
1

A UML Profile for State Analysis
Alex Murray, Robert Rasmussen

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91009
818-354-0111/-2861

{alex.murray, robert.d.rasmussen}@jpl.nasa.gov

Abstract—State Analysis is a systems engineering
methodology for the specification and design of control
systems, developed at the Jet Propulsion Laboratory. The
methodology emphasizes an analysis of the system under
control in terms of States and their properties and behaviors
and their effects on each other, a clear separation of the
control system from the controlled system, cognizance in
the control system of the controlled system’s State, goal-
based control built on constraining the controlled system's
States, and disciplined techniques for State discovery and
characterization.

State Analysis (SA) introduces two key diagram types: State
Effects and Goal Network diagrams. The team at JPL
developed a tool for performing State Analysis. The tool
includes a drawing capability, backed by a database that
supports the diagram types and the organization of the
elements of the SA models. But the tool does not support
the usual activities of software engineering and design - a
disadvantage, since systems to which State Analysis can be
applied tend to be very software-intensive.

This motivated the work described in this paper: the
development of a preliminary Unified Modeling Language
(UML) profile for State Analysis. Having this profile would
enable systems engineers to specify a system using the
methods and graphical language of State Analysis, which is
easily linked with a larger system model in SysML
(Systems Modeling Language), while also giving software
engineers engaged in implementing the specified control
system immediate access to and use of the SA model, in the
same language, UML, used for other software design. That
is, a State Analysis profile would serve as a shared modeling
bridge between system and software models for the
behavior aspects of the system.

This paper begins with an overview of State Analysis and its
underpinnings, followed by an overview of the mapping of
SA constructs to the UML metamodel. It then delves into
the details of these mappings and the constraints associated
with them. Finally, we give an example of the use of the
profile for expressing an example SA model.12

TABLE OF CONTENTS

1. INTRODUCTION ...1

1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE
2 IEEEAC paper#1106, Version 4, 2009:12:13

2. AN OVERVIEW OF STATE ANALYSIS 2
3. THE STATE ANALYSIS PROFILE 3
4. AN APPLICATION OF THE PROFILE 8
5. CONCLUSIONS AND FUTURE WORK 11
REFERENCES .. 12
ACKNOWLEDGMENTS .. 12
BIOGRAPHY ... 12

1. INTRODUCTION
In general, sharing a common language between systems
engineers and software engineers improves the process of
specifying and developing a system by enabling more
efficient collaboration and more precise communication
between the two disciplines. In efforts employing State
Analysis, there is an even greater advantage, because the
software design tends to be closely related to the SA model
of the system under control: States making up the model
have direct counterparts in the software design. Thus, the
systems engineer using State Analysis to generate a model
and specification of a control system in UML or SysML is
giving the software engineer a big leg up in the software
design effort for the implementation of that system.

The profiling mechanism built into the UML standard
enables an orderly way of adapting UML metamodel
elements in order to express other constructs. In profiling,
UML metamodel elements may not be changed, but they
can be associated to additional properties and constraints
that serve to bind the underlying metamodel concept to a
concept in the specific domain of interest to the profiler.
The System Modeling Language is itself a UML profile.

Because the profiling mechanism is part of the UML
specification, it enjoys the support of many of the available
UML tools, and this makes it not only technically apt for
our purposes, but also practical, because we can express and
use our profile with a variety of commercial UML tools
(though to date we’ve used only one, MagicDraw™.)

Another goal for our UML profile is that it be compatible
with SysML. We didn’t see concepts in SysML that would
be necessary to express the concepts of State Analysis, and
thus based our profile on UML only, and not on SysML.
However, we have made it a requirement that our profile be
applicable to SysML models.

We now turn to our overview of the State Analysis
methodology.

2

2. AN OVERVIEW OF STATE ANALYSIS
We begin with an important distinction about our use of the
word state, as in the term State Analysis. This usage has
nothing whatever to do with the term state in the context of
UML State Machines. These two concepts of state are
unrelated.

