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Abstract—State Analysis is a systems engineering 
methodology for the specification and design of control 
systems, developed at the Jet Propulsion Laboratory.   The 
methodology emphasizes an analysis of the system under 
control in terms of States and their properties and behaviors 
and their effects on each other, a clear separation of the 
control system from the controlled system, cognizance in 
the control system of the controlled system’s State, goal-
based control built on constraining the controlled system's 
States, and disciplined techniques for State discovery and 
characterization. 

State Analysis (SA) introduces two key diagram types: State 
Effects and Goal Network diagrams.  The team at JPL 
developed a tool for performing State Analysis.  The tool 
includes a drawing capability, backed by a database that 
supports the diagram types and the organization of the 
elements of the SA models. But the tool does not support 
the usual activities of software engineering and design - a 
disadvantage, since systems to which State Analysis can be 
applied tend to be very software-intensive. 

This motivated the work described in this paper: the 
development of a preliminary Unified Modeling Language 
(UML) profile for State Analysis.  Having this profile would 
enable systems engineers to specify a system using the 
methods and graphical language of State Analysis, which is 
easily linked with a larger system model in SysML 
(Systems Modeling Language), while also giving software 
engineers engaged in implementing the specified control 
system immediate access to and use of the SA model, in the 
same language, UML, used for other software design. That 
is, a State Analysis profile would serve as a shared modeling 
bridge between system and software models for the 
behavior aspects of the system. 

This paper begins with an overview of State Analysis and its 
underpinnings, followed by an overview of the mapping of 
SA constructs to the UML metamodel. It then delves into 
the details of these mappings and the constraints associated 
with them.  Finally, we give an example of the use of the 
profile for expressing an example SA model.12 
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1. INTRODUCTION 
In general, sharing a common language between systems 
engineers and software engineers improves the process of 
specifying and developing a system by enabling more 
efficient collaboration and more precise communication 
between the two disciplines.  In efforts employing State 
Analysis, there is an even greater advantage, because the 
software design tends to be closely related to the SA model 
of the system under control: States making up the model 
have direct counterparts in the software design.  Thus, the 
systems engineer using State Analysis to generate a model 
and specification of a control system in UML or SysML is 
giving the software engineer a big leg up in the software 
design effort for the implementation of that system.  
 
The profiling mechanism built into the UML standard 
enables an orderly way of adapting UML metamodel 
elements in order to express other constructs.  In profiling, 
UML metamodel elements may not be changed, but they 
can be associated to additional properties and constraints 
that serve to bind the underlying metamodel concept to a 
concept in the specific domain of interest to the profiler.  
The System Modeling Language is itself a UML profile. 

Because the profiling mechanism is part of the UML 
specification, it enjoys the support of many of the available 
UML tools, and this makes it not only technically apt for 
our purposes, but also practical, because we can express and 
use our profile with a variety of commercial UML tools 
(though to date we’ve used only one, MagicDraw™.) 

Another goal for our UML profile is that it be compatible 
with SysML.  We didn’t see concepts in SysML that would 
be necessary to express the concepts of State Analysis, and 
thus based our profile on UML only, and not on SysML.  
However, we have made it a requirement that our profile be 
applicable to SysML models. 

We now turn to our overview of the State Analysis 
methodology. 
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2. AN OVERVIEW OF STATE ANALYSIS  
We begin with an important distinction about our use of the 
word state, as in the term State Analysis.  This usage has 
nothing whatever to do with the term state in the context of 
UML State Machines.  These two concepts of state are 
unrelated. 

State Analysis begins with a concept of a system to be 
controlled as a collection of distinct physical3 characteristics 
or features that are relevant to the control of the system. In 
conversation about SA or systems under analysis, we often 
use the word State, or the term Physical State, to refer to 
one of these features.  But a more precise meaning of the 
word State is the current condition or behavioral mode of 
the feature, where this condition or mode substantially 
governs how the feature interacts with other features of the 
system or its environment, and typically can change with 
time.  So, the feature has State, which may vary with time. 

It is necessary to be able to express the State of each of the 
system’s control-relevant features, and these quantities or 
representations are called State Values. Since these values 
vary with time, we can naturally refer to a State Variable 
(SV) that has a State Value at any given time, and we can 
also refer to the Value History of an SV.  Thus, an SV 
serves as a model of a Physical State. 

