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Abstract 
During the Phoenix mission landing site selection 

process, the Mars Reconnaissance Orbiter (MRO) High 
Resolution Imaging Science Experiment (HiRISE) 
images revealed widely spread and dense rock fields in 
the northern plains. Automatic rock mapping and 
subsequent statistical analyses showed 30–90% CFA 
(cumulative fractional area) covered by rocks larger than 
1 meter in dense rock fields around craters. Less dense 
rock fields had 5–30% rock coverage in terrain away 
from craters. Detectable meter-scale boulders were found 
nearly everywhere. These rocks present a risk to 
spacecraft safety during landing. However, they are the 
most salient topographic features in this region, and can 
be good landmarks for spacecraft localization during 
landing. In this paper we present a novel strategy that 
uses abundance of rocks in northern plains for spacecraft 
localization. The paper discusses this approach in three 
sections: a rock-based landmark terrain relative 
navigation (TRN) algorithm; the TRN algorithm 
feasibility; and conclusions. 

1 Introduction 

One critical capability of future solar system in situ 
exploration is the so-called pin-point landing (PPL), 
which is defined as the capability of landing a spacecraft 
within 100 meters of a targeted site.  PPL provides safe 
and affordable access to high scientific targets, allows 
the highest science returns, and reduces risk to the 
spacecraft. Given the lack of a global positioning system 
(GPS) on other planetary bodies, PPL relies solely on 
computer vision based terrain relative navigation (TRN) 
technology. This technology recognizes the local terrain 
and locates the spacecraft within the local terrain frame 
by comparing a descent image with an on-board 
reference map. 

 A TRN system works as follows. From Earth, a 
landing site on the targeted body is selected using orbital 
imagery, and the appropriate landmarks (e.g. craters, 
rocks) within the landing ellipse are mapped. During 
descent, the lander's initial position with respect to the 
selected landing site is determined automatically on 
board in real-time, using the mapped landmarks. The 
lander is then guided to the landing site using continuous 
updates of lander position and velocity throughout the 

descent. There are three fundamental requirements for 
this new technology: 
1. The system must be able to recognize the terrain 
(landmarks) reliably and repeatedly over a wide variety 
of environments. During spacecraft descent, considerable 
environmental variations, such as lighting angles, 
atmospheric conditions, viewing angle, and spacecraft 
altitude, can affect the appearance of landmarks. The key 
to success relies on defining a class of landmarks that has 
good invariance properties under variable environmental 
conditions. 
2.  The system must accomplish the task under extreme 
limitations imposed by the slow flight computer and the 
terminal descent time constraints. The projected CPU 
clock speed of the flight computer for a PPL mission will 
be one order of magnitude slower than a regular desktop. 
Generally, there is only a 60 second window of 
opportunity for spacecraft localization during the 
parachute stage, between heat shield jettison and 
powered descent. In order to obtain reliable spacecraft 
state information, several images as well as other 
on-board sensor data such as that from an IMU and 
altimeter must be processed during this period of time. In 
general, each cycle of spacecraft localization, which 
includes image acquisition, image processing and sensor 
data infusion, should be carried out in a few seconds.  
This is a very demanding requirement. 
3.   The system must be able to guide the spacecraft to 
land within 100 meters of the target. Many deficiencies 
and/or limitations of both hardware and software could 
degrade the system’s performance.  Landmark detection 
errors, base map errors (both position and elevation), 
sensor noise (imager, IMU, altimeter), and image and 
IMU sensor misalignment, etc., introduce unwanted 
uncertainties. By considering all these uncertainties, 
however, the system can be robust enough to provide a 
valid spacecraft state that meets or exceeds the PPL 
requirement.  

A few TRN algorithms for PPL have been proposed 
to date.  In [1][3], a correlation based TRN algorithm 
–Map and Image Alignment (MAIA) is suggested. In this 
approach, the base map is a piece of rectified orbital 
image. A correlation method is used to recognize the 
descent image within a base map. A high pass filter is 
applied to both data to increase robustness. Because this 
is a correlation method, the descent image must be 
rectified to the orientation and scale of the base map. 



Thus, the method depends on the availability of an 
estimate of spacecraft altitude and attitude.  Another 
drawback with this approach is that it is sensitive to 
lighting condition changes. In particular, when the sun 
angles differ greatly from those represented in the base 
map the correlation matching becomes less reliable. 