State Analysis begins with a concept of a system to be
controlled as a collection of distinct physical3 characteristics
or features that are relevant to the control of the system. In
conversation about SA or systems under analysis, we often
use the word State, or the term Physical State, to refer to
one of these features. But a more precise meaning of the
word State is the current condition or behavioral mode of
the feature, where this condition or mode substantially
governs how the feature interacts with other features of the
system or its environment, and typically can change with
time. So, the feature has State, which may vary with time.

It is necessary to be able to express the State of each of the
system’s control-relevant features, and these quantities or
representations are called State Values. Since these values
vary with time, we can naturally refer to a State Variable
(SV) that has a State Value at any given time, and we can
also refer to the Value History of an SV. Thus, an SV
serves as a model of a Physical State.

Because we want to describe the functions and objectives of
a Control System in terms of the State of a System Under
Control, a clear distinction between these two realms is
essential. All references to State here are consequently in
regard to the System Under Control or to the Control
System’s interest in the System Under Control. A
consequence of this principle is that, to the extent a Control
System could be said to have its own state, this would be
comprised solely of information about its knowledge of and
intentions against the System Under Control. Thus, in State
Analysis, focus is held firmly on the State of the object of
control.

A system to be controlled will always have features that
could be considered Physical States, but that are of little or
no interest to the control of the system. For example, an
automobile has a color, which is a quantifiable feature that
changes over time, but we would ignore that if performing
state analysis of the car as a system, because color does not
generally influence the motion we were interested in
controlling.

Conversely, any system interacts with its environment.
State Analysis also views features in the environment that
are relevant to control of the system, or which may
themselves be objects of control, as States that can be
expressed as State Variables. Thus, there are relevant State
Variables for both the system and its environment.

3 Here the word physical is used broadly, to include for example the logical
content of a computer’s memory, or of a database.

We’ve bandied about the term “relevant to control” as if it
were self-evident, but identifying the set of State Variables
that are relevant is a difficult, and crucial, task. State
Analysis provides a disciplined procedure, called State
Discovery, for doing just that. A key aspect of that process
is understanding how any given Physical State affects, or is
affected by, other States. Providing a full accounting of
these effects leads to the discovery of other States. This
knowledge is modeled as a network of SVs and their effects
on each other, called a State Effects model. This model
relies heavily on subordinate models of how and why States
have an effect on each other.

Upon identifying the States of interest in a system under
control and modeling the behavior and relationships among
them, we now have a basis for considering their control. A
control system typically will not have direct access to these
States though, and can only act on indirect evidence of their
value. Knowing, or predicting, the value of a State Variable
at any given time is therefore key to controlling the system.
In State Analysis we assume an opinion of this state is
maintained independently within the control system as State
Variables. These control system SVs, distinct from the
Physical SVs they represent, carry the control system’s
knowledge of the state of the system under control over
time. These time histories of knowledge, including
predictions for the future, are referred to as a Knowledge
Timelines.

In practice, this knowledge is never perfect, but is rather an
estimate. Thus, a key concept of SA is an Estimator, a
function that generates knowledge for a given State
Variable. Estimators often require information about State
Values from the controlled system, in the form of
Measurements, which are included in the State Effects
model. Estimators can also monitor Commands issued by
the control system, also included in the State Effects model.
Whatever the evidence, estimation relies on models of the
behavior of SVs and their effects and of other sources of
information. All of this information comes from the State
Effects model.

Controlling the value of a State Variable may also be
necessary, and this is expressed in the concept of a
Controller for a given State Variable. The mechanism a
Controller uses to affect an SV is the Command.

As with Physical State Variables, Measurements, and
Commands, which populate the State Effects model,
Knowledge State Variables, Estimators, and Controllers are
parts of a model of the Control System. The interface
between the control system and the controlled system is
provided by a Hardware Adapter, considered part of the
system under control. A Hardware Adapter provides
Measurements of the controlled system to the control
system, and delivers Commands to the controlled system on
behalf of the control system. It’s purpose is to ensure that

3

the system under control meets minimal criteria for the
Measurement and Command abstractions.

