated in Fig. 3. Each layer takes inputs and multiplies it by weight matrix W and 
add bias b to it, shifting the multiplication according to the bias b. Then the outputs are sent to transfer function for a 
new mapping of the results. Both layers are mapped between -1 and 1 through a tan-sigmoid transfer function. The 
final output vector a is shown Eq. (2). 
 

 a1 = tansig(W1p+b1) a = tansig(W2a1+b2) (2) 
 
 

  
                      Hidden Layers 

(a)                                                                      (b) 
Figure 3: Backpropagation Feedforward Multi-layer networks (a) with its transfer function (b) in both layers. 

 
 

 
Next, the weights in the layers are adjusted according to how closely output a correspond to target t through a 
performance function. Here we use Mean squared error with regularization as the performance function. Mean 
squared error  msn is defined as in Eq (3). 

 

   
 

Output Layers 

 Multiple-layer networks 

(3) 
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Where N is the number of inputs, t the target vector and a the output vector from the neural network. Regularization 
will improve the generalization of the network by modifying the performance function by adding a term that consists 
of the mean of the sum of squares of the network weights and biases, as in Eq (4). 
 

 msereg = γ mse + (1 - γ) msw    (4) 
 

Where γ is the performance ratio and sum of squares of the network weights and biases msw as Eq (5). 

                              
              

The neural network updates its weight according to Levenberg-Marquardt algorithm, as in Eq (6).  This algorithm is 
a variant of the Quasi-Newton optimization method. 
  

        
 

Where e is the error vector, and J is the Jacobian matrix that contains first derivatives of the network errors with 
respect to the weights and biases, in which the Jacobian matrix for single neuron can be written as follows: 
 

 
 

Where w is the vector of the weights, w0 is the bias of neuron, and ε is the error vector. The µ is a scalar value that 
makes sure the performance function is always reduced in each iteration of the algorithm.  When the scalar µ is zero, 
the performance function is just Newton's method, using the approximate Hessian matrix H=JTJ. When µ is large, 
performance function becomes gradient descent with a small step size. The idea is to shift toward Newton's method 
near an error minimum, because Newton's method is faster and more accurate near an error minimum Thus, µ is 
decreased after each successful step, which is a reduction in performance function, or increase otherwise to increase 
the performance function.  

 
Another method used to improve generalization is “early stopping”, which is to prevent overfitting. Input data is 
divided into three subsets, training set for network training, validation set, and testing set. In early stopping testing 
set is not used. During training both training error and validation error would decrease. However, when the network 
starts to overfit the data, validation will begin to rise. After validation error rises for a few iteration, training is 
stopped to prevent overfitting, and weights and biases at the minimum validation error are used.  All the ROIs used 
for training are divided randomly in three sets for early stopping, with 60% of the samples used for the 
training set, 20% for the validation set, and 20% for the test set.  

 
5.2 Radial Basis Neural Network (RBNN) Training 
 
RBNN also has a multiple-layer structure, using radial basis transfer function for the first layer and liner transfer 
function for the second layer, as shown in Fig. 4. 

Again we have input and output pairs {p1,t1}, {p1,t1},…,{pN,tN}. However, RBNN maps the input and output 
differences based on Eq. (8) 

a1 = radbas (dist|W1 - p|*b1); a = linear(W2a1 + b2)              (8) 

(7) 

(6) 

(5) 
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Radial Basis transfer function calculates the distance between inputs and weights, and does element-by-element 
multiplication with the biases. The linear layer acts the same way as the BFNN, with inputs multiplied by the 
weights and shifted by biases. Radial Basis transfer function is a Gaussians, defined by Eq. (9). 
 

 (9) 
 
                      

                 
                 Radial Basis Layer            Linear Layer 
 

(a)                                                                                (b) 
Figure 4. Radial Basis Neural Network (a) and Radial Basis transfer function (b). 

 
Each bias in the Radial Basis layer is set to σ/SPREAD, where σ is a spread constant, usually σ = 0.8326.  The 
SPREAD variable is generally proportional to the half-width of the Gaussians. Thus, within +/- SPREAD, radial 
basis function would output greater than 0.5. This determines the width of an area in the input space to which each 
neuron responds. Each radial neuron will respond with 0.5 or more to any input vectors within a vector distance of 
SPREAD from their weight vector, and less than 0.5 if the distance is greater than SPREAD.  For a good 
generalization, SPREAD should be large enough that neurons respond strongly to overlapping regions of the input 
space, but SPREAD should be smaller than the distance across the whole input space. 

 
The SPREAD value, mean square goal error, and maximum number of neurons allowed are given before running 
RBNN. The algorithm then creates one neuron at a time. At each iteration, the network is simulated, and the input 
vector that lower the mean square error function between the targets and neural outputs the most, is used for creating 
new radial neuron. The network is simulated again. If the goal error is reached or maximum number of neurons is 
reached, radial basis is complete. Otherwise repeat the same process.  
 
