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Abstract— This paper reports the simulated peformance
of each of the nine accumulate-repeat-4-jagged-accumulate
(AR4JA) low-density parity-check (LDPC) codes [3] when
used in conjunction with binary phase-shift-keying (BPSK),
quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16-
APSK), and 32-APSK. We also report the performance under
various mappings of bits to modulation symbols, 16-APSK
and 32-APSK ring scalings, log-likelihood ratio (LLR) ap-
proximations, and decoder variations. One of the simple and
well-performing LLR approximations can be expressed in a
general equation that applies to all of the modulation types.
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1. INTRODUCTION

This paper presents no new error correction code construc-
tion, modulation type, demodulation method, or decoding
technique. Its contribution lies in reporting the simulated per-
formance of many combinations of coded modulations that,
as far as we know, have not been previously reported. It also
provides a semi-tutorial presentation of the complex base-
band representation of various modulation types, various bit-
to-modulation-symbol mappings, and the derivation of their
assocaited log likelihood ratios (LLRs).

The performance of accumulate-repeat-4-jagged-accumulate
(AR4JA) low-density parity-check (LDPC) codes on a
binary-input additive white Gaussian noise (AWGN) chanel
is well-documented [2], [3]. Such published performance
results are for with binary phase-shift keying (BPSK) or
quadrature PSK (QPSK), as is typical of most deep space
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missions. When bandwidth is constrained, however, system
engineers may also desire to know the performance of LDPC
codes when used with higher order modulations, in order that
they may most effectively trade off power efficiency, band-
width efficiency, and complexity.

The performance of a code when used with a nonbinary mod-
ulation may be approximated from its BPSK performance by
its code imperfectness. First, the code imperfectness of the
code when used with BPSK is determined by measuring the
difference between the code’s required bit signal to noise ra-
tio Eb/N0 to attain a given word error probability (Pw) and
the minimum possible Eb/N0 required to attain the same Pw

as implied by the sphere-packing bounds for codes with the
same block size k and code rate r [5]. This same imperfect-
ness is then applied with respect to the capacity of the higher
order modulation to arrive at an approximated performance
of the code when used with the higher order modulation. The
imperfectness approximation has generally been found to be
fairly accurate, to within about 0.5 dB, over a wide variety of
codes and modulations.

This paper reports the simulated peformance of the nine
AR4JA LDPC codes when used in conjunction with binary
phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK,
16-ary amplitude PSK (16-APSK), and 32-APSK. The results
are consistent with previously reported performance of rate
4/5 AR4JA codes used with BPSK, 8-PSK, and 16-APSK [4].
Results are included for varying bit-to-symbol mappings used
by the modulator and varying log-likelihood ratio (LLR) ap-
proximations used by the decoder. One of the simple and
well-performing LLR approximations can be expressed in a
general equation that applies to all of the modulation types.

This software, written separately in C and Matlab as stand-
alone packages with equivalent functionality, implements en-
coders and decoders for a set of nine error correcting codes
and modulators and demodulators for five modulation types.
The software can be used as a single program to simulate the
performance of such coded modulation.

The error correcting codes implemented are the nine accumu-
late repeat-4 jagged accumulate (AR4JA) low-density parity-
check (LDPC) codes, which have been approved for inter-
national standardization by the Consultative Committee for
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Space Data Systems, and which are scheduled to fly on a se-
ries of NASA missions in the Constellation Program. The
software implements the encoder and decoder functions, and
contains compressed versions of generator and parity-check
matrices used in these operations.

The software support the modulations of binary phase-shift
keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16 am-
plitude PSK (16-APSK), and 32-APSK. For each modula-
tion type, the software modulator support for various bit-
to-modulation-symbol mappings, including the natural order,
the Gray code, the anti-Gray code, and the ordering specified
by the Digital Video Broadcast Satellite Second Generation
standard for 16-APSK and 32-APSK. The software supports
hard and soft demodulation, and when soft, it supports both
an exact log likelihood computation and an approximate log
likelihood computation based on nearest neighbors. The goal
of ranging is to accurately determine the distance between a
spacecraft and a ground antenna as a function of time. This
is accomplished by measuring the time an electromagnetic
signal takes to travel between the spacecraft and the ground.
By properly accounting for ground and spacecraft process-
ing delays—carefully measured ahead of time in a calibration
process—the round-trip light time can be determined.