In State Analysis, control objectives of the system are
specified by levying constraints on the values of SVs.
Specifically, a State Constraint is a Boolean statement about
the history of an SV over time. This is a key concept of
State Analysis: a State Constraint applied to a State Variable
over an interval of time, and this is called a Goal.

Operator intent in State Analysis is specified in terms of
Goals on the SVs of the system. Since a Control System
can evaluate only what it knows, such constraints are always
imposed upon the value of Knowledge State Variables.
Thus, Goals can express intent regarding how well a State
must be known, as well as on how the State should behave.

A Goal may directly address the ultimate objective of an
activity: for example, having an image of a particular target
site is a Goal on the SV that models the content of an image
data repository. To achieve that Goal, however, a number
of other Goals, only indirectly related to the ultimate
objective, must be achieved: the camera must be pointed,
the camera must be powered on, the camera’s temperature
must be allowed to reach operating range, and then the
camera must go through an exposure cycle. This process of
decomposing a Goal into subordinate Goals is called
Elaboration. The process of Elaboration is informed by the
State Effects model, since the effect of each subordinate
Goal is to ultimately cause the original Goal to be met.

Expressing Goals requires a way of expressing not only the
State Constraints involved, but also events that define the
time intervals over which the constraint is required to hold.
These events are expressed with the concept of a Timepoint.
A Timepoint needn’t be a fixed time, a priori. They can also
represent events whose time is not yet known. Timepoints
serve not only to mark the beginnings and endings of Goals,
but also to define synchronizing events among Goals, which
can share Timepoints. For instance, it may be necessary for
two Goals to start at the same time, or one may need to start
when the other begins. A set of Goals linked through such
connections is referred to as a Goal Network.

At a minimum, Goals must end no sooner than they begin,
but the time relationships among Timepoints in a Goal
Network may be further constrained. For example, we may
want to specify that the time between the occurrences of two
Timepoints must be at least 10 seconds. Similarly, absolute
times are constrained relative to a defined “epoch”
Timepoint, fixed in time. Such a constraint is called a
Temporal Constraint. These constraints are also included in
the Goal Network, along with Goals and Timepoints.

A Goal Network is a model of the intended behavior of a
controlled system, overall. A network normally involves
several SVs. The portion of the network describing the
constraints on one specific SV is referred to as the Intent

Timeline of that SV in the network. Thus, each control
system SV possesses both a knowledge timeline and an
intent timeline.

We conclude this section with the statement of a few key
principles of State Analysis:

(1) Control of the system is achieved entirely by
knowledge of State and models of how State Variables
behave and affect each other.

(2) The system under control and the control system are
distinct and separate systems, and that distinction must
remain clear.

(3) Estimation and Control are separate, distinct functions,
and must remain separate

3. THE STATE ANALYSIS PROFILE
Mapping State Analysis Concepts to the UML Metamodel

UML profiles consist of a collection of stereotypes, and a
stereotype is based on one or more UML metaclasses, either
directly or by inheritance (a stereotype may be a
specialization of another stereotype, just as one class in a
UML model can be a sub-class of another.) In constructing
a profile for our State Analysis domain, we first had to
choose UML metaclasses that could be appropriately
specialized and constrained to express SA concepts. Table
1 shows our mapping of State Analysis concepts into the
UML metamodel. For each SA construct, the table shows
the UML metaclass that serves as the basis for the
stereotype expressing that SA construct in the SA profile,
and our rationale for the choice of metaclass.

The Organization of the Profile

In this section we present some of the detail of the State
Analysis Profile itself. We describe the organization of the
profile, some of the details about the stereotypes and their
relations among each other, and the constraints used to
govern the application of the stereotypes.

The separation of the system under control from the control
system is reflected in the organization of the Profile, as
shown in Figure 1. The package SystemUnderControl
provides stereotypes for modeling the raw physical system,
including the Physical States of the system.