Unlike the MAIA algorithm, the OBIRON algorithm 
does not depend on a complete map of the landing region. 
Rather, it carries a set of landmarks. Each landmark 
comprises a small patch surface elevation grid and an 
albedo map [7]. Instead of matching the descent image to 
a base map directly, OBIRON matches the descent image 
with a predicted image patch, which is rendered 
according to an a priori known spacecraft state, and 
descent camera model. A similar approach was also 
suggested in[2]. Like the MAIA, OBIRON algorithms it 
also needs very good a priori spacecraft state in order to 
render a terrain patch correctly.  Both OBIRON and 
MAIA are currently too slow for real mission 
application. 

 Using natural landmarks, such as craters, is another 
option. A crater is very salient under different sun angles 
and viewing angles. A crater PPL TRN approach was 
suggested in [4][5]. This approach contains two 
algorithms: crater detection and crater matching. The 
crater detection algorithm uses image cues such as the 
rim edge, shape, and image intensity profile inside the 
crater to detect and fit crater the rim with an ellipse. The 
set of detected craters are then matched to corresponding 
craters stored in a database using crater position, size, 
orientation, and context information.  This approach is 
much faster, less sensitive to lighting and viewing 
variations and, most importantly, it does not relay on a 
priori knowledge of spacecraft state. As a result, it is 
applicable at a very high altitude, well before the 
onboard altimeter locks on the surface. The principal 
drawback of this approach is that it works well only for 
scenes where craters are abundant.  

During the Phoenix mission landing site selection 
process, the Mars Reconnaissance Orbiter (MRO) High 
Resolution Imaging Science Experiment (HiRISE) 
imagery revealed widely spread and dense rock fields in 
the northern plains of Mars (Figure 1). Automatic rock 
mapping and subsequent statistical analyses showed 
30–90% CFA (cumulative fractional area) covered by 
rocks larger than 1 meter in diameter in dense rock fields 
around craters. Less dense rock fields had a 10–30% 
rock coverage, and 0–10% rock coverage in background 
terrain away from craters. Detectable meter-scale 
boulders almost always could be found nearly 
everywhere.  In an area with 10% rock CFA, for 
example, there will be roughly three 1.5m diameter (or 
larger) rocks in a hectare (100×100m2) region Even 
though these rocks present a certain amount of risk to 
spacecraft safety during EDL, they are the most salient 
topographic features in this region, and represent the best 
landmarks for spacecraft localization. 

In this paper we present a novel localization strategy 
using the abundance of rocks in the northern plains. The 
paper will discuss this approach in three sections: 
• Rock-based landmark TRN algorithm 
• Rock landmark TRN feasibility 
• Conclusions 

 

 
Figure 1: A small window of a HiRISE image shows a 
large number of rocks and boulders in this region. The 

image resolution is about 0.3 m/pixel. 

2 Rock Landmark TRN Algorithm 

2.1 Shadow Based Rock Detection 
The shadow-based rock detection algorithm has been 

described in detail in [6][8], and we only summarize it 
here. It consists of four steps, illustrated in Figure2: 

1) Image acquisition and state instantiation. Here, 
state includes environmental state (sun angle, shadow 
contrast) and a spacecraft state (altitude, pose and ground 
resolution).  

2) Shadow Segmentation. Shadow regions are 
segmented by a modified Maximum Entropy 
Thresholding (gMET) algorithm[8]. In this method, the 
shadows are segmented by analysis of the histogram of a 
modified input image. The modified image is computed 
by adding a gamma-corrected image to saturate bright 
areas (non-shadows) at the image bit-depth.  

3) Shadow Analysis. The aim here is to fit a 
“best-ellipse” as described in [8] to the shadow regions 
that are larger than a certain size (typically 5 pixels).  

4) Rock Modeling. The parameters of the shadow 
elliptical approximation are combined with the Sun angle 
information to estimate shadow length and width, and 
rock height and location.  
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Figure 2: Shadow-based rock detection. 1) The input 
image; 2) Shadow segmentation; 3) Shadow analysis; 

4) Rock model (position, footprint). 
 