2. SIGNAL MODEL

To isolate the coded modulation performance from other ef-
fects, this paper assumes an additive white Gaussian noise
(AWGN) channel with no Doppler, fading, or other chan-
nel impairments, no amplifier distortions, and perfect receiver
synchronization.

We begin with a general passband signal of the form

s(t) = a(t) cos(2πfct + θ(t)) (1)

where fc is the carrier frequency in Hz, and a(t) and θ(t) are
arbitrary modulation-dependent signals. We may rewrite this
as

s(t) = Re
{
s̃(t)ej2πfct

}
(2)

where s̃(t) = a(t)ejθ(t) is the complex baseband representa-
tion of s(t). We may also write s̃(t) as

s̃(t) =
√

Pc + m̃(t) (3)

where
√

Pc is an unmodulated residual carrier signal with
complex baseband power Pc, and m̃(t) is a complex base-
band modulation with complex baseband power Pd =
limT→∞

1
T

∫ T

0
m2(t)dt. This can be put back in passband

notation using (2), from which the residual carrier signal term√
Pc cos(2πfct) is readily apparent. The modulations consid-

ered in this paper have the form

m̃(t) =
∞∑

i=−∞
m[i]p(t− iT ) (4)

where m[i] is a member of a signal constellation m[i] ∈ C =
{c(0), c(1), . . . , c(M − 1)} in the complex plane, and where

p(t) is square pulse shape of symbol duration T :

p(t) =
{

1 if 0 ≤ t ≤ T
0 otherwise. (5)

For our purposes, the residual carrier signal can be assumed
to have been filtered out of the modulated received signal or,
equivalently, Pc = 0. Thus, the received modulated complex
baseband signal is of the form

r̃(t) = m̃(t) + ñ(t) (6)

where ñ(t) is a complex baseband Gaussian noise with one-
sided power-spectral density N0 in each dimension. At the
receiver, r̃(t) is put through a perfect matched filter, which
results in complex soft symbols

r[i] = m[i] + n[i] (7)

where n[i]], is a complex Gaussian random variable with vari-
ance variance σ2 = 2N0 in each of its real and imaginary
components.

3. MODULATIONS

In this section, we enumerate the modulation types consiered
in this paper, along with their associated complex signal con-
stellations, default orders, and average complex baseband en-
ergy.

BPSK is a real-valued constellation with two signal points:
c(0) = A and c(1) = −A, where A is a scaling factor. This
is shown in Fig. 1(a). The average complex baseband symbol
energy is Es = E[c(i)2] = A2.

QPSK is a complex constellation with four signal points, with
c(i) =

√
2A exp

[
j π

2

(
i + 1

2

)]
, for i = 0, 1, 2, 3. The aver-

age symbol energy is Es = E[c(i)2] = 2A2, double that of
BPSK, but with equal energy per transmitted bit.

8-PSK has constellation points c(i) = A exp
[
j π

4

(
i + 1

2

)]
,

for i = 0, 1, . . . 7. In general, M -PSK has constellation
points c(i) = A exp

[
j 2π

M

(
i + 1

2

)]
, for i = 0, 1, . . . M − 1.

The average symbol energy is Es = E[c(i)2] = A2.

16-APSK is a standard of the second generation Digital Video
Broadcast for Satellites [1]. It is also referred to as 12/4
APSK or 12/4 QAM. It consists of the union of amplitude-
scaled QPSK and 12-PSK signal constellations:

c(i) =
{

r1 exp
[
j π

2

(
i + 1

2

)]
i = 0, 1, 2, 3

r2 exp
[
j π

6

(
i + 1

2

)]
i = 4, 5, . . . , 15.