Just as the concept of State appears in both the physical
system and the SA-model of it, so do the concepts of
Measurement and Command. The relationship between the
pairs of concepts is displayed in Figure 2.

The Time package contains a minimal description of the
concept of time, including the notions of a point in time and
of duration. These concepts are needed in the Control
package.

4

Table 1 - Mapping of State Analysis Concepts to UML Metaclasses

State Analysis
Construct

UML
Metaclass

Rationale/Description

Physical State Class The metaclass Class expresses the concept of a specification of a named set of things
with an identified set of common properties, which may include structural features or
behaviors. A Physical State represents a discrete element of the system to be
controlled, or of the environment with which that system interacts. It can have
structural and behavior aspects.

State Variable Class A State Variable is a discrete element of an SA-model of the system, or of the
environment with which that system interacts. It can also have structural and behavior
aspects, as well as associations with other elements of the model.

State Effect Association A State Effect is a directed relationship in which changes in the affecting State or
Command cause or tend to cause or may cause a change in the affected State or
Measurement. Each affected element carries a model of the effect. The application of
this stereotype is constrained to allow only correct effect relations, e.g. a Command
cannot affect a Command.

Controller Class For a given specific SV, a Controller can be represented as a set of things with
common structural and behavior properties.

Command (in
both packages)

Class Also sets of things with common structural features. This name is used for stereotypes
in two different packages, one that describes physical reality (the system under
control), the other that describes the control system itself. This latter version may be a
complex model element.

Estimator Class And again, an Estimator is a set of possible instances with shared features and
behaviors.

Measurement
(in both
packages)

Class A Measurement for a given SV has common features and possibly behaviors as well,
especially in the case of the Measurement stereotype that resides in the ControlSystem
package: this version will often carry estimates of the uncertainty of the measurement
information.

Hardware
Adapter

Class A Hardware Adapter represents an interface to an element of the controlled system. A
given class of Hardware Adapter may be rich in features and behaviors.

State
Constraint

Constraint The UML Constraint metaclass has a ValueSpecification of type Boolean. A State
Constraint is a Boolean-valued expression about the history of a State Value.
Furthermore, the guard property of the edges of a UML Activity is also a Boolean-
typed ValueSpecification, which enables a mapping from State Constraint to guards.
See the discussion of Goal in this table.

Goal ControlFlow A Goal is a Constraint on the value of a State Variable over time. We map the
constraint to the guard of an Activity edge, and the time interval to the time between
the starting node being executed and the ending node being executed. See the entry
for Goal Network in this table.

5

Goal Network Activity A Goal Network is a structure of nodes and edges in which control advances through
the network by firing Timepoints, and that in turn can only happen when all of the
outgoing Goals and Temporal Constraints hold. An Activity is similarly a graph in
which control flows through the network when all of the constraints on the edges are
satisfied, and the actions in each node are completed. The guards on ControlFlows
express the State and Temporal Constraints of the network.

Timeline Swim Lane A Swim Lane (Activity::Partition) is a sub-activity of an Activity. This can be used to
show the constraints on one State timeline.

Timepoint ForkNode
(coupled with a
JoinNode)

A Timepoint represents an event that can occur only when conditions associated with
all of the goals leaving it are met. Hence a Timepoint must be attacheable to several
ControlFlows (Goals), from multiple swim lanes. JoinNodes accept flows from
multiple swim lanes (Timelines) and ForkNodes can have edges leaving it going to
multiple swim lanes.

Goal Network
Elaboration

Specialization,
perhaps

There is a “more detailed to less detailed” relation between more-elaborated networks
and less-elaborated ones. This can be expressed by the UML Generalization
metaclass, for a couple of reasons: an elaborated network contains the original,
unelaborated network, and generalization is a special form of containment. Further, a
given high-level goal network can be elaborated in many ways, providing the behavior
of the unelaborated network. On the other hand, a goal network can be viewed as
simply a data structure that is transformed (mostly added to) in the process of
elaboration, and this makes specialization a less apt concept for modeling an
elaborated relationship. We are still grappling with this issue.