The rock detection algorithm and the measurements 
and statistics from these direct measurements were 
initially developed for real-time hazard detection during 
EDL. Later, it was applied to make thematic maps of 
candidate landing sites for the Phoenix mission. A large 
number of HiRISE images covering more than 1,500 km2 
of Mars northern plain were processed, and more than 10 
million rocks larger than 1m in diameter were detected 
and mapped. Automatic rock detection results were 
scrutinized and compared to sample manual count results 
and to surface counts from images of previous lander 
missions. Eventually, the automatic counts were adopted  
by the Phoenix mission and the full set of automatic 
mapping results together with the statistics and maps 
derived from them were  used in the landing site 
selection and certification task [8]. Figure 3 shows a set 
of rock detection results and an example of the thematic 
maps and statistics. The HiRISE image is 
PSP-001391-246; its size is 20048×10000. A total of 
74,146 rocks were detected in this image. The low right 
figure illustrates the rock density map, which plots the 
number of rocks 1 meter in diameter of larger per 
hectare.  

  

 
Figure 3: The modified rock detection was used 

successfully in mapping rocks/boulders from HiRISE 
image for Phoenix mission landing site selection. 

2.2 Rock Landmark Formation 
Logically, those algorithms used for star matching 

are natural choices for rock matching. However, the rock 
landmark matching for PPL has is a different problem 
domain. Unlike star matching, which aims to determine 
the s/c attitude, the rock matching TRN at here focuses 
on determining the s/c position, since the s/c attitude is 
estimated in very high precision by onboard star tracker 
and IMU. Thus, a different matching solution is 
suggested here.   

For use in the Rock Landmark TRN algorithm, each 
rock is described by its location, an estimated diameter 
(the width of the shadow) and an estimated height (from 
shadow length and sun incident illumination angle). A 

rock landmark is defined as a constellation of a center 
rock and four neighboring rocks. The neighborhood zone 
is a circular region centered on the center rock. It is 
assigned a radius r, proportional to the estimated height:   

                chr =                    (1) 
where c is a constant and h is the estimated rock height. 

Under this scheme, larger rocks are assigned larger 
neighborhoods.  The estimated height was chosen as the 
measure of rock size because it is relatively insensitive to 
image resolution and sun angles. 

The circular neighboring zone is divided into four 
quadrants (Figure 5). In each quadrant, the tallest rock is 
selected as the neighbor in this quadrant.  Therefore, for 
each rock, there is a maximum of four neighbors, called 
a rock quartet. In total, five rocks form a rock landmark. 
The four clockwise bearing angles Q(q1, q2, q3, q4) in 
each quarter, the estimated rock heights H(h1, h2, h3, h4), 
and the distances to each neighbor D(d1, d2, d3, d4) 
comprise the landmark descriptor L(Q, H, D). 

The rock landmark database over a landing site is 
built prior to a mission using orbital imagery. This 
database contains the rock landmark descriptors, their 3D 
position and few hash tables to facilitate fast searching. 

 
Figure 4: A rock landmark is defined as a set of four 
rocks centered at the green rock. The tallest neighbor 

in each quadrant is used to form the landmark. 
 
2.3 Rock Landmark Matching Strategy 
 
   Ideally, any landmark L, in the database, should be 
related to its counterpart L’(Q’, H’, D’) by  
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  Because a rock landmark contains up to five 
individual rocks, the camera position can be estimated 
using a single landmark. Here we assume that the 
spacecraft attitude is known, therefore a unit ray to the ith 



rock can be calculated as: 
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where wRc is the rotation matrix from camera frame to 
local map frame and (xi, yi) is the rock position in the  
image frame. 
 
The ray ri should agree with the reconstructed unit vector 
between the rock’s 3D position, P, and the camera center, 
C, as: 

r' i = (Pi −C ) / || Pi −C ||= (Pi −C ) /d i = ∆Pi /d i    (4)                                    

where ∆Pi = dpi1 dpi2 dpi3[ ]T = (Pi −C ) di =||∆Pi ||  
 
Because ri and r’i should be parallel and therefore the 
cross product of the two vectors should be a null vector:  
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Then, the maximum likelihood estimation process 
involves finding C that minimizes the following 
function: 
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The merit function is robust regardless the length of 
(Pi-C). Therefore, we can fix or ignore di in each 
iteration and the partial derivatives of J over C (ignoring 
d) are: 
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We assign a uniform di (e.g. 1) in the beginning of the 
process and C is then: 

ˆ C = ri ×[ ]T ri ×[ ]
i=1
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With each newly computed C, we can update di between 
iterations, then: 

ˆ C k = 1
dk−1
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The iterations stop when || ˆ C k − ˆ C k−1 ||< t . This is a very 
simple efficient solution and usually only takes a few 
iterations to converge. 
 