Because we want to describe the functions and objectives of 
a Control System in terms of the State of a System Under 
Control, a clear distinction between these two realms is 
essential. All references to State here are consequently in 
regard to the System Under Control or to the Control 
System’s interest in the System Under Control. A 
consequence of this principle is that, to the extent a Control 
System could be said to have its own state, this would be 
comprised solely of information about its knowledge of and 
intentions against the System Under Control. Thus, in State 
Analysis, focus is held firmly on the State of the object of 
control. 

A system to be controlled will always have features that 
could be considered Physical States, but that are of little or 
no interest to the control of the system.  For example, an 
automobile has a color, which is a quantifiable feature that 
changes over time, but we would ignore that if performing 
state analysis of the car as a system, because color does not 
generally influence the motion we were interested in 
controlling. 

Conversely, any system interacts with its environment.  
State Analysis also views features in the environment that 
are relevant to control of the system, or which may 
themselves be objects of control, as States that can be 
expressed as State Variables.  Thus, there are relevant State 
Variables for both the system and its environment. 
 
3 Here the word physical is used broadly, to include for example the logical 
content of a computer’s memory, or of a database. 

We’ve bandied about the term “relevant to control” as if it 
were self-evident, but identifying the set of State Variables 
that are relevant is a difficult, and crucial, task. State 
Analysis provides a disciplined procedure, called State 
Discovery, for doing just that.  A key aspect of that process 
is understanding how any given Physical State affects, or is 
affected by, other States.  Providing a full accounting of 
these effects leads to the discovery of other States. This 
knowledge is modeled as a network of SVs and their effects 
on each other, called a State Effects model.  This model 
relies heavily on subordinate models of how and why States 
have an effect on each other. 

Upon identifying the States of interest in a system under 
control and modeling the behavior and relationships among 
them, we now have a basis for considering their control. A 
control system typically will not have direct access to these 
States though, and can only act on indirect evidence of their 
value. Knowing, or predicting, the value of a State Variable 
at any given time is therefore key to controlling the system. 
In State Analysis we assume an opinion of this state is 
maintained independently within the control system as State 
Variables.  These control system SVs, distinct from the 
Physical SVs they represent, carry the control system’s 
knowledge of the state of the system under control over 
time. These time histories of knowledge, including 
predictions for the future, are referred to as a Knowledge 
Timelines. 

In practice, this knowledge is never perfect, but is rather an 
estimate.  Thus, a key concept of SA is an Estimator, a 
function that generates knowledge for a given State 
Variable.  Estimators often require information about State 
Values from the controlled system, in the form of 
Measurements, which are included in the State Effects 
model.  Estimators can also monitor Commands issued by 
the control system, also included in the State Effects model.  
Whatever the evidence, estimation relies on models of the 
behavior of SVs and their effects and of other sources of 
information.  All of this information comes from the State 
Effects model. 

Controlling the value of a State Variable may also be 
necessary, and this is expressed in the concept of a 
Controller for a given State Variable.  The mechanism a 
Controller uses to affect an SV is the Command. 

As with Physical State Variables, Measurements, and 
Commands, which populate the State Effects model,  
Knowledge State Variables, Estimators, and Controllers are 
parts of a model of the Control System. The interface 
between the control system and the controlled system is 
provided by a Hardware Adapter, considered part of the 
system under control.  A Hardware Adapter provides 
Measurements of the controlled system to the control 
system, and delivers Commands to the controlled system on 
behalf of the control system.  It’s purpose is to ensure that 
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the system under control meets minimal criteria for the 
Measurement and Command abstractions. 

In State Analysis, control objectives of the system are 
specified by levying constraints on the values of SVs.  
Specifically, a State Constraint is a Boolean statement about 
the history of an SV over time.  This is a key concept of 
State Analysis: a State Constraint applied to a State Variable 
over an interval of time, and this is called a Goal.   

Operator intent in State Analysis is specified in terms of 
Goals on the SVs of the system.  Since a Control System 
can evaluate only what it knows, such constraints are always 
imposed upon the value of Knowledge State Variables. 
Thus, Goals can express intent regarding how well a State 
must be known, as well as on how the State should behave. 