(8)

The DVB-S2 standard defines the ratio r2/r1 = 3.15, 2.85, 2.75, 2.70, 2.60,
and 2.57 for code rates 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10, re-
spectively. The average symbol energy is Es = E[c(i)2] =
(r2

1 + 3r2
2)/4.
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32-APSK is also a DVB-S2 standard. It is the union of three
PSK constellations:

c(i) =


r1 exp

[
j π

2

(
i + 1

2

)]
i = 0, 1, 2, 3

r2 exp
[
j π

6

(
i− 4 + 1

2

)]
i = 4, 5, . . . , 15

r3 exp
[

j(i−16)π
8

]
i = 16, 17, . . . , 31.

(9)
The DVB-S2 standard defines the ratios r2/r1 =
2.84, 2.72, 2.64, 2.54, and 2.53, and r3/r1 = 5.27, 4.87, 4.64, 4.33,
and 4.30 for for code rates 3/4, 4/5, 5/6, 8/9, and 9/10, re-
spectively. The average symbol energy is Es = E[c(i)2] =
(r2

1 + 3r2
2 + 4r2

3)/8.

4. BIT TO SYMBOL MAPPINGS

Encoded bits are assigned to a sequence of corresponding
complex constellation points, or modulation symbols. Each
of the modulations considered in this paper has a number of
constellation points that is a power of two, which makes such
bit to symbol mappnigs straightforward.

The signal constellations in the previous section define a nat-
ural binary ordering. For example, the 8-PSK constellation
points indexed by i =0, 1, 2, 3, 4, 5, 6, and 7 would corre-
spond to the 3-bit patterns 000, 001, 010, 011, 100, 101, 110,
and 111, respectively. We refer to this as the natural bit to
symbol mapping for the modulation.

Other mappings, such as Gray codes,3 can often give better
performance. There are many Gray codes with the defining
property that adjacent members in the list differ in exactly one
bit in their binary representation, some with slightly different
performance than others. In our simulations, we used the the
binary reflected Gray code, which has recently been proven
as the optimal mapping for M -PSK modulations. The binary
reflected Gray code of length M is obtained from the binary
reflected Gray code of length M/2 by listing the members
0, 1, . . . ,M − 1, each preceded by a zero, followed by the
members M − 1,M − 2, . . . , 0, each preceded by a one.

The binary relected Gray code has the prefix property, i.e.,
a length M ′ Gray code’s members are equal to the first M ′

members of a Gray code of length M , M > M ′. Thus, when
conducting simulations of Gray codes of various lengths, only
the longest Gray code need be stored.

An anti-Gray code has the property that adjacent members in
the list differ either in all their bits or in all but one of their
bits. An anti-Gray code of length M can be obtained from a
binary reflected Gray code of length M by removing the last
M/2 entries and inserting after each of the remaining M/2
entries the ones complement of that entry. Anti-Gray codes
do not have a prefix property, meaning a separate mapping

3Technically, a Gray code is more properly referred to as a Gray labeling.
A code’s performance is not dependent on the order of indexing, whereas
with a Gray labeling, the whole point is that it is defined in a particular order.
Nevertheless, we use the term Gray codes here, for consistency with common
usage.
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Figure 1. Signal constellations and Gray code bit represen-
tations for (a) BPSK, (b) QPSK, and (c) 8-PSK, and DVB-S2
bit representations for (d) 16-APSK and (e) 32-APSK.
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Table 1. Bit representations of constellation points. Entries
in the table have been converted to decimal.

Natural Gray Anti-Gray DVB-16 DVB-32
0 0 0 0 0 0 0 12 17
1 1 1 3 7 15 31 14 21
2 3 1 1 1 1 15 23
3 2 2 6 14 30 13 19
4 6 3 3 3 4 16
5 7 4 12 28 0 0
6 5 2 2 2 8 1
7 4 5 13 29 10 5
8 12 6 6 2 4
9 13 9 25 6 20

10 15 7 7 7 22
11 14 8 24 3 6
12 10 5 5 11 7
13 11 10 26 9 3
14 9 4 4 1 2
15 8 11 27 5 18
16 24 12 24
17 25 19 8
18 27 13 25
19 26 18 9
20 30 15 13
21 31 16 29
22 29 14 12
23 28 17 28
24 20 10 30
25 21 21 14
26 23 11 31
27 22 20 15
28 18 9 11
29 19 22 27
30 17 8 10
31 16 23 26

should be stored for each length.