 

 6.  EXPERIMENTAL RESULTS: COMPARISON BETWEEN RBNN AND BFNN 
 

After feature extraction, a feature must be classified as either a target of small boat or a false target. Here neural 
networks were used to classify the features from the ROIs, with output value close to 1 as true target and 0 as false 
targets. ATR has been tested with both RBNN and BFNN with underwater targets and jets 2,6. Both methods show 
promising results. Here we will compare the two neural networks with four video sets and a combined set with all 
video that were used in the experiment. In total, more than 50,000 ROI, or hits for the images, are classified. The 
numbers of training and total hits are in Table I.  Training sets are kept to minimum but representative. Notice true 
hits used for training are from 14% to 30% maximum. False hits used for training are very low, up to 5% maximum. 
 

Table I. Training Set used for Neural Network Training 
Sample Set Total Training samples 

/ all hits 
Total true hits / all 
hits 

% of True hits used 
for training / all true 
hits 

False hits used for 
training / all false hits 

Oct22-12 265 / 27493 = .96% 286/27493 = 1.04% 42 / 286 = 14.69% 223 / 27207 = .82% 
Sept17 538 / 9362 = 5.75% 263 / 9362 = 2.81% 76 / 263 = 28.90% 462 / 9099 = 5.08% 
Oct22_11 193 / 11433 = 1.69% 91 / 11433 = 0.8% 25 / 91 = 27.47% 168 / 11342 = 1.48% 
06-09_cam3 209 / 4682 = 4.46% 139 / 4682 = 2.97% 43 / 139 = 30.94% 166 / 4543 = 3.65% 
All Videos 1205 / 52970 = 2.27% 779 / 52970 = 1.47% 186 / 779 = 23.88% 1019 / 52191 = 1.95% 

Radial Basis Neural Network 
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The parameters set for Radial Basis (RBNN) and Backpropagtion Neural Networks (BPNN) are shown in Table II.   
 

Table II: Parameters for the Neural Networks 
Sample Total 

Neurons  
Mean Square 
Error Goal 

Spread 
(Radial) 

Mean distance 
among all 
points (Radial) 

Number of 
Runs 

Oct22-12 -  RBNN 80 0.004 14.1234 44.1345 20 
Oct22-12 - BPNN 40 .001 N/A N/A 50 
Sept17 - RBNN 225 0.004 20.4272 41.6882 20 
Sept17 - BPNN 30 .001 N/A N/A 50 
Oct22_11 - RBNN 25 0.004 27.1627 38.8038 20 
Oct22_11 - BPNN 30 .001 N/A N/A 50 
06-09_cam3 - RBNN 80 0.004 15.6301 44.6575 20 
06-09_cam3 - BPNN 30 .001 N/A N/A 50 
All Videos - RBNN 380 .004 21.1331 43.043 20 
All Videos - BPNN 40 .001 N/A N/A 50 

Figure 5 shows a BPNN identified the boat correctly and also eliminated all of the false alarms generated by the 
first-stage OT-MACH filter correlation operations as shown in Fig. 2. 

 

Figure 5. A RBNN correctly identified the boat (marked in a box) and eliminated all of the false alarms. 

The number of neurons for RBNN is determined by adding neurons one at a time until the networks reach mean 
square goal error 0.004. BPNN uses 30 - 40 neurons, which are enough for good results.  

Goal errors for RBNN are set as 0.004, which is a good threshold for RBNN to have enough neurons to generalize 
and not overfitting the classification. BPNN goal errors are set as 0.001 to achieve good accuracy and 
generalization. 

6.1 RBNN Spread Optimization 

SPREAD is not apparent to determine for RBNN. Here we first obtain average mean of the distances among every 
pair of input points, and with this distance we test different percent of it to set the SPRED. For each SPREAD value 
we see how it performed based on Frequency Relative Operating Characteristic (FROC) curve, plotting the average 
false positives per image against the True Positive Rate (TPR). The performance is the area under the FROC curve 
from 0 false positive to 10 false positives. This will give us a good representation of the highest accuracy with 
lowest average false positives hits. Example of FROC results for all combine videos in RBNN is shown in Fig 6.  

 
Initially SPREAD is set as 25% of mean distance, and with step size of 5% increment, we tested all the SPREAD 
value up to 70% of mean distance. Next, whichever percentage resulted in the highest score, we again tested from -
5% to +5% of the percentage with 1%-2% step size. This testing allows us to find the optimal SPREAD and avoid 
reaching local maximum value with gradient descent. 
 
We tested SPREAD performance from 0% to 150% of the mean distance among all inputs, as shown in Fig. 7. As 
can be seen, with the exception of data Oct22-11, all of the video sets perform near optimal between 30% to 70% of 
mean distance. Although choosing the SPREAD value is not apparent, SPREAD value can be narrowed down in 
some range based on mean distance of all inputs. 