  The new estimated spacecraft position can be then 

used to help find additional landmarks by comparing   r 
from (3) and r’ from (4) as follows: 

| (r ⋅ r') −1.0 |< t              (10) 
As a result, the two landmarks are considered to 
correspond to each other.  
 
   We use the quartet bearings of a landmark as the 
primary signature to locate its counterpart in the 
landmark database. In order to achieve real-time 
operation, three ordered combinations of the quartet 
bearing angles, Q1(q1, q2, q3), Q2(q1, q2, q4), and Q3(q2, q3, 
q4), are used to register the address of each landmark in 
the landmark database. Three 90×90×90 degree cubic 
matrices are used to store the address of each landmark 
(FigureFigure 5). In theory, a total 729,000 landmarks 
can be stored.  In the case when two or more landmarks 
are collocated in one cell, we just move one to an empty 
cell of its 26 neighboring cells.  If the rock detection 
process is perfect, a landmark in the descent image 
should have the same bearings as its counterpart in 
landmark database and the bearing angle indices can be 
used to quickly locate its counterpart without searching.  
In actuality, these landmark descriptors are not always 
repeatable. However, even if their repeatability is very 
low, a search of cells surrounding the matched element 
should return the correct match in a short time. 
 
 
 
 

 
 
 
 

Figure 5: The landmark bearings are used as the 
primary signature for landmark matching. 

 
The landmark-matching algorithm proceeds as follows: 
1. Construct a rock landmark database of landing zone 

from orbital imagery. 
2. Rectify a descent image to align it with the local map 

frame by using the onboard attitude reading. 
3. Detect rocks from the descent image. 
4. Construct rock landmark of the descent image.  
5. Use quartet-bearing indices of a rock to locate its 

counterpart in the landmark database. In order to 
compensate for bearing angle uncertainty, the 
neighboring cells are also checked. 

6. If a landmark candidate is located, the corresponding 
rock height and distance are checked using equation 
2. 

7. Estimate initial spacecraft position using equation (9) 
8. Find additional landmarks using equations 9 and 10. 



9. If the total number of matched landmarks is greater 
than a threshold, all matched landmarks are used for 
the final spacecraft position estimation. Search ends. 

10. Otherwise check the next rock landmark. 

3 Rock Landmark TRN Feasibility  

   Rock position, height and detection rate are the critical 
measurements for the proposed TRN algorithm. Both, 
how a rock casts its shadow and how accurate we can 
measure its dimensions directly influences TRN’s 
performance. In general, the length of the shadow (which 
is a function of rock height, and shape), the atmospheric 
opacity and the sun elevation can all affect performance. 
For a TRN application, we are mostly interested in 
understanding the consistency of the rock detection 
algorithm under differing environmental conditions.  We 
discuss these in detail next. 
 

3.1 Atmospheric Opacity Effect 
Reliable and robust shadow detection assumes that 

shadows are salient, which implies having a sharp contrast 
between the shadow and surrounding area. In natural 
scenes, however, there may be situations in which 
shadows are not clearly distinguishable. Consider, dark 
rocks, for example, or rock shadows cast on dark soil. 
These effects can be characterized by the albedo ratio 
between rocks and soil. Fortunately, surface albedo 
contrast is a trivial issue because it is captured by both 
orbital imagery and by the descent image, and has limited 
impact on rock detection consistency and performance.  
The second aspect is the contrast sensitivity of the shadow 
detector as a function of the optical depth (transparency) 
of the atmosphere.  The Martian atmosphere, though thin 
in comparison with Earth’s, does contain gases and 
aerosols that can attenuate the solar radiation. A dust 
storm, for example, can produce visible optical depth of 5 
or more -- enough to completely block the Sun from view. 
As a consequence, shadows of rocks could be 
indistinguishable. On the other hand, optical depth rarely 
falls below 0.18, and during relatively clear Martian sols  
typical values for optical depth are between 0.2 and 0.5 
[12]. 