Temporal
Constraint

ControlFlow As with State Constraints, we map Temporal Constraints to the guard of a control
flow.

Value History
(a.k.a.
Knowledge
Timeline)

N/A The concept of Value History appears implicitly in expressing a Goal Network: it’s not
possible to constrain state value histories without knowing something about them. But
so far we haven’t encountered a need for a stereotype for this concept.

Within the domain of the control system, the concepts of
State Analysis seem to organize themselves into two major
areas of concern: describing a model of the State of the
system under control, and then modeling the behavior of
that system as well as the control of that behavior.

The State package is concerned with the modeling of a
system as a collection of State Variables program, and the
expression and management of state knowledge.

The Control package concerns itself with the constructs of
Goals and Goal Networks, and defines stereotypes for all of
the supporting constructs.

The Elaboration package contains concepts for mapping
less-elaborated networks to more-elaborated ones. While
this is related to control, it is not directly involved in
modeling behavior as is a Goal Network.

The stereotypes in the Control package require a basic
notion of time, which is supplied in the Time package.

The Stereotypes of the SystemUnderControl Package

PhysicalState: This stereotype expresses the concept of a
system feature that has State.

Measurement: This is an embodiment of the current value of
some physical state in the system under control. For
example, this might represent a simple temperature or
voltage reading.

Command: This stereotype reflects the notion of a physical
element that can affect the state of the system. Examples
might be the changing of a signal or switch state.

StateEffect: This stereotype represents one of the
fundamental concepts of SA: an effect that one
PhysicalState may have on another or that a Command may
have on a PhysicalState, or that a PhysicalState can have on
a Measurement.

6

The UML constraints on the application of this stereotype
require the stereotyped Association to be binary, and the

ends to be stereotyped according to these effect
relationships. These stereotypes are shown in Figure 3.

The Stereotypes of the State Package

StateVariable: Control system SVs are usually associated
with an Estimator (and at most one), and this is reflected in
the association of stereotype StateVariable with Estimator,
as shown in Figure 4.

Estimator: The Estimator stereotype is also based on the
metaclass Class. It has an association to the SV for which it
estimates values, to the type(s) of Measurements it uses as
inputs for estimation. There are no constraints on the
application of the Estimator stereotype.

Stereotypes of the Control Package

The Control package contains stereotypes to describe
mechanisms used by the control system, and others
necessary to map the UML Activity construct onto State
Analysis concepts. The key stereotypes are the following:

Controller: Like Estimator, Controller has an association to
the SV that the controller is responsible for controlling. The
Controller also has an association to the type(s) of
Commands that it may issue to the controlled system to
control the associated SV. Controller is shown in Figure 5.

HardwareAdapter: The HardwareAdapter stereotype
represents the interface between the control system and the
controlled system for a particular state’s Estimator and
Controller.

Figure 1 - The packages of the State Analysis profile

and their contents

Figure 2 - Mapping of control system constructs to physical system constructs

7

ConstraintInterval: Shown in Figure 6, this is an abstract
stereotype mapping the notion of a constraint interval to the
UML’s Activity ControlFlow metaclass. ConstraintInterval
also has associations to a start and end Timepoint, and a
constraint ensuring that the two Timepoints stereotype the
source and target nodes of the ControlFlow.

This constraint implies that the nodes starting and ending
the constraint interval are Fork and Join nodes, respectively.
The ConstraintInterval stereotype is the basis of all types of
constraints in a Goal network.

Goal and StateConstraint: Figure 8 shows the Goal and
StateConstraint stereotypes. Goal is a specialization of
ConstrainInterval (with underlying metaclass ControlFlow).

Note that Goal is associated with a set of StateConstraints
through the stateConstraint tag. This necessitates an
important UML constraint associated with Goal that maps
the guard of the underlying ControlFlow to the union of the
StateConstraints that are associated with Goal.