For constellations in which constallation points have more
than two near neighbors, a specialized bit to symbol mapping
is needed. The DVB-S2 standard specifies such a mapping to
use with 16-APSK and 32-APSK.

The bit representations of the consellation points under the
natural, Gray, anti-Gray, and DVB mappings are given in Ta-
ble 1, for lengths 2, 4, 8, 16, and 32. Note that in the Gray col-
umn, 0, 1, 3, 2, . . . in binary is 00000, 00001, 00011, 00010,
. . ., and each subsequent constellation point has a binary rep-
resentation that differs in exactly one bit, including wrapping
around to the beginning. The anti-Gray column has a separate
specification for each length and, for example, 0, 7, 1, 6, . . .,
in binary is 000, 111, 001, 110, . . ., with each entry differing
in either two or all three bits.

Table 1 gives a mapping from the constellation index i to the
bit representation map(i), but at the modulator we need the
inverse operation, to map bits to a constellation point. The
inverse is defined by cm[map(i)] = c(i) for each i, where the
subscript m indicates that the constellation has been mapped
to a new ordering. For example, to map “1000” to a constel-
lation point using the Gray code, we note that “1000” is 8 in
decimal, and cm[8] = c(15) is the corresponding constella-
tion point.

5. LOG LIKELIHOOD RATIO

Soft-decision decoders take as input the log likelihood ratio
LLR for each code bit. Suppose bits b = bm−1bm−2 · · · b0

are mapped to the complex constellation point c = c(b).
Here, we have dropped the subscript m for notational conve-
nience, and assume the c() itself specifies that correct order
of symbols for the desired mapping. Let r = c+n denote the
noisy received symbol.

Exact LLR

The LLR for the jth bit of the symbol is

λj = ln
[
P (bj = 0|r)
P (bj = 1|r)

]
= ln

[
p(r|bj = 0)P (bj = 0)/p(r)
p(r|bj = 1)P (bj = 1)/p(r)

]
= ln

[
p(r|bj = 0)
p(r|bj = 1)

]
(10)

where we use P to indicate a probability and p to indicate a
probability density function (pdf), we applied Bayes theorem
for a mixture of probabilities and pdfs, and in the last step we
assume P (bj = 0) = P (bj = 1) = 1/2. For i ∈ {0, 1}, we
have

p(r|bj = i) =
∑

b:bj=i

p(r|b) (11)

=
∑

b:bj=i

p(r − c(b)) (12)

=
∑

b:bj=i

1
2πσ2

exp
(
−‖r − c(b)‖2

2σ2

)
(13)

where (11) follows because it is a sum of disjoint events, and
(13) is the pdf of a complex Gaussian random variable with
variance σ2 in each of its real and imaginary components.
Substituting into (10), we have

λj = ln

∑
b:bj=0 exp

(
−‖r−c(b)‖2

2σ2

)
∑

b:bj=1 exp
(
−‖r−c(b)‖2

2σ2

)
 (14)

Thus, to compute the jth bit LLR from r, one may compute
the squared distance to each of the constellation points, sep-
arating those constellation points that have a 0 in bit j from
those that have a 1, and using (14).
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We may use the relation

‖r − c‖2 = ‖r‖2 − 2 < r, c > +‖c‖2 (15)

in (14), where the inner product is 〈r, c〉 == Re{r}×Re{c}+
Im{r} × Im{c}. When the modulation has symbols each of
the same energy, as is the case for PSK modulations, the ‖r‖2

and ‖c‖2 terms in the numerator and denomintor cancel we
arrive at the simpler form

λj = ln

∑
b:bj=0 exp

(
〈r,c(b)〉

σ2

)
∑

b:bj=1 exp
(
〈r,c(b)〉

σ2

)
 . (16)

Approximate LLR

A common approximation to the LLR is to approximate each
sum in (14) by its largest term, i.e., by using only the nearest
constellation point that has bj = 0 in the numerator, and the
nearest neighbor that has bj = 1 in the denominator. If we
denote these nearest neightbor constellation points by

c∗(j, i) == c
(

argminb:bj=i‖r − c(b)‖2
)