A Goal may directly address the ultimate objective of an 
activity:  for example, having an image of a particular target 
site is a Goal on the SV that models the content of an image 
data repository.  To achieve that Goal, however, a number 
of other Goals, only indirectly related to the ultimate 
objective, must be achieved: the camera must be pointed, 
the camera must be powered on, the camera’s temperature 
must be allowed to reach operating range, and then the 
camera must go through an exposure cycle.  This process of 
decomposing a Goal into subordinate Goals is called 
Elaboration.  The process of Elaboration is informed by the 
State Effects model, since the effect of each subordinate 
Goal is to ultimately cause the original Goal to be met. 

Expressing Goals requires a way of expressing not only the 
State Constraints involved, but also events that define the 
time intervals over which the constraint is required to hold.  
These events are expressed with the concept of a Timepoint. 
A Timepoint needn’t be a fixed time, a priori. They can also 
represent events whose time is not yet known. Timepoints 
serve not only to mark the beginnings and endings of Goals, 
but also to define synchronizing events among Goals, which 
can share Timepoints.  For instance, it may be necessary for 
two Goals to start at the same time, or one may need to start 
when the other begins.  A set of Goals linked through such 
connections is referred to as a Goal Network. 

At a minimum, Goals must end no sooner than they begin, 
but the time relationships among Timepoints in a Goal 
Network may be further constrained.  For example, we may 
want to specify that the time between the occurrences of two 
Timepoints must be at least 10 seconds.  Similarly, absolute 
times are constrained relative to a defined “epoch” 
Timepoint, fixed in time. Such a constraint is called a 
Temporal Constraint.  These constraints are also included in 
the Goal Network, along with Goals and Timepoints. 

A Goal Network is a model of the intended behavior of a 
controlled system, overall.  A network normally involves 
several SVs.  The portion of the network describing the 
constraints on one specific SV is referred to as the Intent 

Timeline of that SV in the network. Thus, each control 
system SV possesses both a knowledge timeline and an 
intent timeline.  

We conclude this section with the statement of a few key 
principles of State Analysis: 

(1) Control of the system is achieved entirely by 
knowledge of State and models of how State Variables 
behave and affect each other. 

(2) The system under control and the control system are 
distinct and separate systems, and that distinction must 
remain clear. 

(3) Estimation and Control are separate, distinct functions, 
and must remain separate 

3. THE STATE ANALYSIS PROFILE 
Mapping State Analysis Concepts to the UML Metamodel 

UML profiles consist of a collection of stereotypes, and a 
stereotype is based on one or more UML metaclasses, either 
directly or by inheritance (a stereotype may be a 
specialization of another stereotype, just as one class in a 
UML model can be a sub-class of another.)   In constructing 
a profile for our State Analysis domain, we first had to 
choose UML metaclasses that could be appropriately 
specialized and constrained to express SA concepts.  Table 
1 shows our mapping of State Analysis concepts into the 
UML metamodel.  For each SA construct, the table shows 
the UML metaclass that serves as the basis for the 
stereotype expressing that SA construct in the SA profile, 
and our rationale for the choice of metaclass. 

The Organization of the Profile 

In this section we present some of the detail of the State 
Analysis Profile itself.   We describe the organization of the 
profile, some of the details about the stereotypes and their 
relations among each other, and the constraints used to 
govern the application of the stereotypes. 

The separation of the system under control from the control 
system is reflected in the organization of the Profile, as 
shown in Figure 1.  The package SystemUnderControl 
provides stereotypes for modeling the raw physical system, 
including the Physical States of the system. 

Just as the concept of State appears in both the physical 
system and the SA-model of it, so do the concepts of 
Measurement and Command.  The relationship between the 
pairs of concepts is displayed in Figure 2. 

The Time package contains a minimal description of the 
concept of time, including the notions of a point in time and 
of duration.  These concepts are needed in the Control 
package. 
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Table 1 - Mapping of State Analysis Concepts to UML Metaclasses 

State Analysis 
Construct 

UML 
Metaclass 

Rationale/Description 

Physical State Class The metaclass Class expresses the concept of a specification of a named set of things 
with an identified set of common properties, which may include structural features or 
behaviors.  A Physical State represents a discrete element of the system to be 
controlled, or of the environment with which that system interacts.  It can have 
structural and behavior aspects. 

State Variable Class A State Variable is a discrete element of an SA-model of the system, or of the 
environment with which that system interacts.  It can also have structural and behavior 
aspects, as well as associations with other elements of the model.  