The StateConstraint stereotype is based on the UML
Constraint metaclass, and is associated with exactly one
StateVariable.

Temporal Constraints: The stereotypes expressing temporal
constraints are also derived from the ConstraintInterval base
constraint, as shown in, and thus map to a ControlFlow of
an Activity.

There are two types of temporal constraints: an
AbsoluteConstraint, which requires the terminating
Timepoint to occur at a specific point in time; and
IntervalConstraint, which specifies that the occurrence
times of the two connected Timepoints to which the
stereotype is applied must differ by at least a minimum (that
cannot be negative), or at most a maximum, or both. Here
we make use of the interfaces defined in the Time package.
Some detail of these stereotypes are shown in Figure 7.

Figure 5 - The Controller and HardwareAdapter

stereotypes

Figure 6 - The ConstraintInterval stereotype, the basis

for all Constraints

Figure 3 - The stereotypes of the
SystemUnderControl package

Figure 4 - The stereotypes of the State package

8

Stereotypes of the Elaboration Package

The process of elaboration begins with a less-detailed Goal
Network, which we call the “high-level” network, and
produces a more-detailed one. There are many possible
detailed networks that satisfy the goals of the original high-
level network.

To have a well-formed elaboration relationship, it is
necessary to show that all of the constraints of the abstract
network are satisfied by the union of the constraints of the
concrete network. This implies that all of the constrained
SVs in the high-level network appear in the lower-level

network and are constrained by a set of constraints at least
as constraining as those of the higher-level network.

This is simplified by the fact that the concrete network
always contains the abstract network. In general,
elaboration adds Timepoints and pulls in other SVs and
other constraints.

Note that there may be intermediate steps in performing
elaboration in which Goals and Timepoints that had been
added in a previous intermediate network are subsequently
removed, but all of the Goals in the original high-level
network are present and constrained in the detailed network.

This containment aspect of elaboration is easily modeled
with the UML Generalization relation. In fact, any concrete
network that is a specialization of the abstract network is
potentially a valid elaboration. And if the concrete network
is itself a valid network, i.e. the additional Timelines,

Timepoints, temporal constraints and Goals added to the
network actually achieve the Goals of the base network,
then it is a valid elaboration of the base network.

Though there is only one stereotype for elaboration, we
decided to make a separate package for it because it is

conceptually distinct from the elements that define a Goal
Network. Also we have more work to do in this area and
anticipate adding significantly to this package.

4. AN APPLICATION OF THE PROFILE
We now present an example of the application of State
Analysis to a simplified subsystem consisting of a camera
and a platform upon which it is mounted. The system also
includes a heater to keep the camera warm when it’s not
operating, and a sensor for reading the camera’s
temperature. Finally, we suppose we have a data storage
system to hold camera images.

Assume that we’ve been through the State Discovery
process, and we’ve identified the State Variables relevant to
controlling this system. (We won’t show this process here,
but refer the reader to [1], which has a good exposition of
the technique.)

We identify six State Variables: the camera mode, camera
temperature, camera power, camera heater mode, the
camera’s data collection in storage, and the pointing of the
platform. In the process of discovery, we would have found
that our State Variables affect each other as shown in the
State Effects Diagram of Figure 9.

Figure 8 - The Goal stereotype

Figure 7 - Temporal constraint stereotypes

9

One of the most important results of the discovery process is
an understanding of how State Variables affect each other,
and using models to express and develop our understanding
of these effects.

These models can take many forms. In our example, we
chose to model the effect of the CameraPower SV on the
CameraTemperature SV with the UML State Machine
PowerOnTemp, which as seen in the diagram is owned by
the AssociationClass instance to which the StateEffect
stereotype is applied. This is an example of how the
richness of UML can compliment State Analysis.

Now we would like to get the camera to take an image. We
express this intent as a Goal on the CameraDataStatus SV,
in particular by saying that we want that SV to reflect the
existence of an image with the desired characteristics
(target, time), and that it should exist from a particular time
for a minimum period of three years.