, (17)

i ∈ {0, 1}, we may write

λj ≈ ln

exp
(
−‖r−c∗(j,0)‖2

2σ2

)
exp

(
−‖r−c∗(j,1)‖2

2σ2

)
 (18)

=
1

2σ2

(
‖r − c∗(j, 1)‖2 − ‖r − c∗(j, 0)‖2

)
=

1
2σ2

(
2〈r, c∗(j, 0)− c∗(j, 1)〉+ ‖c∗(j, 1)‖2

−‖c∗(j, 0)‖2
)

or, for equal energy signal constellations,

λj ≈
〈r, c∗(j, 0)− c∗(j, 1)〉

σ2
(19)

This requires one subtraction and two multiplications. The
step of dividing by σ2 can be eliminated if σ remains constant
over many symbols, by precomputing c(i)/σ2 for each i.

LLR for BPSK

For BPSK modulation there are only two constellation points,
and so the expression in (18), and hence (19), is exact. There
is only one bit LLR compute, namely, λ0, with c∗(0, 0) = A
and c∗(0, 1) = −A, and the LLR is given by

λ0 =
〈r, c∗(j, 0)− c∗(j, 1)〉

σ2
=

〈r, 2A〉
σ2

=
2ARe{r}

σ2
(20)

LLR for QPSK

As can be seen from Fig. 1(b), the least significant bit (lsb) of
a Gray coded QPSK modulation depends on Re{r} in exactly

the same way as for BPSK. This can be seen mathematically
by noting

c(0) = A(1 + j)
c(1) = A(−1 + j)
c(2) = A(1− j)
c(3) = A(−1− j)

and then plugging these into (16), which becomes

λ0 = ln

exp
(
〈r,c(0)〉

σ2

)
+ exp

(
〈r,c(2)〉

σ2

)
exp

(
〈r,c(1)〉

σ2

)
+ exp

(
〈r,c(3)〉

σ2

)
 =

2ARe{r}
σ2

(21)
which is identical to (20). Following the same procedure for
the most significant bit, where now c(0) and c(1) are in the
numerator and c(2) and c(3) are in the denominator, the LLR
is given by

λ1 =
2AIm{r}

σ2
(22)

Note, when the bit to symbol mapping is not a Gray code, the
LLR expressions will not simplify to these expressions with
independent real and imaginary components for each bit.

LLR for 8-PSK

The three bit LLRs for each 8-PSK symbol can be computed
using (16), with four terms each in the numerator and denomi-
nator. As there is no apparent simplification of this exact LLR
expression, the approximate LLR computation of (19) can be
used when a lower complexity computation is needed.

To identify the closest constellation point with a 0 or a 1 in the
bit position of interest, one could compute the distances to all
eight constellation points. This is unnecessary, however. As
can be seen from Fig. 1(b), if we epress r in polar coordinates
as r = ‖r‖ejφ, the closest constellation point with lsb equal
to zero is given by

c∗(0, 0) =


c(0) if 0 ≤ φ < π/4
c(3) if 3π/4 ≤ φ < π
c(4) if π ≤ φ < 5π/4
c(7) if 7π/4 ≤ φ < 2π

(23)

This computation requires only comparisons to constants, and
no computaton of distances. Similarly,

c∗(0, 1) =


c(1) if π/4 ≤ φ < π/2
c(2) if π/2 ≤ φ < 3π/4
c(5) if 5π/4 ≤ φ < 3π/2
c(6) if 3π/2 ≤ φ < 7π/4

(24)

These can then be plugged into (19). The LLRs for the other
two bits can be computed in a similar fashion.

LLR for 16-APSK

The four bit LLRs for each 16-APSK symbol can be com-
puted using (16), with eight terms each in the numerator and
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denominator. As there is no apparent simplification of this
exact LLR expression, the approximate LLR computation of
(19) can be used when a lower complexity computation is
needed.

To identify the closest constellation point with a 0 or a 1 in
the bit position of interest, one could compute the distances
to all sixteen constellation points. As was the case for 8-PSK,
this is unnecessary. Since 16-APSK is simply the union of
two PSK modulations, the angle comparison approach used
for 8-PSK can be used to identify the closest inner-ring con-
stellation point with a 0 in the bit position of interest, and sep-
arately, to identify the closest outer-ring constellation point.
Then 〈r, c〉 > can be computed for each of the two candi-
date constellation points to find the closer point. This requires
computation of a total of four inner products, or eight multi-
plications, to compute an approximate bit LLR.