State Effect Association A State Effect is a directed relationship in which changes in the affecting State or 
Command cause or tend to cause or may cause a change in the affected State or 
Measurement. Each affected element carries a model of the effect.  The application of 
this stereotype is constrained to allow only correct effect relations, e.g. a Command 
cannot affect a Command. 

Controller Class For a given specific SV, a Controller can be represented as a set of things with 
common structural and behavior properties. 

Command (in 
both packages) 

Class Also sets of things with common structural features.  This name is used for stereotypes 
in two different packages, one that describes physical reality (the system under 
control), the other that describes the control system itself.  This latter version may be a 
complex model element. 

Estimator  Class And again, an Estimator is a set of possible instances with shared features and 
behaviors. 

Measurement 
(in both 
packages) 

Class A Measurement for a given SV has common features and possibly behaviors as well, 
especially in the case of the Measurement stereotype that resides in the ControlSystem 
package: this version will often carry estimates of the uncertainty of the measurement 
information. 

Hardware 
Adapter 

Class A Hardware Adapter represents an interface to an element of the controlled system.  A 
given class of Hardware Adapter may be rich in features and behaviors. 

State 
Constraint 

Constraint The UML Constraint metaclass has a ValueSpecification of type Boolean. A State 
Constraint is a Boolean-valued expression about the history of a State Value.  
Furthermore, the guard property of the edges of a UML Activity is also a Boolean-
typed ValueSpecification, which enables a mapping from State Constraint to guards.  
See the discussion of Goal in this table. 

Goal ControlFlow A Goal is a Constraint on the value of a State Variable over time.  We map the 
constraint to the guard of an Activity edge, and the time interval to the time between 
the starting node being executed and the ending node being executed.  See the entry 
for Goal Network in this table. 
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Goal Network Activity A Goal Network is a structure of nodes and edges in which control advances through 
the network by firing Timepoints, and that in turn can only happen when all of the 
outgoing Goals and Temporal Constraints hold.  An Activity is similarly a graph in 
which control flows through the network when all of the constraints on the edges are 
satisfied, and the actions in each node are completed.  The guards on ControlFlows 
express the State and Temporal Constraints of the network. 

Timeline Swim Lane A Swim Lane (Activity::Partition) is a sub-activity of an Activity.  This can be used to 
show the constraints on one State timeline. 

Timepoint ForkNode 
(coupled with a 
JoinNode) 

A Timepoint represents an event that can occur only when conditions associated with 
all of the goals leaving it are met.  Hence a Timepoint must be attacheable to several 
ControlFlows (Goals), from multiple swim lanes.  JoinNodes accept flows from 
multiple swim lanes (Timelines) and ForkNodes can have edges leaving it going to 
multiple swim lanes. 

Goal Network 
Elaboration 

Specialization, 
perhaps 

There is a “more detailed to less detailed” relation between more-elaborated networks 
and less-elaborated ones.  This can be expressed by the UML Generalization 
metaclass, for a couple of reasons: an elaborated network contains the original, 
unelaborated network, and generalization is a special form of containment.  Further, a 
given high-level goal network can be elaborated in many ways, providing the behavior 
of the unelaborated network.  On the other hand, a goal network can be viewed as 
simply a data structure that is transformed (mostly added to) in the process of 
elaboration, and this makes specialization a less apt concept for modeling an 
elaborated relationship.  We are still grappling with this issue.  

Temporal 
Constraint 

ControlFlow As with State Constraints, we map Temporal Constraints to the guard of a control 
flow. 

Value History 
(a.k.a. 
Knowledge 
Timeline) 

N/A The concept of Value History appears implicitly in expressing a Goal Network: it’s not 
possible to constrain state value histories without knowing something about them.  But 
so far we haven’t encountered a need for a stereotype for this concept. 

Within the domain of the control system, the concepts of 
State Analysis seem to organize themselves into two major 
areas of concern: describing a model of the State of the 
system under control, and then modeling the behavior of 
that system as well as the control of that behavior. 

The State package is concerned with the modeling of a 
system as a collection of State Variables program, and the 
expression and management of state knowledge. 

The Control package concerns itself with the constructs of 
Goals and Goal Networks, and defines stereotypes for all of 
the supporting constructs. 

The Elaboration package contains concepts for mapping 
less-elaborated networks to more-elaborated ones.  While 
this is related to control, it is not directly involved in 
modeling behavior as is a Goal Network. 

The stereotypes in the Control package require a basic 
notion of time, which is supplied in the Time package. 