Solar radiation at Mars has been well studied by the 
solar power community. The normalized net irradiance, 
ftot (τ, z, A), is a function of altitude, total optical depth, τ, 
surface albeo, A, and solar zenith angle, z [11]. The total 
downward irradiance can be separated into its direct, fdir, 
and diffuse, fdiff, components 

fdir = e
−
τ
µ

fdiff =
f tot (τ ,µ,A)

(1− A)
− e

−
τ
µ

          (11) 

where µ=cos z is the cosine of the solar zenith angle z 

and ftot can be found or interpolated from two tables given 
in[11]. 
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Figure 6: A solar irradiance curves (z = 55o) is a 

function of optical depth. Total irradiance (solid), 
direct irradiance (dashed) and diffuse irradiance 

(dotted). 
 
In general, we are interested in the ratio between the ftot 

and fdiff because it determines the contrast between the 
shadow, which receives diffuse radiation only, and the lit 
area, which receives both diffuse and direct radiation.  
The direct radiation declines sharply and monotonically 
with increased optical depth, while the diffuse 
components increase sharply and then fall off slowly with 
increasing optical depth [11] (Figure 6).   

 An image contrast simulator that emulates the physics 
of these effects was developed to assess shadow saliency. 
A representative sample of HiRISE image was used and 
the solar zenith and optical depth are 55o and 0.3 
respectively.  The shadows were segmented by applying 
the gMET algorithm (Figure 7). Since the solar zenith and 
the optical depth are known, the direct and diffuse 
irradiance curves can be readily obtained (Figure 6). 
These curves can be used for adjusting the image intensity 
of lit and shadowed regions. Special bilinear interpolation 
was applied to the shadow edge pixels because they are 
partially illuminated by both direct and diffuse irradiance. 
Figure 8 shows some simulated images under different 
optical depths. It clearly shows that if the optical depth 
increases, the image rock shadows become less salient 
and then the shadow segmentation becomes less reliable. 

 

 
Figure 7: A piece of a HiRISE image and its shadow 
image are used in simulating atmospheric opacity 

effect. 
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Figure 8: The simulated image contrast under 

different optical depth. The number in each image is 
the optical depth. 

  
 Rocks in each simulated images are detected and then 

compared with the rocks from the original image. We 
evaluated the effect from three aspects: detection rate, 
rock position accuracy and rock height consistency.  

The top graph in Figure 9 shows the detection rates 
as function of optical depth. Between optical depths 0.1 
to 0.9, the rock detection rate declines slowly from close 
100% to 70%. Above 0.9, the detection rate declines 
sharply. This indicates that when the optical depth is 
greater than 0.9, the shadow based rock detection 
becomes less reliable.  

The middle graph in Figure 9 shows rock position 
accuracy in pixels as function of optical depth. In general, 
rock position error caused by atmospheric opacity is 
within 1 pixel, which is adequate for spacecraft 
localization.  
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Figure 9: Rock detection consistency evaluation. 
 
The bottom graph in Figure 9 shows rock height 

consistency under the influence of atmospheric 
opacity. The rock error is calculated as hhhe /)'( −= , 
where h is the rock height estimated from the original 
image, h’ is rock height from the simulated image. 
This figure shows that when the optical depth is less 
than 0.3, because the direct flux is much higher and 
the rock shadow is much sharper, the shadow 
segmentation will tend to delineate a larger shadow 
and as consequence, the estimated rock is 
systematically taller. On the other hand, when the 
optical depth is higher, the diffuse flux blurs shadow 
edges and the segmented shadow regions, thus the 
estimated rock heights are shorter. In a nominal 
atmosphere condition (0.2<τ<0.5), the rock height 
error caused by optical depth is less than 15%. 

3.2 Illumination Effect 
   In order to evaluate these measurements we have used 
the rock size-frequency distribution models proposed in 
[8] for Mars. These include rock abundance and size 
distributions for Mars missions going back to the Viking 
missions. Surface counts are the result of an extended 
effort to count and map the rocks at the landing sites of the 
Viking Landers (VL1 and VL2) using monocular and 
stereo tools applied to the images acquired by the lander 
sensors. Such mappings have been instrumental in the 
derivation of the rock abundance models[8][10][9]. For 
precise evaluation of height estimates we used three 
different HiRISE images (PSP_001501, PSP_001976, 
and PSP_002055). The local sun elevations of these three 
images are 39o, 32o and 33o respectively. The rocks in 
these three images are detected by the rock detection 
algorithm described above. In addition, rocks in one of 
these images were manually measured. Both manual and 
surface count curves agree with automatic detection 
curves regardless of the sun elevation. This indicates that 
if the sun elevation during descent is within about 10o of 
the orbital image, the effect on rock height estimation is 
quite limited. 
 