A more careful approach can be even more efficient. The
Voronoi regions of 16-APSK are polygonal, so a carefully
crafted series of comparisons involving ‖r‖, Re{r}− Im{r},
and φ can identify c ∗ (j, i) without multiplications. In this
way, only comparisons and the one inner product in (19)
would need to be computed.

LLR for 32-APSK

The five bit LLRs for each 32-APSK symbol can be computed
using (16), with sixteen terms each in the numerator and de-
nominator. As there is no apparent simplification of this exact
LLR expression, the approximate LLR computation of (19)
can be used when a lower complexity computation is needed.
The same approach as for 16-APSK can be used to avoid all
but one inner product computation.

To identify the closest constellation point with a 0 or a 1 in
the bit position of interest, one could compute the distances
to all 32 constellation points. As was the case for 8-PSK, this
is unnecessary. Since 16-APSK is simply the union of two
PSK modulations, the angle comparison approach used for
8-PSK can be used to identify the closest constellation point
with a 0 in the bit position of interest, from among the in-
ner ring only, and separately, from the outer ring only. Then
〈r, c〉 > can be computed for each of the two candidate con-
stellation points to find the closer. This requires computation
of four inner products, or eight multiplications, to compute
the approximate LLR.

A more careful approach can be even more efficient. The
Voronoi regions of 16-APSK are polygonal, and a carefully
crafted series of comparisons involving ‖r‖, Re{r}− Im{r},
and φ can identify c ∗ (j, i) without multiplications. In this
way, only comparisons and the one inner product in (19) need
to be computed.

6. NUMERICAL RESULTS

Figure 2 shows the performance of AR4JA coded BPSK or
QPSK on an AWGN channel, demodulated with an exact
LLR computation and quantized to 8 bits, and decoded us-
ing up to a maximum of 200 iterations. Bit error rate (BER)
and codeword error rates (CWER) are shown for codes of in-
put codeword lengths k = 1024, k = 4096, and k = 16384
and rates 1/2 (red), 2/3 (green), and 4/5 (blue). These simu-
lation results are in agreement with those reported elsewhere
[3].

The performance of the same codes when used with 8-PSK,
16-APSK, and 32-APSK is reported in Figures 3, 4, 5, respec-
tively. In each case, a soft demodulator is used to compute the
exact bit LLRs.

Figure 6 shows the performance of the decoder as a func-
tion of the number of iterations. The results shown are for
the the k = 1024, r = 1/2 AR4JA code used with BPSK
on an AWGN channel, demodulated with an exact LLR com-
putation quantized to 8 bits, and with a decoder limited to a
maximum of 2, 5, 10, 20, 50, 100, and 200 iterations.

Figures 7, 8, and 9 shows the loss when the demodulator uses
hard decision decoding. When taking a hard-decision input,
the decoder uses as its LLR the quantity log[(1−p)/p], where
p = Q(

√
2Es/N0) is the probability the hard decision is

incorrect. Note that this requires the SNR to be known; losses
would be larger if the SNR were unknown. The results shown
are for all nine AR4JA codes used with BPSK on an AWGN
channel.

Table 2 shows the encoding and decoding speed of the C
simulations, when run on a desktop PC using a 3 GHz In-
tel Xeon processor. The decoder is an 8-bit message passing
decoder that stops iterating when a codeword is found. Be-
cause more iterations are needed at lower SNRs, the speed of
such a variable iterations decoder is sensitive to the SNR. The
speeds reported in the table refer to a decoder operated at the
Eb/N0 shown, which in each case corresponds to operation
at CWER≈ 10−4 and represents a reasonable lower limit on
SNR at which the decoder would be operated in practice.
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Figure 2. Performance of AR4JA LDPC coded BPSK/QPSK.
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Figure 3. Performance of AR4JA LDPC coded 8-PSK.
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Figure 4. Performance of AR4JA LDPC coded 16-APSK.
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Figure 5. Performance of AR4JA LDPC coded 32-APSK.
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