The Stereotypes of the SystemUnderControl Package 

PhysicalState:  This stereotype expresses the concept of a 
system feature that has State.    

Measurement: This is an embodiment of the current value of 
some physical state in the system under control. For 
example, this might represent a simple temperature or 
voltage reading. 

Command: This stereotype reflects the notion of a physical 
element that can affect the state of the system.  Examples 
might be the changing of a signal or switch state. 

StateEffect: This stereotype represents one of the 
fundamental concepts of SA: an effect that one 
PhysicalState may have on another or that a Command may 
have on a PhysicalState, or that a PhysicalState can have on 
a Measurement.   
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The UML constraints on the application of this stereotype 
require the stereotyped Association to be binary, and the 

ends to be stereotyped according to these effect 
relationships.  These stereotypes are shown in Figure 3. 

The Stereotypes of the State Package 

StateVariable:  Control system SVs are usually associated 
with an Estimator (and at most one), and this is reflected in 
the association of stereotype StateVariable with Estimator, 
as shown in Figure 4. 

Estimator: The Estimator stereotype is also based on the 
metaclass Class. It has an association to the SV for which it 
estimates values, to the type(s) of Measurements it uses as 
inputs for estimation. There are no constraints on the 
application of the Estimator stereotype. 

Stereotypes of the Control Package 

The Control package contains stereotypes to describe 
mechanisms used by the control system, and others 
necessary to map the UML Activity construct onto State 
Analysis concepts.  The key stereotypes are the following: 

Controller: Like Estimator, Controller has an association to 
the SV that the controller is responsible for controlling.  The 
Controller also has an association to the type(s) of 
Commands that it may issue to the controlled system to 
control the associated SV.  Controller is shown in Figure 5. 

HardwareAdapter: The HardwareAdapter stereotype 
represents the interface between the control system and the 
controlled system for a particular state’s Estimator and 
Controller. 

 

 

 

  

 
Figure 1 - The packages of the State Analysis profile 

and their contents 

 

 
Figure 2 - Mapping of control system constructs to physical system constructs 
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ConstraintInterval:  Shown in Figure 6, this is an abstract 
stereotype mapping the notion of a constraint interval to the 
UML’s Activity ControlFlow metaclass.  ConstraintInterval 
also has associations to a start and end Timepoint, and a 
constraint ensuring that the two Timepoints stereotype the 
source and target nodes of the ControlFlow.   

This constraint implies that the nodes starting and ending 
the constraint interval are Fork and Join nodes, respectively.  
The ConstraintInterval stereotype is the basis of all types of 
constraints in a Goal network. 

Goal and StateConstraint: Figure 8 shows the Goal and 
StateConstraint stereotypes.  Goal is a specialization of 
ConstrainInterval (with underlying metaclass ControlFlow). 

Note that Goal is associated with a set of StateConstraints 
through the stateConstraint tag.  This necessitates an 
important UML constraint associated with Goal that maps 
the guard of the underlying ControlFlow to the union of the 
StateConstraints that are associated with Goal. 

The StateConstraint stereotype is based on the UML 
Constraint metaclass, and is associated with exactly one 
StateVariable. 

Temporal Constraints: The stereotypes expressing temporal 
constraints are also derived from the ConstraintInterval base 
constraint, as shown in, and thus map to a ControlFlow of 
an Activity.   

There are two types of temporal constraints: an 
AbsoluteConstraint, which requires the terminating 
Timepoint to occur at a specific point in time; and 
IntervalConstraint, which specifies that the occurrence 
times of the two connected Timepoints to which the 
stereotype is applied must differ by at least a minimum (that 
cannot be negative), or at most a maximum, or both.  Here 
we make use of the interfaces defined in the Time package.  
Some detail of these stereotypes are shown in Figure 7.  

 

 
Figure 5 - The Controller and HardwareAdapter 

stereotypes 

 

 
Figure 6 - The ConstraintInterval stereotype, the basis 

for all Constraints 

 

 
Figure 3 - The stereotypes of the 
SystemUnderControl package 

 

 
Figure 4 - The stereotypes of the State package 
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Stereotypes of the Elaboration Package 

The process of elaboration begins with a less-detailed Goal 
Network, which we call the “high-level” network, and 
produces a more-detailed one.  There are many possible 
detailed networks that satisfy the goals of the original high-
level network.  