 
Figure 10: PSP_001501 shows Viking lander 2, the 

largest black dot in the middle of this image. 
  

 
Figure11: Rock distribution curves of auto counted, 

hand counted and surface counted match each other. 
Rocks under 1m in diameter are not fully 

automatically or manually resolved, hence the curve 
roll off. 

 
3.3  Rock Landmark Reliability 
 
  The previous section shows that variations in 
environmental conditions preclude perfect replication of 
rock detection behavior. For a TRN application, we are 
concerned with how much these inconsistencies affect 
the rock landmark formation described before. 

We used the rocks collected from image PSP-001394 
(Figure 2) to conduct a repeatability study. A rock 
landmark database was constructed from this data set. A 
second landmark database was constructed by adding 
Gauassian noise to the rock heights of the first database 
according to nhhh +=' , where n=N(0.2, 0.2) is randomly 
generated. The rock landmarks in both databases were 
compared to each other. If a rock and at least three of its 
neighbors are the same in both databases, we call it 
repeated.  
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Figure 12: Rock landmark repeatability is about 30% 

in this test case. 
 

Figure 12 shows the rock landmark repeatability for 
this test case. The c in the figure is the c in Equ. 1. Even 
though only about 30% landmarks are repeated, a few 
search iterations (< 20 times) are able to find the correct 
matching with >99% success probability.  

3.4 Rock Landmark TRN Speed Performance 
   We evaluated the TRN speed on a Pentium 2.13 GHz 
under Windows XP. The speed of the rock detection 
algorithm is dependent on the image size, and the number 
of rocks in it. We tested its speed on a densely populated 
image. A total of 3,063 shadow regions are extracted in 14 
msec. Of these, 1,250 are larger than 5 pixels in area and 
are therefore modeled as rocks, requiring another 24 
msec. The rock landmark matching, including landmark 
formation and matching, takes about 30 msec. Therefore 
the total execution time from rock detection to final pose 
estimation is less than 70 msec. The same run on a 100 
mHz processor would result in a expected execution time 
of less than 2 seconds, which is fast enough performance 
for a real mission application. 
 

3.5 Rock Landmark TRN Reliability & 
Accuracy 
  A Monte Carlo simulation was conducted over the 
area of HiRISE image PSP-001391 (FigureFigure 3). 
The descent camera sensor has 1024 by 1024 pixels with 
6o field of view optics. The simulation started at 4000 m 
altitude and ended at 2000 m above ground with 500 m 
decrements.  
  At each altitude, 52 descent images with random 
attitudes and x and y positions were created using 
PSP-001391 as terrain texture map. In addition, an 
atmospheric opacity effect (τ=0.5) was added to these 
images. 
  Then the proposed rock TRN algorithm was used to 
estimate the spacecraft positions using these images. 
Figure 13 shows the position uncertainty of the proposed 
algorithm.  
 



 
Figure 13: The position uncertainties in three axes are 
less than 3 meters in this study, which is excellent for 

pinpoint landing. 
 
  The success rates for the four altitudes are 0.80, 0.85, 
0.92 and 0.98 respectively.  

4 Conclusions 

  A novel rock landmark TRN algorithm is suggested 
in this paper. The advantages of this approach are: 

1. It is simple and fast. One TRN cycle takes less than 
one second, and can therefore be carried out easily 
by currently available onboard computing power.  

2. Its localization accuracy is less than 3 meters at 4 
km above ground, which is adequate for PPL 
applications. 

3. Its required storage space is much smaller than that 
of a high resolution image. For example, for a 20 
by 20 km2 landing site, a 2D 1m/pixel base map 
needs 1.2 gigabytes memory space, while the rock 
landmark database for the same area only needs 
less than 4 megabytes memory requirements.  

4. It is shown to be very reliable on Mars northern 
plains terrain where abundant rocks are present.  

5. It can handle large-scale uncertainty thus avoiding 
the need to rely on accurate altimetry data. 

The algorithm, however, is applicable only to areas 
where a large number of rocks are present such as those 
on the northern plains of Mars 
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