SPIE Defense, Security, and Sensing Conference, Orlando, FL, USA, 2010 

Proceedings of SPIE Vol. 7696C, (2010)  7 

 

  
 
 

Figure 6. FROC curve for measuring performance of neural networks. Area under the curve with average false positives per 
image from 0 to 10 is used as performance measure. 

  
 

 
 

Figure 7. Spread values vs. Performance. Spread is determined by percentage of mean average of distance among all inputs. 
Spread value performs near optimal between 0.3 to 0.7. 

 
The performance comparison of the RBNN and BFNN is shown in Fig. 8. As can be seen the BFNN performs 
slightly better with video sets Oct22-12 and Sept 17, while Radial Basis performs better with Oct22-11, 06-09, and 
with all video sets. The video sets where Radial Basis performs better has more “noise” in the background, as in 
Oct22-11 the boat seen along with shoreline building in similar white color, and in 06-09 the boats have front and 
side shots with different lighting condition.  
 
6.2 Number of Neurons Optimization 
 
The number of neurons in RBNN also has an effect on its performance, training and classification time. In Fig. 8, 
four video sets are tested. As can be seen, having more neurons will improve performances until reaching a limit, 
and the performance will start leveling off or actually will decrease. With more neurons Radial Basis neural network 
will start overfitting the data, and instead of generating a general network the network will memorize the data. In the 
Radial Basis neural network implementation, the algorithm continues to add neurons until the goal error level is 
reached, which will not help neural network performance as shown in. As shown in Fig. 9, a better way to decide for 
optimal number of neuron is check against the FROC curve performance. If after a few iterations the FROC curve is  

Average False Positive per image. 
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starting to level off or decreasing, it would be better to stop adding neurons to preserve generalization. Adding more 
neurons will also incurs the costs of training and classification time. From the test results in Fig. 9, although 
classification time only grows linearly, but training time grows exponentially which may be too costly to use in 
some systems.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Performance of Radial Basis (Blue) and backpropagation neural network (Red) trained and classified on each individual 
set. Radial Basis performed better in very “noisy” video sets, as seen from set ‘06-09 cam3’ and ‘ALL’.  

 
 
 

 
 

 
 
 
 
 
 
 

 

 

 

Figure 9: Number of Neurons affect on performance, training and classification time. Two data sets are shown in (a) and (b). 
The performance is indicated by red solid line, training time by dotted blue line, and classification time by purple thick 

dotted line. From each video set, adding more neurons did not help performance but resulted in constant or actual decrease 
in performance, while classification time grew linearly but training time grew exponentially. 

Here we compare the two neural networks on training and classification time, as shown in Fig. 10. The training time 
indicated is the total training time to reach the optimal network status. We train the RBNN with 20 runs, first 10 
times with step size of 5 and second 10 times with step size of 1. The BFNN is trained by running 50 times. As can 
be seen from training with all video hits, there is a huge cost of time with Radial basis with many neurons. The 
BFNN training time would increase if the images are very noisy, which would require the learning algorithm to take 

  

     Oct 22                  Sept 17               Oct22-11          06-09 cam3             ALL 

(a) (b) 
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 longer time to reach lower error. For classification time, we show the classification time per hits in the videos. The 
BFNN classification time is consistent, while the Radial Basis classification time depends upon how many neurons 
are in the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Classification (a) and training (b) time per hits for each video set. Radial Basis classification and training time 
depended heavily on number of neurons. Backpropagation network classification time was consistent, and training time depended 

on how noisier is the data. 
 

Finally, to test how each neural network generalize, we train one general network for all the video sets and classify 
on each individual video, as shown in Fig. 11. Radial Basis performs slight better in two of the videos and much 
better on one video. This might be because the video is noisier, with different lighting condition and has front and 
side view of the boats. The BFNN performs nearly as well as Radial Basis, and classifies faster than the RBNN. 

 

7.  CONCLUSION 

Comparison has been shown between Radial Basis and backpropagation neural network. The RBNN has the ability 
to deal with noisy images and may be more consistent in catching small boats due to its nature of “sphere of 
influence” to classify inputs not seen before. However, the RBNN suffers from large number of neurons to run,  

(a) (b) 

(c) (d) 
    Oct 22                  Sept 17               Oct22-11          06-09 cam3                 Oct 22               Sept 17              Oct22-11         06-09 cam3            ALL 

                Oct 22            Sept 17               Oct22-11          06-09 cam3             ALL     Oct 22            Sept 17               Oct22-11          06-09 cam3             ALL 
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making the BFNN faster to train and classify, and in some cases perform better than the RBNN. Future work can be 
directed in speeding up the RBNN by using necessary number of neuron to classify the objects. The BFNN can also 
be further optimized for better performance. Both networks offer different advantages and whichever one is more 
suitable depends on the system requirement for speed or accuracy. 
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Figure 11. Performance classified by one optimal Radial Basis neural network and one optimal Backpropagation 
neural network trained on all video sets.  Radial Basis performed much better in video set Oct22-11, which was very 

noisy. Other video sets Radial Basis and Backpropagation neural networks performed nearly the same. 
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