To have a well-formed elaboration relationship, it is 
necessary to show that all of the constraints of the abstract 
network are satisfied by the union of the constraints of the 
concrete network. This implies that all of the constrained 
SVs in the high-level network appear in the lower-level 

network and are constrained by a set of constraints at least 
as constraining as those of the higher-level network.   

This is simplified by the fact that the concrete network 
always contains the abstract network.  In general, 
elaboration adds Timepoints and pulls in other SVs and 
other constraints. 

Note that there may be intermediate steps in performing 
elaboration in which Goals and Timepoints that had been 
added in a previous intermediate network are subsequently 
removed, but all of the Goals in the original high-level 
network are present and constrained in the detailed network.   

This containment aspect of elaboration is easily modeled 
with the UML Generalization relation. In fact, any concrete 
network that is a specialization of the abstract network is 
potentially a valid elaboration.  And if the concrete network 
is itself a valid network, i.e. the additional Timelines,  

Timepoints, temporal constraints and Goals added to the 
network actually achieve the Goals of the base network, 
then it is a valid elaboration of the base network. 

Though there is only one stereotype for elaboration, we 
decided to make a separate package for it because it is 

conceptually distinct from the elements that define a Goal 
Network.  Also we have more work to do in this area and 
anticipate adding significantly to this package. 

4. AN APPLICATION OF THE PROFILE 
We now present an example of the application of State 
Analysis to a simplified subsystem consisting of a camera 
and a platform upon which it is mounted.  The system also 
includes a heater to keep the camera warm when it’s not 
operating, and a sensor for reading the camera’s 
temperature.  Finally, we suppose we have a data storage 
system to hold camera images. 

Assume that we’ve been through the State Discovery 
process, and we’ve identified the State Variables relevant to 
controlling this system.  (We won’t show this process here, 
but refer the reader to [1], which has a good exposition of 
the technique.) 

We identify six State Variables: the camera mode, camera 
temperature, camera power, camera heater mode, the 
camera’s data collection in storage, and the pointing of the 
platform.  In the process of discovery, we would have found 
that our State Variables affect each other as shown in the 
State Effects Diagram of Figure 9.

 
Figure 8 - The Goal stereotype 

 
 

 
Figure 7 - Temporal constraint stereotypes 
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One of the most important results of the discovery process is 
an understanding of how State Variables affect each other, 
and using models to express and develop our understanding 
of these effects.  

These models can take many forms.  In our example, we 
chose to model the effect of the CameraPower SV on the 
CameraTemperature SV with the UML State Machine 
PowerOnTemp, which as seen in the diagram is owned by 
the AssociationClass instance to which the StateEffect 
stereotype is applied.  This is an example of how the 
richness of UML can compliment State Analysis. 

Now we would like to get the camera to take an image.  We 
express this intent as a Goal on the CameraDataStatus SV, 
in particular by saying that we want that SV to reflect the 
existence of an image with the desired characteristics 
(target, time), and that it should exist from a particular time 
for a minimum period of three years. 

This Goal is notated as a simple, single-Timeline Goal 
Network shown in Figure 10.  The network has three 
Timepoints: epoch, tp1, and tp2.  The first of these 
constrains the entire image acquisition activity to begin at a 
particular point in time.  Note that the control flow leaving 
epoch and entering tp1 has two constraint stereotypes 
applied to it: AbsoluteConstraint and IntervalConstraint.  

The tag values are shown in curly braces below the arc.  The 
absConstraint tag of AbsoluteConstraint has value 
AtTimeSpec, which is a normal UML Constraint specifying 
that the current time is a specific value.   

The stereotype IntervalConstraint has a tag 
intervalConstraint that has value InInterval, a UML 
Constraint that specifies a maximum time for the difference 
in firing times between the two Timepoints  

The guard on the arc is where the constraints are put into 
effect: the clause  

source.firingTime = timeSpec and 
timeSpec.isEarlierThan(PointInTime::now()) 

says that the Timepoint epoch (which is ‘source’ in the 
context of this arc) must fire at the time given by timeSpec 
(an absolute time), and that when traversing the arc, it must 
be true that the current time is later than timeSpec. This 
implies the AbsoluteConstraint.  The guard expression 
beginning with endTime says that the difference in firing 
times between the two Timepoints cannot exceed the 
amount of time of the UML ValueSpecification 
acquireTime.  This implies the IntervalConstraint that is 
applied to this arc.