This Goal is notated as a simple, single-Timeline Goal
Network shown in Figure 10. The network has three
Timepoints: epoch, tp1, and tp2. The first of these
constrains the entire image acquisition activity to begin at a
particular point in time. Note that the control flow leaving
epoch and entering tp1 has two constraint stereotypes
applied to it: AbsoluteConstraint and IntervalConstraint.

The tag values are shown in curly braces below the arc. The
absConstraint tag of AbsoluteConstraint has value
AtTimeSpec, which is a normal UML Constraint specifying
that the current time is a specific value.

The stereotype IntervalConstraint has a tag
intervalConstraint that has value InInterval, a UML
Constraint that specifies a maximum time for the difference
in firing times between the two Timepoints

The guard on the arc is where the constraints are put into
effect: the clause

source.firingTime = timeSpec and
timeSpec.isEarlierThan(PointInTime::now())

says that the Timepoint epoch (which is ‘source’ in the
context of this arc) must fire at the time given by timeSpec
(an absolute time), and that when traversing the arc, it must
be true that the current time is later than timeSpec. This
implies the AbsoluteConstraint. The guard expression
beginning with endTime says that the difference in firing
times between the two Timepoints cannot exceed the
amount of time of the UML ValueSpecification
acquireTime. This implies the IntervalConstraint that is
applied to this arc.

Figure 9 - The State Effects diagram of the camera system

10

The UML constraints on applying the temporal constraint
stereotypes we’ve used on this arc say that the guard of the
arc must imply the tag values. A task we have yet to do is
to make the UML tool enforce these constraints.

There are two arcs between the Timepoints tp1 and tp2: an
arc with the Goal stereotype applied to it, and another with
an IntervalConstraint applied to it. Note that the temporal
constraints in the network are all in green, and are on arcs
that are have temporal constraints only. This is not required
by the profile or by SA, but it is an oft-preferred convention.

The Goal on the arc is given a name: gTp1Tp2, and has the
UML Constraint imgGoal1 as both its guard and as the tag
value of stateConstraint. Constraint imgGoal1 is shown in
a comment in the upper-right part of the diagram.
IntervalConstraint on the green arc between the tp1 and tp2
requires that the image exist for a minimum of three years.

The elaborated network is shown in Figure 11. The original
three Timepoints are still there, along with the Timeline for
the CameraDataStatus SV. We have added Timelines for

the five remaining State Variables, and the original three
Timepoints extend into several of the Timelines.

The swimlane (i.e. Timeline) for the CameraTemperature
SV requires that the temperature of the camera remain in
safe operating range for the duration of the network. On
this arc, we’ve chosen to show the stereotype application
(Goal), but no tag value (though it is in the model).

The PlatformPointing Timeline introduces new Timepoints
startTurn, turnDone, and pointDone. These supply intervals
on which to hang constraints that require the platform to
turn to the desired position and remain there for the duration
of the image acquisition. The Goal applied to the arc from
startTurn to turnDone requires that the platform be
transitioning to the desired position. Only then can the
image acquisition begin, as reflected in the arc flowing from
the turnDone to the startAcq Timepoints.

The CameraMode swimlane constrains the camera to be in
ACQUIRING mode for the period from startAcq to tp1,
while the CameraPower Timeline constrains the camera to
be powered on during the acquisition. We have ignored the

Figure 10 - The top-level image goal network

11

delay between finishing acquisition and the image showing
up in the data collection (at tp1).

5. CONCLUSIONS AND FUTURE WORK
In general, our attempt to make a useable UML profile that
remains true to State Analysis has been largely successful.
The UML profiling mechanism has provided the semantic
richness to express the concepts of the SA domain
adequately.

The key mapping from SA to UML is the mapping of a
Goal Network to a UML Activity, and the subordinate
mappings of constraints to the guards of control flows. We
believe this mapping provides a clear and useable
mechanism for expressing Goal Networks.