 

 
Figure 9 - The State Effects diagram of the camera system 
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The UML constraints on applying the temporal constraint 
stereotypes we’ve used on this arc say that the guard of the 
arc must imply the tag values.  A task we have yet to do is 
to make the UML tool enforce these constraints. 

There are two arcs between the Timepoints tp1 and tp2: an 
arc with the Goal stereotype applied to it, and another with 
an IntervalConstraint applied to it.  Note that the temporal 
constraints in the network are all in green, and are on arcs 
that are have temporal constraints only.  This is not required 
by the profile or by SA, but it is an oft-preferred convention. 

The Goal on the arc is given a name: gTp1Tp2, and has the 
UML Constraint imgGoal1 as both its guard and as the tag 
value of stateConstraint.  Constraint imgGoal1 is shown in 
a comment in the upper-right part of the diagram.  
IntervalConstraint on the green arc between the tp1 and tp2 
requires that the image exist for a minimum of three years.  

The elaborated network is shown in Figure 11.  The original 
three Timepoints are still there, along with the Timeline for 
the CameraDataStatus SV.  We have added Timelines for 

the five remaining State Variables, and the original three 
Timepoints extend into several of the Timelines. 

The swimlane (i.e. Timeline) for the CameraTemperature 
SV requires that the temperature of the camera remain in 
safe operating range for the duration of the network.  On 
this arc, we’ve chosen to show the stereotype application 
(Goal), but no tag value (though it is in the model). 

The PlatformPointing Timeline introduces new Timepoints 
startTurn, turnDone, and pointDone.  These supply intervals 
on which to hang constraints that require the platform to 
turn to the desired position and remain there for the duration 
of the image acquisition.   The Goal applied to the arc from 
startTurn to turnDone requires that the platform be 
transitioning to the desired position. Only then can the 
image acquisition begin, as reflected in the arc flowing from 
the turnDone to the startAcq Timepoints.  

The CameraMode swimlane constrains the camera to be in 
ACQUIRING mode for the period from startAcq to tp1, 
while the CameraPower Timeline constrains the camera to 
be powered on during the acquisition.  We have ignored the 

 
Figure 10 - The top-level image goal network 
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delay between finishing acquisition and the image showing 
up in the data collection (at tp1).  

5. CONCLUSIONS AND FUTURE WORK 
In general, our attempt to make a useable UML profile that 
remains true to State Analysis has been largely successful.  
The UML profiling mechanism has provided the semantic 
richness to express the concepts of the SA domain 
adequately. 

The key mapping from SA to UML is the mapping of a 
Goal Network to a UML Activity, and the subordinate 
mappings of constraints to the guards of control flows.  We 
believe this mapping provides a clear and useable 
mechanism for expressing Goal Networks. 

We believe this profile will lead to easier adoption of  the 
State Analysis methodology, not only because of the 
advantages it provides for software engineering and for the 

communication between software and systems engineers, 
but also because it makes it easier for practitioners of SA by 
allowing them to use a common UML tool. 

Future Work 

We have much to do to make the profile more useable, 
complete, and robust: 

(1) The UML constraints on the stereotypes themselves 
are at various levels of maturity: some are in English, 
some in the Object Constraint Language (OCL).  All 
need checking and many no doubt need rework.  

(2) The issue of Goal Network Elaboration and how to 
express that in the Profile still needs work. 

(3) We need to automate profile application constraint 
checking in the tool.  The tool we’re using provides an 
application programming interface that allows 
customization of constraint checking. 

 
Figure 11 - The elaborated image goal network 
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(4) We need to express this profile in a couple of other 
tools in order to make it available to a wider base of 
users.   The promise of XML Model Interchange 
(XMI) format has not been fully realized, so this will 
not be a trivial task. 

(5) We have not had time to work on graphical features, 
such as specific diagram icons and special icons for 
other stereotypes, and there is much that could be done 
to make the diagrams more intuitive for practitioners 
of SA. 

(6) Automating the process of elaboration would greatly 
enhance the use of SA and this profile, and enable the 
in-system elaboration and execution of networks 
specified using this profile.  One possible approach to 
this would be to export and import Goal Networks in a 
form understood by a goal-based scheduling and 
planning system.  A likely target system might be 
JPL’s Continuous Activity Scheduling Planning 
Execution and Replanning (CASPER) system, which 
has flown successfully in the Earth Observing One 
spacecraft, among others. See [3]. 
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