We believe this profile will lead to easier adoption of the
State Analysis methodology, not only because of the
advantages it provides for software engineering and for the

communication between software and systems engineers,
but also because it makes it easier for practitioners of SA by
allowing them to use a common UML tool.

Future Work

We have much to do to make the profile more useable,
complete, and robust:

(1) The UML constraints on the stereotypes themselves
are at various levels of maturity: some are in English,
some in the Object Constraint Language (OCL). All
need checking and many no doubt need rework.

(2) The issue of Goal Network Elaboration and how to
express that in the Profile still needs work.

(3) We need to automate profile application constraint
checking in the tool. The tool we’re using provides an
application programming interface that allows
customization of constraint checking.

Figure 11 - The elaborated image goal network

12

(4) We need to express this profile in a couple of other
tools in order to make it available to a wider base of
users. The promise of XML Model Interchange
(XMI) format has not been fully realized, so this will
not be a trivial task.

(5) We have not had time to work on graphical features,
such as specific diagram icons and special icons for
other stereotypes, and there is much that could be done
to make the diagrams more intuitive for practitioners
of SA.

(6) Automating the process of elaboration would greatly
enhance the use of SA and this profile, and enable the
in-system elaboration and execution of networks
specified using this profile. One possible approach to
this would be to export and import Goal Networks in a
form understood by a goal-based scheduling and
planning system. A likely target system might be
JPL’s Continuous Activity Scheduling Planning
Execution and Replanning (CASPER) system, which
has flown successfully in the Earth Observing One
spacecraft, among others. See [3].

REFERENCES
[1] M. Ingham, R. Rasmussen, M. Bennett, A. Moncada,

“Engineering Complex Embedded Systems with State
Analysis and the Mission Data System,” AIAA Intelligent
Systems Technical Conference, Chicago, IL, September
2004; AIAA Journal of Aerospace Computing,
Information and Communication, Vol. 2, No. 12,
December 2005, pp-507-536.

[2] M. Bennett, D. Dvorak, J. Hutcherson, M. Ingham, R.
Rasmussen, D. Wagner, “An Architectural Pattern for
Goal-Based Control,” IEEE Aerospace Conference, Big
Sky, MT. March 2008.

[3] Chien, S et al, “Using Autonomy Flight Software to
Improve Science Return on Earth Observing One,”
Journal of Aerospace Computing, Information, and
Communication, Vol. 2, April 2005

ACKNOWLEDGMENTS
The work described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

BIOGRAPHY
Alex Murray is a senior software
engineer with the Jet Propulsion
Laboratory, California Institute of
Technology. He is currently the
technical lead for the development
of the spacecraft flight software for
the SMAP mission. Previously, he
developed flight software for the
MSL project, and previously led the
development of the flight software
for the Aquarius instrument. He
has led and done software

development for flight, ground, and simulation software for
missions and for technology development projects at JPL.
He led and developed software for a variety of projects at
TRW (now Northrop-Grumman), and he served as a systems
engineer for the European weather satellite agency,
Eumetsat, as well as software engineer for the Dresdner
Bank in Frankfurt, Germany. He holds BS and MS degrees
in mathematics from The Ohio State University.

Robert Rasmussen is a Fellow of
the Jet Propulsion Laboratory.
He joined JPL in 1975 after
receiving his Ph.D. in Electrical
Engineering from Iowa State
University. Since then, he has
contributed to several JPL
missions, including Voyager,
Galileo, and Cassini, with
significant roles in spacecraft
system design, guidance and
control, avionics and computer

systems, test and flight operations, and automation and
autonomy. In addition to his flight experience, he has
conducted research in fault tolerant, multicomputers; he
initiated and advised the Remote Agent autonomy
experiment on Deep Space 1; and he has been Chief
Architect of the Mission Data System project, which
developed the State Analysis methodology and associated
architecture for unified, model-based systems and software
engineering. He is presently Chief Engineer of JPL’s
Systems and Software Division.

